1
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
2
|
Couturier A, Virolle C, Goldlust K, Berne-Dedieu A, Reuter A, Nolivos S, Yamaichi Y, Bigot S, Lesterlin C. Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer. Nat Commun 2023; 14:294. [PMID: 36653393 PMCID: PMC9849209 DOI: 10.1038/s41467-023-35978-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Conjugation is a contact-dependent mechanism for the transfer of plasmid DNA between bacterial cells, which contributes to the dissemination of antibiotic resistance. Here, we use live-cell microscopy to visualise the intracellular dynamics of conjugative transfer of F-plasmid in E. coli, in real time. We show that the transfer of plasmid in single-stranded form (ssDNA) and its subsequent conversion into double-stranded DNA (dsDNA) are fast and efficient processes that occur with specific timing and subcellular localisation. Notably, the ssDNA-to-dsDNA conversion determines the timing of plasmid-encoded protein production. The leading region that first enters the recipient cell carries single-stranded promoters that allow the early and transient synthesis of leading proteins immediately upon entry of the ssDNA plasmid. The subsequent conversion into dsDNA turns off leading gene expression, and activates the expression of other plasmid genes under the control of conventional double-stranded promoters. This molecular strategy allows for the timely production of factors sequentially involved in establishing, maintaining and disseminating the plasmid.
Collapse
Affiliation(s)
- Agathe Couturier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Chloé Virolle
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Kelly Goldlust
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Annick Berne-Dedieu
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Audrey Reuter
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Sophie Nolivos
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Yoshiharu Yamaichi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France.
| |
Collapse
|
3
|
Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. Microorganisms 2021; 9:microorganisms9122465. [PMID: 34946067 PMCID: PMC8708921 DOI: 10.3390/microorganisms9122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.
Collapse
|
4
|
Fomenkov A, Sun Z, Murray IA, Ruse C, McClung C, Yamaichi Y, Raleigh EA, Roberts RJ. Plasmid replication-associated single-strand-specific methyltransferases. Nucleic Acids Res 2021; 48:12858-12873. [PMID: 33270887 PMCID: PMC7736820 DOI: 10.1093/nar/gkaa1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.
Collapse
Affiliation(s)
| | - Zhiyi Sun
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | - Iain A Murray
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | - Cristian Ruse
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | | | - Yoshiharu Yamaichi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | |
Collapse
|
5
|
Miyakoshi M, Ohtsubo Y, Nagata Y, Tsuda M. Transcriptome Analysis of Zygotic Induction During Conjugative Transfer of Plasmid RP4. Front Microbiol 2020; 11:1125. [PMID: 32625173 PMCID: PMC7314908 DOI: 10.3389/fmicb.2020.01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 11/23/2022] Open
Abstract
Conjugative transfer of bacterial plasmid is one of the major mechanisms of horizontal gene transfer, which is mediated by direct contact between donor and recipient cells. Gene expression of a conjugative plasmid is tightly regulated mostly by plasmid-encoded transcriptional regulators, but it remains obscure how differently plasmid genes are expressed in each cell during the conjugation event. Here, we report a comprehensive analysis of gene expression during conjugative transfer of plasmid RP4, which is transferred between isogenic strains of Pseudomonas putida KT2440 at very high frequency. To discriminate the expression changes in the donor and recipient cells, we took advantage of conjugation in the presence of rifampicin (Rif). Within 10 min of mating, we successfully detected transient transcription of plasmid genes in the resultant transconjugant cells. This phenomenon known as zygotic induction is likely attributed to derepression of multiple RP4-encoded repressors. Interestingly, we also observed that the traJIH operon encoding relaxase and its auxiliary proteins were upregulated specifically in the donor cells. Identification of the 5′ end of the zygotically induced traJ mRNA confirmed that the transcription start site of traJ was located 24-nt upstream of the nick site in the origin of transfer (oriT) as previously reported. Since the traJ promoter is encoded on the region to be transferred first, the relaxase may be expressed in the donor cell after regeneration of the oriT-flanking region, which in itself is likely to displace the autogenous repressors around oriT. This study provides new insights into the regulation of plasmid transfer processes.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Val-Calvo J, Luque-Ortega JR, Crespo I, Miguel-Arribas A, Abia D, Sánchez-Hevia DL, Serrano E, Gago-Córdoba C, Ares S, Alfonso C, Rojo F, Wu LJ, Boer DR, Meijer WJJ. Novel regulatory mechanism of establishment genes of conjugative plasmids. Nucleic Acids Res 2019; 46:11910-11926. [PMID: 30380104 PMCID: PMC6294495 DOI: 10.1093/nar/gky996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Isidro Crespo
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa"
| | | | - Ester Serrano
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Saúl Ares
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE4AX, UK
| | - D Roeland Boer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Wilfried J J Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Chowdhury HM, Siddiqui MA, Kanneganti S, Sharmin N, Chowdhury MW, Nasim MT. Aminoglycoside-mediated promotion of translation readthrough occurs through a non-stochastic mechanism that competes with translation termination. Hum Mol Genet 2019; 27:373-384. [PMID: 29177465 DOI: 10.1093/hmg/ddx409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/14/2017] [Indexed: 01/26/2023] Open
Abstract
Attempts have been made to treat nonsense-associated genetic disorders by chemical agents and hence an improved mechanistic insight into the decoding of readthrough signals is essential for the identification and characterisation of factors for the treatment of these disorders. To identify either novel compounds or genes that modulate translation readthrough, we have employed dual reporter-based high-throughput screens that use enzymatic and fluorescence activities and screened bioactive National Institute of Neurological Disease Syndrome (NINDS) compounds (n = 1000) and siRNA (n = 288) libraries. Whilst siRNAs targeting kinases such as CSNK1G3 and NME3 negatively regulate readthrough, neither the bioactive NINDS compounds nor PTC124 promote readthrough. Of note, PTC124 has previously been shown to promote readthrough. Furthermore, the impacts of G418 on the components of eukaryotic selenocysteine incorporation machinery have also been investigated. The selenocysteine machinery decodes the stop codon UGA specifying selenocysteine in natural selenoprotein genes. We have found that the eukaryotic SelC gene promotes the selenocysteine insertion sequence (SECIS)-mediated readthrough but inhibits the readthrough activity induced by G418. We have previously reported that SECIS-mediated readthrough at UGA codons follows a non-processive mechanism. Here, we show that G418-mediated promotion of readthrough also occurs through a non-processive mechanism which competes with translation termination. Based on our observations, we suggest that proteins generated through a non-processive mechanism may be therapeutically beneficial for the resolution of nonsense-associated genetic disorders.
Collapse
Affiliation(s)
- H M Chowdhury
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - M A Siddiqui
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - S Kanneganti
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - N Sharmin
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - M W Chowdhury
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - M Talat Nasim
- Department of Medical and Molecular Genetics, King's College London, London, UK.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.,Biomedical Research Centre, National Institute for Health Research (NIHR), St. Thomas' NHS Foundation Trust and King's College London, London, UK.,Centre for Health Agricultural and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh
| |
Collapse
|
8
|
Esyunina D, Pupov D, Kulbachinskiy A. Dual role of the σ factor in primer RNA synthesis by bacterial RNA polymerase. FEBS Lett 2018; 593:361-368. [PMID: 30536890 DOI: 10.1002/1873-3468.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Bacterial RNA polymerase (RNAP) serves as a primase during replication of single-stranded plasmids and filamentous phages. Primer RNA (prRNA) synthesis from the origin regions of these replicons depends on the σ factor that normally participates in promoter recognition. However, it was proposed that σ may not be required for origin recognition but is rather involved in RNA extension by RNAP. Here, by analyzing the natural replication origin of bacteriophage M13 and synthetic ssDNA templates, we show that interactions of σ with promoter-like motifs stabilize priming complexes and can control prRNA synthesis by trapping RNAP on the template. Thus, the σ factor is involved in both DNA recognition and RNA priming, unifying its functions in transcription initiation from double- and single-stranded templates.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
9
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Cox KEL, Schildbach JF. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 2017; 91:53-60. [PMID: 28359666 DOI: 10.1016/j.plasmid.2017.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/26/2017] [Indexed: 12/29/2022]
Abstract
The R1 antibiotic resistance plasmid, originally discovered in a clinical Salmonella isolate in London, 1963, has served for decades as a key model for understanding conjugative plasmids. Despite its scientific importance, a complete sequence of this plasmid has never been reported. We present the complete genome sequence of R1 along with a brief review of the current knowledge concerning its various genetic systems and a comparison to the F and R100 plasmids. R1 is 97,566 nucleotides long and contains 120 genes. The plasmid consists of a backbone largely similar to that of F and R100, a Tn21-like transposon that is nearly identical to that of R100, and a unique 9-kb sequence that bears some resemblance to sequences found in certain Klebsiella oxytoca strains. These three regions of R1 are separated by copies of the insertion sequence IS1. Overall, the structure of R1 and comparison to F and R100 suggest a fairly stable shared conjugative plasmid backbone into which a variety of mobile elements have inserted to form an "accessory" genome, containing multiple antibiotic resistance genes, transposons, remnants of phage genes, and genes whose functions remain unknown.
Collapse
Affiliation(s)
- Katherine E L Cox
- Department of Biology, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.
| | - Joel F Schildbach
- Department of Biology, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Lorenzo-Díaz F, Fernández-López C, Garcillán-Barcia MP, Espinosa M. Bringing them together: plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective. Plasmid 2014; 74:15-31. [PMID: 24942190 PMCID: PMC7103276 DOI: 10.1016/j.plasmid.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
Rolling circle-replicating plasmids constitute a vast family that is particularly abundant in, but not exclusive of, Gram-positive bacteria. These plasmids are constructed as cassettes that harbor genes involved in replication and its control, mobilization, resistance determinants and one or two origins of lagging strand synthesis. Any given plasmid may contain all, some, or just only the replication cassette. We discuss here the family of the promiscuous streptococcal plasmid pMV158, with emphasis on its mobilization functions: the product of the mobM gene, prototype of the MOBV relaxase family, and its cognate origin of transfer, oriT. Amongst the subfamily of MOBV1 plasmids, three groups of oriT sequences, represented by plasmids pMV158, pT181, and p1414 were identified. In the same subfamily, we found four types of single-strand origins, namely ssoA, ssoU, ssoW, and ssoT. We found that plasmids of the rolling-circle Rep_2 family (to which pMV158 belongs) are more frequently found in Lactobacillales than in any other bacterial order, whereas Rep_1 initiators seemed to prefer hosts included in the Bacillales order. In parallel, MOBV1 relaxases associated with Rep_2 initiators tended to cluster separately from those linked to Rep_1 plasmids. The updated inventory of MOBV1 plasmids still contains exclusively mobilizable elements, since no genes associated with conjugative transfer (other than the relaxase) were detected. These plasmids proved to have a great plasticity at using a wide variety of conjugative apparatuses. The promiscuous recognition of non-cognate oriT sequences and the role of replication origins for lagging-strand origin in the host range of these plasmids are also discussed.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria and Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC-SODERCAN, Santander, Cantabria, Spain.
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
12
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
13
|
Chen K, Reuter M, Sanghvi B, Roberts GA, Cooper LP, Tilling M, Blakely GW, Dryden DTF. ArdA proteins from different mobile genetic elements can bind to the EcoKI Type I DNA methyltransferase of E. coli K12. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:505-11. [PMID: 24368349 PMCID: PMC3969726 DOI: 10.1016/j.bbapap.2013.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
Abstract
Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction–modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species. Diverse ArdA proteins all target the EcoKI Type I DNA modification enzyme. ArdA proteins have variable secondary structure content. ArdA all bind equally well to EcoKI despite stability variations.
Collapse
Affiliation(s)
- Kai Chen
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Marcel Reuter
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Bansi Sanghvi
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Laurie P Cooper
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Matthew Tilling
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Garry W Blakely
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JR, UK
| | - David T F Dryden
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| |
Collapse
|
14
|
Abstract
Besides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying the transcription of single-strand templates by bacterial RNAP, we selected high-affinity single-strand DNA aptamers that are specifically bound by RNAP holoenzyme, and characterized a novel class of aptamer-based transcription templates. The aptamer templates have a hairpin structure that mimics the upstream part of the open promoter bubble with accordingly placed specific promoter elements. The affinity of the RNAP holoenzyme to such DNA structures probably underlies its promoter-melting activity. Depending on the template structure, the aptamer templates can direct synthesis of productive RNA transcripts or effectively trap RNAP in the process of abortive synthesis, involving DNA scrunching, and competitively inhibit promoter recognition. The aptamer templates provide a novel tool for structure-function studies of transcription initiation by bacterial RNAP and its inhibition.
Collapse
|
15
|
Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2011; 74:570-88. [PMID: 21119018 DOI: 10.1128/mmbr.00026-10] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.
Collapse
|
16
|
Lagging-strand DNA replication origins are required for conjugal transfer of the promiscuous plasmid pMV158. J Bacteriol 2008; 191:720-7. [PMID: 19028894 DOI: 10.1128/jb.01257-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promiscuous streptococcal plasmid pMV158 is mobilizable by auxiliary plasmids and replicates by the rolling-circle mechanism in a variety of bacterial hosts. The plasmid has two lagging-strand origins, ssoA and ssoU, involved in the conversion of single-stranded DNA intermediates into double-stranded plasmid DNA during vegetative replication. Transfer of the plasmid also would involve conversion of single-stranded DNA molecules into double-stranded plasmid forms in the recipient cells by conjugative replication. To test whether lagging-strand origins played a role in horizontal transfer, pMV158 derivatives defective in one or in both sso's were constructed and tested for their ability to colonize new hosts by means of intra- and interspecies mobilization. Whereas either sso supported transfer between strains of Streptococcus pneumoniae, only plasmids that had an intact ssoU could be efficiently mobilized from S. pneumoniae to Enterococcus faecalis. Thus, it appears that ssoU is a critical factor for pMV158 promiscuity and that the presence of a functional sso plays an essential role in plasmid transfer.
Collapse
|
17
|
Davydova EK, Santangelo TJ, Rothman-Denes LB. Bacteriophage N4 virion RNA polymerase interaction with its promoter DNA hairpin. Proc Natl Acad Sci U S A 2007; 104:7033-8. [PMID: 17438270 PMCID: PMC1855362 DOI: 10.1073/pnas.0610627104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage N4 minivirion RNA polymerase (mini-vRNAP), the RNA polymerase (RNAP) domain of vRNAP, is a member of the T7-like RNAP family. Mini-vRNAP recognizes promoters that comprise conserved sequences and a 3-base loop-5-base pair (bp) stem DNA hairpin structure on single-stranded templates. Here, we defined the DNA structural and sequence requirements for mini-vRNAP promoter recognition. Mini-vRNAP binds a 20-nucleotide (nt) N4 P2 promoter deoxyoligonucleotide with high affinity (K(d) = 2 nM) to form a salt-resistant complex. We show that mini-vRNAP interacts specifically with the central base of the hairpin loop (-11G) and a base at the stem (-8G) and that the guanine 6-keto and 7-imino groups at both positions are essential for binding and complex salt resistance. The major determinant (-11G), which must be presented to mini-vRNAP in the context of a hairpin loop, appears to interact with mini-vRNAP Trp-129. This interaction requires template single-strandedness at positions -2 and -1. Contacts with the promoter are disrupted when the RNA product becomes 11-12 nt long. This detailed description of vRNAP interaction with its promoter hairpin provides insights into RNAP-promoter interactions and explains how the injected vRNAP, which is present in one or two copies, recognizes its promoters on a single copy of the injected genome.
Collapse
Affiliation(s)
- Elena K. Davydova
- *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; and
| | - Thomas J. Santangelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Lucia B. Rothman-Denes
- *Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637; and
- To whom correspondence should be addressed at:
Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, CLSC 613, Chicago, IL 60637. E-mail:
| |
Collapse
|
18
|
Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol 2006; 365:284-97. [PMID: 17069852 DOI: 10.1016/j.jmb.2006.09.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.
Collapse
Affiliation(s)
- Sergei V Nekrasov
- Department of Genetic Engineering, National Cardiology Research and Development Center, Moscow 121552, Russia
| | | | | | | | | |
Collapse
|
19
|
Grajcar L, El Amri C, Ghomi M, Fermandjian S, Huteau V, Mandel R, Lecomte S, Baron MH. Assessment of adenyl residue reactivity within model nucleic acids by surface enhanced Raman spectroscopy. Biopolymers 2006; 82:6-28. [PMID: 16425174 DOI: 10.1002/bip.20455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We rank the reactivity of the adenyl residues (A) of model DNA and RNA molecules with electropositive subnano size [Ag]n+ sites as a function of nucleic acid primary sequences and secondary structures and in the presence of biological amounts of Cl- and Na+ or Mg2+ ions. In these conditions A is markedly more reactive than any other nucleic acid bases. A reactivity is higher in ribo (r) than in deoxyribo (d) species [pA>pdA and (pA)n>>(pdA)n]. Base pairing decreases A reactivity in corresponding duplexes but much less in r than in d. In linear single and paired dCAG or dGAC loci, base stacking inhibits A reactivity even if A is bulged or mispaired (A.A). dA tracts are highly reactive only when dilution prevents self-association and duplex structures. In d hairpins the solvent-exposed A residues are reactive in CAG and GAC triloops and even more in ATC loops. Among the eight rG1N2R3A4 loops, those bearing a single A (A4) are the least reactive. The solvent-exposed A2 is reactive, but synergistic structural transitions make the initially stacked A residues of any rGNAA loop much more reactive. Mg2+ cross-bridging single strands via phosphates may screen A reactivity. In contrast d duplexes cross-bridging enables "A flipping" much more in rA.U pairs than in dA.T. Mg2+ promotes A reactivity in unpaired strands. For hairpins Mg2+ binding stabilizes the stems, but according to A position in the loops, A reactivity may be abolished, reduced, or enhanced. It is emphasized that not only accessibility but also local flexibility, concerted docking, and cation and anion binding control A reactivity.
Collapse
Affiliation(s)
- Lydie Grajcar
- Laboratoire de Dynamique Interactions et Réactivité, UMR 7075, Université Paris 6 CNRS, 2 rue Henri Dunant, 94320, Thiais, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Landt SG, Ramirez A, Daugherty MD, Frankel AD. A simple motif for protein recognition in DNA secondary structures. J Mol Biol 2005; 351:982-94. [PMID: 16055152 DOI: 10.1016/j.jmb.2005.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022]
Abstract
DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.
Collapse
Affiliation(s)
- Stephen G Landt
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
21
|
Nasim MT, Trembath RC. A dual-light reporter system to determine the efficiency of protein-protein interactions in mammalian cells. Nucleic Acids Res 2005; 33:e66. [PMID: 15824058 PMCID: PMC1075926 DOI: 10.1093/nar/gni066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methods for determining protein–protein interactions in mammalian cells typically rely on single reporter functions and are susceptible to variations between samples particularly in regard to levels of transcription, processing and translation. A method has been developed for determining protein–protein interactions in mammalian cells, which bypasses these variables confounding single reporter assays. The approach utilizes two units of gene expression linked to reporter functions that are interposed by a deactivation–activation unit in such a way that the downstream expression unit is switched off. Hence upstream expression occurs regardless of protein–protein interaction, leading to the production of the upstream reporter. In the event of protein–protein interactions, the downstream expression unit is switched on leading to dual reporter read outs. Thus, the ratio of the two reporter activities provides a measure to determine the efficiency of protein–protein interactions. To access the system we screened a mutant of BMPR2 where the interaction between BMPR-II and LIMK is abrogated. BMPR-II is a type II receptor of the TGFβ superfamily and plays a key role in the pathogenesis of familial pulmonary arterial hypertension. This system has potential for high-throughput screening of libraries (peptide, chemical, cDNA, etc.) to isolate agents that are capable of interfering with highly selective protein–protein interaction.
Collapse
Affiliation(s)
- M T Nasim
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|