1
|
Rodea M GE, González-Villalobos E, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic analysis of a novel phage vB_SenS_ST1UNAM with lytic activity against Salmonella enterica serotypes. Diagn Microbiol Infect Dis 2024; 109:116305. [PMID: 38643675 DOI: 10.1016/j.diagmicrobio.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.
Collapse
Affiliation(s)
- Gerardo E Rodea M
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico; Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular División de Investigación, departamento de Salud Pública, Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City 11340, México
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA). 17003, Girona, Spain; University of Girona. 17004 Girona, Spain
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico.
| |
Collapse
|
2
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
3
|
Bartoli J, Tempier AC, Guzzi NL, Piras CM, Cascales E, Viala JPM. Characterization of a (p)ppApp Synthetase Belonging to a New Family of Polymorphic Toxin Associated with Temperate Phages. J Mol Biol 2023; 435:168282. [PMID: 37730083 DOI: 10.1016/j.jmb.2023.168282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA_SpoT activities. In this study, we characterized the MuF-RelA_SpoT toxin associated with the temperate phage of Streptococcus pneumoniae SPNA45. We show that the RelA_SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further determine that the two genes located downstream encode two immunity proteins, one binding to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp synthetases that distinguishes them from (p)ppGpp synthetases.
Collapse
Affiliation(s)
- Julia Bartoli
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Audrey C Tempier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Noa L Guzzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/NoaGzzi
| | - Chloé M Piras
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/CascalesLab
| | - Julie P M Viala
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France.
| |
Collapse
|
4
|
Ahmad S, Gordon IJ, Tsang KK, Alexei AG, Sychantha D, Colautti J, Trilesky SL, Kim Y, Wang B, Whitney JC. Identification of a broadly conserved family of enzymes that hydrolyze (p)ppApp. Proc Natl Acad Sci U S A 2023; 120:e2213771120. [PMID: 36989297 PMCID: PMC10083569 DOI: 10.1073/pnas.2213771120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.
Collapse
Affiliation(s)
- Shehryar Ahmad
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Isis J. Gordon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kara K. Tsang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Andrea G. Alexei
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - David Sychantha
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Sarah L. Trilesky
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL60439
| | - Boyuan Wang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - John C. Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
5
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
6
|
Casjens SR, Davidson AR, Grose JH. The small genome, virulent, non-contractile tailed bacteriophages that infect Enterobacteriales hosts. Virology 2022; 573:151-166. [DOI: 10.1016/j.virol.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
|
7
|
Seul A, Brasilès S, Petitpas I, Lurz R, Campanacci V, Cambillau C, Weise F, Zairi M, Tavares P, Auzat I. Biogenesis of a Bacteriophage Long Non-Contractile Tail. J Mol Biol 2021; 433:167112. [PMID: 34153288 DOI: 10.1016/j.jmb.2021.167112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anait Seul
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Sandrine Brasilès
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Isabelle Petitpas
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Valérie Campanacci
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Frank Weise
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| | - Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
9
|
Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology 2018; 525:237-247. [PMID: 30308422 DOI: 10.1016/j.virol.2018.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
Many staphylococcal bacteriophages encode a minor capsid protein between the genes for the portal and scaffolding proteins. In Staphylococcus aureus bacteriophage 80α, this protein, called gp44, is essential for the production of viable phage, but dispensable for the phage-mediated mobilization of S. aureus pathogenicity islands. We show here that gp44 is not required for capsid assembly, DNA packaging or ejection of the DNA, nor for generalized transduction of plasmids. An 80α Δ44 mutant could be complemented in trans by gp44 expressed from a plasmid, indicating that gp44 plays a post-injection role in the host. Our results show that gp44 is an ejection (pilot) protein that is involved in deciding the fate of the phage DNA after injection. Our data are consistent with a model in which gp44 acts as a regulatory protein that promotes progression to the lytic cycle.
Collapse
Affiliation(s)
- Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Wang Z, Hardies SC, Fokine A, Klose T, Jiang W, Cho BC, Rossmann MG. Structure of the Marine Siphovirus TW1: Evolution of Capsid-Stabilizing Proteins and Tail Spikes. Structure 2017; 26:238-248.e3. [PMID: 29290487 DOI: 10.1016/j.str.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Marine bacteriophage TW1 belongs to the Siphoviridae family and infects Pseudoalteromonas phenolica. Mass spectrometry analysis has identified 16 different proteins in the TW1 virion. Functions of most of these proteins have been predicted by bioinformatic methods. A 3.6 Å resolution cryoelectron microscopy map of the icosahedrally averaged TW1 head showed the atomic structures of the major capsid protein, gp57∗, and the capsid-stabilizing protein, gp56. The gp57∗ structure is similar to that of the phage HK97 capsid protein. The gp56 protein has two domains, each having folds similar to that of the N-terminal part of phage λ gpD, indicating a common ancestry. The first gp56 domain clamps adjacent capsomers together, whereas the second domain is required for trimerization. A 6-fold-averaged reconstruction of the distal part of the tail showed that TW1 has six tail spikes, which are unusual for siphophages but are similar to the podophages P22 and Sf6, suggesting a common evolutionary origin of these spikes.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen C Hardies
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 151-742, Korea
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol 2017; 15:75. [PMID: 28851366 PMCID: PMC5576092 DOI: 10.1186/s12915-017-0415-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background Polymorphic toxins (PTs) are multi-domain bacterial exotoxins belonging to distinct families that share common features in terms of domain organization. PTs are found in all major bacterial clades, including many toxic effectors of type V and type VI secretion systems. PTs modulate the dynamics of microbial communities by killing or inhibiting the growth of bacterial competitors lacking protective immunity proteins. Results In this work, we identified a novel widespread family of PTs, named MuF toxins, which were exclusively encoded within temperate phages and their prophages. By analyzing the predicted proteomes of 1845 bacteriophages and 2464 bacterial genomes, we found that MuF-containing proteins were frequently part of the DNA packaging module of tailed phages. Interestingly, MuF toxins were abundant in the human gut microbiome. Conclusions Our results uncovered the presence of the MuF toxin family in the temperate phages of Firmicutes. The MuF toxin family is likely to play an important role in the ecology of the human microbiota where pathogens and commensal species belonging to the Firmicutes are abundant. We propose that MuF toxins could be delivered by phages into host bacteria and either influence the lysogeny decision or serve as bacterial weapons by inhibiting the growth of competing bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0415-1) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J Bacteriol 2017; 199:JB.00245-17. [PMID: 28559295 PMCID: PMC5512222 DOI: 10.1128/jb.00245-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.
Collapse
|
13
|
Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS One 2015; 10:e0131676. [PMID: 26147978 PMCID: PMC4493119 DOI: 10.1371/journal.pone.0131676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by non-sense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion.
Collapse
|
14
|
KUSMIATUN ANIK, RUSMANA IMAN, BUDIARTI SRI. Characterization of Bacteriophage Specific to Bacillus pumilus from Ciapus River in Bogor, West Java, Indonesia. HAYATI JOURNAL OF BIOSCIENCES 2015. [DOI: 10.4308/hjb.22.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Virus evolution toward limited dependence on nonessential functions of the host: the case of bacteriophage SPP1. J Virol 2014; 89:2875-83. [PMID: 25540376 DOI: 10.1128/jvi.03540-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED All viruses are obligate intracellular parasites and depend on certain host cell functions for multiplication. However, the extent of such dependence and the exact nature of the functions provided by the host cell remain poorly understood. Here, we investigated if nonessential Bacillus subtilis genes are necessary for multiplication of bacteriophage SPP1. Screening of a collection of 2,514 single-gene knockouts of nonessential B. subtilis genes yielded only a few genes necessary for efficient SPP1 propagation. Among these were genes belonging to the yuk operon, which codes for the Esat-6-like secretion system, including the SPP1 receptor protein YueB. In addition, we found that SPP1 multiplication was negatively affected by the absence of two other genes, putB and efp. The gene efp encodes elongation factor P, which enhances ribosome activity by alleviating translational stalling during the synthesis of polyproline-containing proteins. PutB is an enzyme involved in the proline degradation pathway that is required for infection in the post-exponential growth phase of B. subtilis, when the bacterium undergoes a complex genetic reprogramming. The putB knockout shortens significantly the window of opportunity for SPP1 infection during the host cell life cycle. This window is a critical parameter for competitive phage multiplication in the soil environment, where B. subtilis rarely meets conditions for exponential growth. Our results in combination with those reported for other virus-host systems suggest that bacterial viruses have evolved toward limited dependence on nonessential host functions. IMPORTANCE A successful viral infection largely depends on the ability of the virus to hijack cellular machineries and to redirect the flow of building blocks and energy resources toward viral progeny production. However, the specific virus-host interactions underlying this fundamental transformation are poorly understood. Here, we report on the first systematic analysis of virus-host cross talk during bacteriophage infection in Gram-positive bacteria. We show that lytic bacteriophage SPP1 is remarkably independent of nonessential genes of its host, Bacillus subtilis, with only a few cellular genes being necessary for efficient phage propagation. We hypothesize that such limited dependence of the virus on its host results from a constant "evolutionary arms race" and might be much more widespread than currently thought.
Collapse
|
16
|
Quiles-Puchalt N, Martínez-Rubio R, Ram G, Lasa Í, Penadés JR. Unravelling bacteriophage ϕ11 requirements for packaging and transfer of mobile genetic elements inStaphylococcus aureus. Mol Microbiol 2014; 91:423-37. [DOI: 10.1111/mmi.12445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Nuria Quiles-Puchalt
- Instituto de Biomedicina de Valencia (IBV-CSIC); 46010 Valencia Spain
- Centro de Investigación y Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA); 12400 Segorbe Castellón Spain
| | - Roser Martínez-Rubio
- Centro de Investigación y Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA); 12400 Segorbe Castellón Spain
- Cardenal Herrera-CEU University; 46113 Moncada Valencia Spain
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine; New York University Medical Center; New York NY 10016 USA
| | - Íñigo Lasa
- Instituto de Agrobiotecnología; CSIC-Universidad Pública de Navarra; 31006 Pamplona Navarra Spain
| | - José R. Penadés
- Instituto de Biomedicina de Valencia (IBV-CSIC); 46010 Valencia Spain
- Institute of Infection, Immunity and Inflammation; College of Medical; Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
17
|
Oliveira L, Tavares P, Alonso JC. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res 2013; 173:247-59. [DOI: 10.1016/j.virusres.2013.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
|
18
|
Spilman MS, Damle PK, Dearborn AD, Rodenburg CM, Chang JR, Wall EA, Christie GE, Dokland T. Assembly of bacteriophage 80α capsids in a Staphylococcus aureus expression system. Virology 2012; 434:242-50. [PMID: 22980502 DOI: 10.1016/j.virol.2012.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
80α is a temperate, double-stranded DNA bacteriophage of Staphylococcus aureus that can act as a "helper" for the mobilization of S. aureus pathogenicity islands (SaPIs), including SaPI1. When SaPI1 is mobilized by 80α, the SaPI genomes are packaged into capsids that are composed of phage proteins, but that are smaller than those normally formed by the phage. This size determination is dependent on SaPI1 proteins CpmA and CpmB. Here, we show that co-expression of the 80α capsid and scaffolding proteins in S. aureus, but not in E. coli, leads to the formation of procapsid-related structures, suggesting that a host co-factor is required for assembly. The capsid and scaffolding proteins also undergo normal N-terminal processing upon expression in S. aureus, implicating a host protease. We also find that SaPI1 proteins CpmA and CpmB promote the formation of small capsids upon co-expression with 80α capsid and scaffolding proteins in S. aureus.
Collapse
Affiliation(s)
- Michael S Spilman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Capsid structure and its stability at the late stages of bacteriophage SPP1 assembly. J Virol 2012; 86:6768-77. [PMID: 22514336 DOI: 10.1128/jvi.00412-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the bacteriophage SPP1 capsid was determined at subnanometer resolution by cryo-electron microscopy and single-particle analysis. The icosahedral capsid is composed of the major capsid protein gp13 and the auxiliary protein gp12, which are organized in a T=7 lattice. DNA is arranged in layers with a distance of ~24.5 Å. gp12 forms spikes that are anchored at the center of gp13 hexamers. In a gp12-deficient mutant, the centers of hexamers are closed by loops of gp13 coming together to protect the SPP1 genome from the outside environment. The HK97-like fold was used to build a pseudoatomic model of gp13. Its structural organization remains unchanged upon tail binding and following DNA release. gp13 exhibits enhanced thermostability in the DNA-filled capsid. A remarkable convergence between the thermostability of the capsid and those of the other virion components was found, revealing that the overall architecture of the SPP1 infectious particle coevolved toward high robustness.
Collapse
|
20
|
First steps of bacteriophage SPP1 entry into Bacillus subtilis. Virology 2012; 422:425-34. [DOI: 10.1016/j.virol.2011.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/20/2011] [Accepted: 11/11/2011] [Indexed: 01/13/2023]
|
21
|
A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol 2011; 86:236-45. [PMID: 22031930 DOI: 10.1128/jvi.06282-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cyanophage, PaV-LD, has been isolated from harmful filamentous cyanobacterium Planktothrix agardhii in Lake Donghu, a shallow freshwater lake in China. Here, we present the cyanophage's genomic organization and major structural proteins. The genome is a 95,299-bp-long, linear double-stranded DNA and contains 142 potential genes. BLAST searches revealed 29 proteins of known function in cyanophages, cyanobacteria, or bacteria. Thirteen major structural proteins ranging in size from 27 kDa to 172 kDa were identified by SDS-PAGE and mass-spectrometric analysis. The genome lacks major genes that are necessary to the tail structure, and the tailless PaV-LD has been confirmed by an electron microscopy comparison with other tail cyanophages and phages. Phylogenetic analysis of the major capsid proteins also reveals an independent branch of PaV-LD that is quite different from other known tail cyanophages and phages. Moreover, the unique genome carries a nonbleaching protein A (NblA) gene (open reading frame [ORF] 022L), which is present in all phycobilisome-containing organisms and mediates phycobilisome degradation. Western blot detection confirmed that 022L was expressed after PaV-LD infection in the host filamentous cyanobacterium. In addition, its appearance was companied by a significant decline of phycocyanobilin content and a color change of the cyanobacterial cells from blue-green to yellow-green. The biological function of PaV-LD nblA was further confirmed by expression in a model cyanobacterium via an integration platform, by spectroscopic analysis and electron microscopy observation. The data indicate that PaV-LD is an exceptional cyanophage of filamentous cyanobacteria, and this novel cyanophage will also provide us with a new vision of the cyanophage-host interactions.
Collapse
|
22
|
Christie GE, Matthews AM, King DG, Lane KD, Olivarez NP, Tallent SM, Gill SR, Novick RP. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α--implications for the specificity of SaPI mobilization. Virology 2010; 407:381-90. [PMID: 20869739 DOI: 10.1016/j.virol.2010.08.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are mobile elements that are induced by a helper bacteriophage to excise and replicate and to be encapsidated in phage-like particles smaller than those of the helper, leading to high-frequency transfer. SaPI mobilization is helper phage specific; only certain SaPIs can be mobilized by a particular helper phage. Staphylococcal phage 80α can mobilize every SaPI tested thus far, including SaPI1, SaPI2 and SaPIbov1. Phage 80, on the other hand, cannot mobilize SaPI1, and ϕ11 mobilizes only SaPIbov1. In order to better understand the relationship between SaPIs and their helper phages, the genomes of phages 80 and 80α were sequenced, compared with other staphylococcal phage genomes, and analyzed for unique features that may be involved in SaPI mobilization.
Collapse
Affiliation(s)
- G E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall Street; PO Box 980678, Richmond, VA 23298-0678, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Raza ML, Nasir M, Abbas T, Naqvi BS. Antibacterial activity of different extracts from theCatharanthus roseus. ACTA ACUST UNITED AC 2009. [DOI: 10.1556/cemed.3.2009.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Auzat I, Dröge A, Weise F, Lurz R, Tavares P. Origin and function of the two major tail proteins of bacteriophage SPP1. Mol Microbiol 2008; 70:557-69. [PMID: 18786146 DOI: 10.1111/j.1365-2958.2008.06435.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has approximately 10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes.
Collapse
Affiliation(s)
- Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
25
|
Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P. Oligomerization of the SPP1 scaffolding protein. J Mol Biol 2008; 378:551-64. [PMID: 18377930 DOI: 10.1016/j.jmb.2008.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His(6)) and purified. The protein is an alpha-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His(6) is structurally a dimer of dimers. Incubation at temperatures above 37 degrees C correlated with a reduction of its alpha-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 degrees C. Refolding of gp11-His(6) thermally denatured at 65 degrees C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (approximately 90%) and a smaller fraction of 2.4 S dimers (approximately 10%). This population of gp11-His(6) was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His(6) showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His(6).
Collapse
Affiliation(s)
- Siew Lay Poh
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Bât. 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
São-José C, de Frutos M, Raspaud E, Santos MA, Tavares P. Pressure built by DNA packing inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J Mol Biol 2007; 374:346-55. [PMID: 17942117 DOI: 10.1016/j.jmb.2007.09.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 01/09/2023]
Abstract
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic pressure that controls the extent of DNA released in phages that initiate ejection. We carried out independent measurements of each effect, which is an essential requirement for their quantitative study. The fraction of phages that do not eject increased linearly with the external osmotic pressure. In the remaining phage particles ejection stopped after a defined amount of DNA was reached inside the capsid. Direct measurement of the size of non-ejected DNA by gel electrophoresis at different PEG concentrations in the latter sub-population allowed determination of the external osmotic pressure that balances the force powering DNA exit (47 atm for SPP1 wild-type). DNA exit stops when the ejection force mainly due to repulsion between DNA strands inside the SPP1 capsid equalizes the force resisting DNA insertion into the PEG solution. Considering the turgor pressure in the Bacillus subtilis cytoplasm the energy stored in the tight phage DNA packing is only sufficient to power entry of the first 17% of the SPP1 chromosome into the cell, the remaining 83% requiring application of additional force for internalization.
Collapse
Affiliation(s)
- Carlos São-José
- Instituto de Ciência Aplicada e Tecnologia and Departamento de Biologia Vegetal, Faculdade de Ciências de Lisboa, Ed. ICAT, 1749-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
27
|
Tallent SM, Langston TB, Moran RG, Christie GE. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 2007; 189:7520-4. [PMID: 17693489 PMCID: PMC2168463 DOI: 10.1128/jb.00738-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between the composition of SaPI1 transducing particles and those of helper phage 80alpha was investigated by direct comparison of virion proteins. Twelve virion proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry; all were present in both 80alpha and SaPI1 virions, and all were encoded by 80alpha. No SaPI1-encoded proteins were detected. This confirms the prediction that SaPI1 is encapsidated in a virion assembled from helper phage-encoded proteins.
Collapse
Affiliation(s)
- Sandra M Tallent
- Department of Microbiology and Immunology, VCU, Richmond, VA 23298-0678, USA
| | | | | | | |
Collapse
|
28
|
Plisson C, White HE, Auzat I, Zafarani A, São-José C, Lhuillier S, Tavares P, Orlova EV. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 2007; 26:3720-8. [PMID: 17611601 PMCID: PMC1949002 DOI: 10.1038/sj.emboj.7601786] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/11/2007] [Indexed: 12/21/2022] Open
Abstract
The majority of known bacteriophages have long noncontractile tails (Siphoviridae) that serve as a pipeline for genome delivery into the host cytoplasm. The tail extremity distal from the phage head is an adsorption device that recognises the bacterial receptor at the host cell surface. This interaction generates a signal transmitted to the head that leads to DNA release. We have determined structures of the bacteriophage SPP1 tail before and after DNA ejection. The results reveal extensive structural rearrangements in the internal wall of the tail tube. We propose that the adsorption device-receptor interaction triggers a conformational switch that is propagated as a domino-like cascade along the 1600 A-long helical tail structure to reach the head-to-tail connector. This leads to opening of the connector culminating in DNA exit from the head into the host cell through the tail tube.
Collapse
Affiliation(s)
- Celia Plisson
- School of Crystallography, Birkbeck College, University of London, London, UK
| | - Helen E White
- School of Crystallography, Birkbeck College, University of London, London, UK
| | - Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, Gif-sur-Yvette, France
| | - Amineh Zafarani
- School of Crystallography, Birkbeck College, University of London, London, UK
| | - Carlos São-José
- Instituto de Ciência Aplicada e Tecnologia (ICAT) and Departamento de Biologia Vegetal, Faculdade de Ciências de Lisboa, Ed. ICAT, Lisboa, Portugal
| | - Sophie Lhuillier
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, Gif-sur-Yvette, France
| | - Elena V Orlova
- School of Crystallography, Birkbeck College, University of London, London, UK
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK. Tel.: +44 020 7631 6845; Fax: +44 020 7631 6803; E-mail:
| |
Collapse
|
29
|
Cuervo A, Vaney MC, Antson AA, Tavares P, Oliveira L. Structural rearrangements between portal protein subunits are essential for viral DNA translocation. J Biol Chem 2007; 282:18907-13. [PMID: 17446176 DOI: 10.1074/jbc.m701808200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of DNA into preformed procapsids is a general strategy for genome packing inside virus particles. In most viruses, this task is accomplished by a complex of the viral packaging ATPase with the portal protein assembled at a specialized vertex of the procapsid. Such molecular motor translocates DNA through the central tunnel of the portal protein. A central question to understand this mechanism is whether the portal is a mere conduit for DNA or whether it participates actively on DNA translocation. The most constricted part of the bacteriophage SPP1 portal tunnel is formed by twelve loops, each contributed from one individual subunit. The position of each loop is stabilized by interactions with helix alpha-5, which extends into the portal putative ATPase docking interface. Here, we have engineered intersubunit disulfide bridges between alpha-5s of adjacent portal ring subunits. Such covalent constraint blocked DNA packaging, whereas reduction of the disulfide bridges restored normal packaging activity. DNA exit through the portal in SPP1 virions was unaffected. The data demonstrate that mobility between alpha-5 helices is essential for the mechanism of viral DNA translocation. We propose that the alpha-5 structural rearrangements serve to coordinate ATPase activity with the positions of portal tunnel loops relative to the DNA double helix.
Collapse
Affiliation(s)
- Ana Cuervo
- Unité de Virologie Moléculaire et Structurale, Unité Mixte de Recherche (UMR) CNRS 2472, UMR Institut National de la Recherche Agronomique (INRA) 1157 and Institut Fédératif de Recherche 115, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|