1
|
Bharudin I, Caddick MX, Connell SR, Lamaudière MTF, Morozov IY. Disruption of Dcp1 leads to a Dcp2-dependent aberrant ribosome profiles in Aspergillus nidulans. Mol Microbiol 2023; 119:630-639. [PMID: 37024243 PMCID: PMC11497226 DOI: 10.1111/mmi.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.
Collapse
Affiliation(s)
- Izwan Bharudin
- Institute of Systems, Molecular and Integrative BiologyThe University of LiverpoolBiosciences Building, Crown StreetLiverpoolL69 7ZBUK
- Department of Biological Sciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangi43600 UKMSelangorMalaysia
| | - Mark X. Caddick
- Institute of Systems, Molecular and Integrative BiologyThe University of LiverpoolBiosciences Building, Crown StreetLiverpoolL69 7ZBUK
| | - Sean R. Connell
- BioCruces Bizkaia Health Research InstitutePlaza Cruces s/nBarakaldo48903Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| | - Matthew T. F. Lamaudière
- Coventry University, Centre for Health & Life SciencesAlison Gingell Building, 20 Whitefriars StreetCoventryCV1 5FBUK
| | - Igor Y. Morozov
- Coventry University, Centre for Health & Life SciencesAlison Gingell Building, 20 Whitefriars StreetCoventryCV1 5FBUK
| |
Collapse
|
2
|
The C2H2 Zinc Finger Protein MaNCP1 Contributes to Conidiation through Governing the Nitrate Assimilation Pathway in the Entomopathogenic Fungus Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8090942. [PMID: 36135667 PMCID: PMC9505000 DOI: 10.3390/jof8090942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Zinc finger proteins are an important class of multifunctional regulators. Here, the roles of a C2H2 zinc finger protein MaNCP1 (Metarhizium acridum nitrate-related conidiation pattern shift regulatory factor 1) in nitrogen utilization and conidiation were explored in the entomopathogenic fungus M. acridum. The results showed that MaNCP1-disruption mutant (ΔMaNCP1) impaired the ability to utilize nitrate, ammonium and glutamine and reduced the expression of nitrate assimilation-related genes, suggesting that MaNCP1 was involved in governing nitrogen utilization. In addition, the conidial yield of the ΔMaNCP1 strain, cultured on the microcycle conidiation medium (SYA), was significantly decreased, which could be restored or even enhanced than that of the WT strain through increasing the nitrate content in SYA medium. Further study showed that MaAreA, a core regulator in the nitrogen catabolism repression (NCR) pathway, was a downstream target gene of MaNCP1. Screening the differential expression genes between WT and ΔMaNCP1 strains revealed that the conidial yield of M. acridum regulated by nitrate might be related to NCR pathway on SYA medium. It could be concluded that MaNCP1 contributes to the nitrate assimilation and conidiation, which will provide further insights into the relationship between the nitrogen utilization and conidiation in fungi.
Collapse
|
3
|
Mossanen-Parsi A, Parisi D, Browne-Marke N, Bharudin I, Connell SR, Mayans O, Fucini P, Morozov IY, Caddick MX. Histone mRNA is subject to 3' uridylation and re-adenylation in Aspergillus nidulans. Mol Microbiol 2020; 115:238-254. [PMID: 33047379 DOI: 10.1111/mmi.14613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.
Collapse
Affiliation(s)
- Amir Mossanen-Parsi
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Daniele Parisi
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.,Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Izwan Bharudin
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Olga Mayans
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Igor Y Morozov
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.,Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Mark X Caddick
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Liu Y, Li H, Li J, Zhou Y, Zhou Z, Wang P, Zhou S. Characterization of the promoter of the nitrate transporter-encoding gene nrtA in Aspergillus nidulans. Mol Genet Genomics 2020; 295:1269-1279. [PMID: 32561986 DOI: 10.1007/s00438-020-01700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Aspergillus nidulans nrtA encodes a nitrate transporter that plays an important role in the [Formula: see text] assimilatory process. Many studies have focused on protein functions rather than gene regulation. The knowledge of nrtA[Formula: see text] uptake process, particularly in the regulation mechanism of transcription factors AreA and NirA on nrtA transcription, is very limited. Herein, we investigated the transcriptional regulation of nrtA in response to various N-sources in detail and characterized the promoter activity of nrtA. We confirmed that nrtA was induced by [Formula: see text] and repressed by preferred N-sources. Additionally, for the first time, we found that the transcription of nrtA increased under N-starvation conditions. AreA mediates nrtA transcription under both [Formula: see text] and N-starvation conditions, while NirA is effective only under [Formula: see text] conditions. All of the proposed AreA and NirA binding sites in the promoter region were capable of binding to their corresponding transcription factors in vitro. In vivo, all of the NirA binding sites showed regulation activities, but to AreA, only several of the initiation-codon-proximal binding sites participated in nrtA transcription. Moreover, the active binding sites contributed in different degrees of regulation strength to nrtA transcription, which is unrelated to the distance between the binding sites and initiation codon. These results provided an extensive map of nrtA promoter, defining the functional regulatory elements of A. nidulans nrtA.
Collapse
Affiliation(s)
- Yangyi Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoxiang Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, USA
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
The Role of Eif6 in Skeletal Muscle Homeostasis Revealed by Endurance Training Co-expression Networks. Cell Rep 2018; 21:1507-1520. [PMID: 29117557 PMCID: PMC5695912 DOI: 10.1016/j.celrep.2017.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis. Endurance exercise profoundly affects the structure of gene networks Eif6 is a hub in gene networks responsible for muscle metabolism and protein synthesis Mitochondrial metabolic capacity altered in muscle from Eif6+/− mice Eif6 haploinsufficiency increased ROS generation and reduced exercise performance
Collapse
|
6
|
Wang H, Eze PM, Höfert SP, Janiak C, Hartmann R, Okoye FBC, Esimone CO, Orfali RS, Dai H, Liu Z, Proksch P. Substituted l-tryptophan-l-phenyllactic acid conjugates produced by an endophytic fungus Aspergillus aculeatus using an OSMAC approach. RSC Adv 2018; 8:7863-7872. [PMID: 35539133 PMCID: PMC9078508 DOI: 10.1039/c8ra00200b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
The endophytic fungus Aspergillus aculeatus isolated from leaves of the papaya plant Carica papaya was fermented on solid rice medium, yielding a new l-tryptophan-l-phenyllactic acid conjugate (1) and thirteen known compounds (11, 14-25). In addition, an OSMAC approach was employed by adding eight different sodium or ammonium salts to the rice medium. Addition of 3.5% NaNO3 caused a significant change of the metabolite pattern of the fungus as indicated by HPLC analysis. Subsequent isolation yielded several new substituted l-tryptophan-l-phenyllactic acid conjugates (1-10) in addition to three known compounds (11-13), among which compounds 2-10, 12-13 were not detected in the rice control culture. All structures were unambiguously elucidated by one and two dimensional NMR spectroscopy and by mass spectrometry. The absolute configuration of the new compounds was determined by Marfey's reaction and X-ray single crystal diffraction. Compounds 19-22 showed cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 3.4, 1.4, 7.3 and 23.7 μM, respectively.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Peter M Eze
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka Nigeria
| | - Simon-Patrick Höfert
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Rudolf Hartmann
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Juelich Wilhelm-Johnen-Straße, 52428 Juelich Germany
| | - Festus B C Okoye
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka Nigeria
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka Nigeria
| | - Raha S Orfali
- Department of Pharmacognosy, Faculty of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Haofu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
7
|
Pfannmüller A, Boysen JM, Tudzynski B. Nitrate Assimilation in Fusarium fujikuroi Is Controlled by Multiple Levels of Regulation. Front Microbiol 2017; 8:381. [PMID: 28352253 PMCID: PMC5348485 DOI: 10.3389/fmicb.2017.00381] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022] Open
Abstract
Secondary metabolite production of the phytopathogenic ascomycete fungus Fusarium fujikuroi is greatly influenced by the availability of nitrogen. While favored nitrogen sources such as glutamine and ammonium are used preferentially, the uptake and utilization of nitrate is subject to a regulatory mechanism called nitrogen metabolite repression (NMR). In Aspergillus nidulans, the transcriptional control of the nitrate assimilatory system is carried out by the synergistic action of the nitrate-specific transcription factor NirA and the major nitrogen-responsive regulator AreA. In this study, we identified the main components of the nitrate assimilation system in F. fujikuroi and studied the role of each of them regarding the regulation of the remaining components. We analyzed mutants with deletions of the nitrate-specific activator NirA, the nitrate reductase (NR), the nitrite reductase (NiR) and the nitrate transporter NrtA. We show that NirA controls the transcription of the nitrate assimilatory genes NIAD, NIIA, and NRTA in the presence of nitrate, and that the global nitrogen regulator AreA is obligatory for expression of most, but not all NirA target genes (NIAD). By transforming a NirA-GFP fusion construct into the ΔNIAD, ΔNRTA, and ΔAREA mutant backgrounds we revealed that NirA was dispersed in the cytosol when grown in the presence of glutamine, but rapidly sorted to the nucleus when nitrate was added. Interestingly, the rapid and nitrate-induced nuclear translocation of NirA was observed also in the ΔAREA and ΔNRTA mutants, but not in ΔNIAD, suggesting that the fungus is able to directly sense nitrate in an AreA- and NrtA-independent, but NR-dependent manner.
Collapse
Affiliation(s)
- Andreas Pfannmüller
- Molecular Biology and Biotechnology of Fungi, Department of Biology, Institute of Biology and Biotechnology of Plants, University of Münster Münster, Germany
| | - Jana M Boysen
- Molecular Biology and Biotechnology of Fungi, Department of Biology, Institute of Biology and Biotechnology of Plants, University of Münster Münster, Germany
| | - Bettina Tudzynski
- Molecular Biology and Biotechnology of Fungi, Department of Biology, Institute of Biology and Biotechnology of Plants, University of Münster Münster, Germany
| |
Collapse
|
8
|
|
9
|
Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 2014; 5:656. [PMID: 25506342 PMCID: PMC4246892 DOI: 10.3389/fmicb.2014.00656] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfaelische Wilhelms-University Muenster Muenster, Germany
| |
Collapse
|
10
|
Downes DJ, Davis MA, Wong KH, Kreutzberger SD, Hynes MJ, Todd RB. Dual DNA binding and coactivator functions ofAspergillus nidulans TamA, a Zn(II)2Cys6 transcription factor. Mol Microbiol 2014; 92:1198-211. [DOI: 10.1111/mmi.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Damien J. Downes
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Meryl A. Davis
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Koon Ho Wong
- Department of Biological Chemistry & Molecular Pharmacology; Harvard Medical School; 240 Longwood Ave, Room C2-325 Boston MA 02115 USA
- Faculty of Health Sciences; University of Macau; Macau SAR China
| | - Sara D. Kreutzberger
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Michael J. Hynes
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Richard B. Todd
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
11
|
Roelants SLKW, De Maeseneire SL, Ciesielska K, Van Bogaert INA, Soetaert W. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential. Appl Microbiol Biotechnol 2014; 98:3449-61. [PMID: 24531239 DOI: 10.1007/s00253-014-5547-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.
Collapse
Affiliation(s)
- Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium,
| | | | | | | | | |
Collapse
|
12
|
Michielse CB, Pfannmüller A, Macios M, Rengers P, Dzikowska A, Tudzynski B. The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 2013; 91:472-93. [PMID: 24286256 DOI: 10.1111/mmi.12472] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Abstract
Nitrogen metabolite repression (NMR) in filamentous fungi is controlled by the GATA transcription factors AreA and AreB. While AreA mainly acts as a positive regulator of NMR-sensitive genes, the role of AreB is not well understood. We report the characterization of AreB and its interplay with AreA in the gibberellin-producing fungus Fusarium fujikuroi. The areB locus produces three different transcripts that each code for functional proteins fully complementing the areB deletion mutant that influence growth and secondary metabolism. However, under nitrogen repression, the AreB isoforms differ in subcellular localization indicating distinct functions under these conditions. In addition, AreA and two isoforms of AreB colocalize in the nucleus under low nitrogen, but their nuclear localization disappears under conditions of high nitrogen. Using a bimolecular fluorescence complementation (BiFC) approach we showed for the first time that one of the AreB isoforms interacts with AreA when starved of nitrogen. Cross-species complementation revealed that some AreB functions are retained between F. fujikuroi and Aspergillus nidulans while others have diverged. By comparison to other fungi where AreB was postulated to function as a negative counterpart of AreA, AreB can act as both repressor and activator of transcription in F. fujikuroi.
Collapse
Affiliation(s)
- C B Michielse
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB. Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology (Reading) 2013; 159:2467-2480. [DOI: 10.1099/mic.0.071514-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Damien J. Downes
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - Meryl A. Davis
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Brendan L. Taig
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard B. Todd
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Krol K, Morozov IY, Jones MG, Wyszomirski T, Weglenski P, Dzikowska A, Caddick MX. RrmA regulates the stability of specific transcripts in response to both nitrogen source and oxidative stress. Mol Microbiol 2013; 89:975-88. [PMID: 23841692 PMCID: PMC4282371 DOI: 10.1111/mmi.12324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 01/10/2023]
Abstract
Differential regulation of transcript stability is an effective means by which an organism can modulate gene expression. A well-characterized example is glutamine signalled degradation of specific transcripts in Aspergillus nidulans. In the case of areA, which encodes a wide-domain transcription factor mediating nitrogen metabolite repression, the signal is mediated through a highly conserved region of the 3′ UTR. Utilizing this RNA sequence we isolated RrmA, an RNA recognition motif protein. Disruption of the respective gene led to loss of both glutamine signalled transcript degradation as well as nitrate signalled stabilization of niaD mRNA. However, nitrogen starvation was shown to act independently of RrmA in stabilizing certain transcripts. RrmA was also implicated in the regulation of arginine catabolism gene expression and the oxidative stress responses at the level of mRNA stability. ΔrrmA mutants are hypersensitive to oxidative stress. This phenotype correlates with destabilization of eifE and dhsA mRNA. eifE encodes eIF5A, a translation factor within which a conserved lysine is post-translationally modified to hypusine, a process requiring DhsA. Intriguingly, for specific transcripts RrmA mediates both stabilization and destabilization and the specificity of the signals transduced is transcript dependent, suggesting it acts in consort with other factors which differ between transcripts.
Collapse
Affiliation(s)
- Kinga Krol
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
15
|
Tanaka M, Tokuoka M, Shintani T, Gomi K. Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae. Appl Microbiol Biotechnol 2012; 96:1275-82. [DOI: 10.1007/s00253-012-4169-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/27/2022]
|
16
|
mRNA 3' tagging is induced by nonsense-mediated decay and promotes ribosome dissociation. Mol Cell Biol 2012; 32:2585-95. [PMID: 22547684 DOI: 10.1128/mcb.00316-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
For a range of eukaryote transcripts, the initiation of degradation is coincident with the addition of a short pyrimidine tag at the 3' end. Previously, cytoplasmic mRNA tagging has been observed for human and fungal transcripts. We now report that Arabidopsis thaliana mRNA is subject to 3' tagging with U and C nucleotides, as in Aspergillus nidulans. Mutations that disrupt tagging, including A. nidulans cutA and a newly characterized gene, cutB, retard transcript degradation. Importantly, nonsense-mediated decay (NMD), a major checkpoint for transcript fidelity, elicits 3' tagging of transcripts containing a premature termination codon (PTC). Although PTC-induced transcript degradation does not require 3' tagging, subsequent dissociation of mRNA from ribosomes is retarded in tagging mutants. Additionally, tagging of wild-type and NMD-inducing transcripts is greatly reduced in strains lacking Upf1, a conserved NMD factor also required for human histone mRNA tagging. We argue that PTC-induced translational termination differs fundamentally from normal termination in polyadenylated transcripts, as it leads to transcript degradation and prevents rather than facilitates further translation. Furthermore, transcript deadenylation and the consequent dissociation of poly(A) binding protein will result in PTC-like termination events which recruit Upf1, resulting in mRNA 3' tagging, ribosome clearance, and transcript degradation.
Collapse
|
17
|
Horst RJ, Zeh C, Saur A, Sonnewald S, Sonnewald U, Voll LM. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth. EUKARYOTIC CELL 2012; 11:368-80. [PMID: 22247264 PMCID: PMC3294441 DOI: 10.1128/ec.05191-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
Abstract
Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis.
Collapse
Affiliation(s)
- Robin J Horst
- Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2012; 109:2666-71. [PMID: 22308426 PMCID: PMC3289346 DOI: 10.1073/pnas.1118650109] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis.
Collapse
Affiliation(s)
- Carl R. Fellbaum
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Emma W. Gachomo
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Yugandhar Beesetty
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Sulbha Choudhari
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Gary D. Strahan
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - Philip E. Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| |
Collapse
|
19
|
Transcription ofAspergillus nidulans pacCis modulated by alternative RNA splicing ofpalB. FEBS Lett 2011; 585:3442-5. [DOI: 10.1016/j.febslet.2011.09.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/24/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
|
20
|
Tanaka M, Sakai Y, Yamada O, Shintani T, Gomi K. In silico analysis of 3'-end-processing signals in Aspergillus oryzae using expressed sequence tags and genomic sequencing data. DNA Res 2011; 18:189-200. [PMID: 21586533 PMCID: PMC3111234 DOI: 10.1093/dnares/dsr011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate 3'-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3'-untranslated region (3' UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3' UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3' UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15-30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3'-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3'-end-processing signals are similar to those in yeast and plants, some notable differences exist between them.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
21
|
Schinko T, Berger H, Lee W, Gallmetzer A, Pirker K, Pachlinger R, Buchner I, Reichenauer T, Güldener U, Strauss J. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol 2010; 78:720-38. [PMID: 20969648 PMCID: PMC3020322 DOI: 10.1111/j.1365-2958.2010.07363.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
Nitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA. Forty-five genes were repressed by nitrate metabolism. Because nirA(-) strains are N-starved at nitrate induction conditions, we also compared the nitrate transcriptome with N-deprived conditions and found a partial overlap of differentially regulated genes between these conditions. Nitric oxide (NO)-metabolizing flavohaemoglobins were found to be co-regulated with nitrate assimilatory genes. Subsequent molecular characterization revealed that the strongly inducible FhbA is required for full activity of nitrate and nitrite reductase enzymes. The co-regulation of NO-detoxifying and nitrate/nitrite assimilating systems may represent a conserved mechanism, which serves to neutralize nitrosative stress imposed by an external NO source in saprophytic and pathogenic fungi. Our analysis using membrane-permeable NO donors suggests that signalling for NirA activation only indirectly depends on the nitrate transporters NrtA (CrnA) and NrtB (CrnB).
Collapse
Affiliation(s)
- Thorsten Schinko
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Harald Berger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Wanseon Lee
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Andreas Gallmetzer
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Robert Pachlinger
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | - Ingrid Buchner
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
| | | | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, Austrian Institute of Technology and BOKU University ViennaMuthgasse 18, 1190 Vienna, Austria
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München85764 Neuherberg, Germany
| |
Collapse
|
22
|
Morozov IY, Jones MG, Spiller DG, Rigden DJ, Dattenböck C, Novotny R, Strauss J, Caddick MX. Distinct roles for Caf1, Ccr4, Edc3 and CutA in the co-ordination of transcript deadenylation, decapping and P-body formation inAspergillus nidulans. Mol Microbiol 2010; 76:503-16. [DOI: 10.1111/j.1365-2958.2010.07118.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Teichmann B, Liu L, Schink KO, Bölker M. Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Appl Environ Microbiol 2010; 76:2633-40. [PMID: 20173069 PMCID: PMC2849225 DOI: 10.1128/aem.02211-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/30/2010] [Indexed: 01/07/2023] Open
Abstract
The phytopathogenic basidiomycetous fungus Ustilago maydis secretes, under conditions of nitrogen starvation, large amounts of the biosurfactant ustilagic acid (UA). This secreted cellobiose glycolipid is toxic for many microorganisms and confers biocontrol activity to U. maydis. Recently, a large gene cluster that is responsible for UA biosynthesis was identified. Here, we show that expression of all cluster genes depends on Rua1, a nuclear protein of the C(2)H(2) zinc finger family, whose gene is located within the gene cluster. While deletion of rua1 results in complete loss of UA production, overexpression of rua1 promotes increased UA synthesis even in the presence of a good nitrogen source. Bioinformatic analysis allowed us to identify a conserved sequence element that is present in the promoters of all structural genes involved in UA biosynthesis. Deletion analysis of several promoters within the cluster revealed that this DNA element serves as an upstream activating sequence (UAS) and mediates Rua1-dependent expression. We used the yeast one-hybrid system to demonstrate specific recognition of this DNA element by Rua1. Introduction of nucleotide exchanges into the consensus sequence interfered with Rua1-dependent activation, suggesting that this sequence element acts as a direct binding site for Rua1.
Collapse
Affiliation(s)
- Beate Teichmann
- Philipps University Marburg, Department of Biology, D-35032 Marburg, Germany
| | - Lidan Liu
- Philipps University Marburg, Department of Biology, D-35032 Marburg, Germany
| | - Kay Oliver Schink
- Philipps University Marburg, Department of Biology, D-35032 Marburg, Germany
| | - Michael Bölker
- Philipps University Marburg, Department of Biology, D-35032 Marburg, Germany
| |
Collapse
|
24
|
Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae. J Ind Microbiol Biotechnol 2010; 37:455-69. [DOI: 10.1007/s10295-010-0691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
25
|
CUCU modification of mRNA promotes decapping and transcript degradation in Aspergillus nidulans. Mol Cell Biol 2009; 30:460-9. [PMID: 19901075 DOI: 10.1128/mcb.00997-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In eukaryotes, mRNA decay is generally initiated by the shortening of the poly(A) tail mediated by the major deadenylase complex Ccr4-Caf1-Not. The deadenylated transcript is then rapidly degraded, primarily via the decapping-dependent pathway. Here we report that in Aspergillus nidulans both the Caf1 and Ccr4 orthologues are functionally distinct deadenylases in vivo: Caf1 is required for the regulated degradation of specific transcripts, and Ccr4 is responsible for basal degradation. Intriguingly disruption of the Ccr4-Caf1-Not complex leads to deadenylation-independent decapping. Additionally, decapping is correlated with a novel transcript modification, addition of a CUCU sequence. A member of the nucleotidyltransferase superfamily, CutA, is required for this modification, and its disruption leads to a reduced rate of decapping and subsequent transcript degradation. We propose that 3' modification of adenylated mRNA, which is likely to represent a common eukaryotic process, primes the transcript for decapping and efficient degradation.
Collapse
|
26
|
The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol 2008; 46 Suppl 1:S2-13. [PMID: 19146970 DOI: 10.1016/j.fgb.2008.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/28/2023]
Abstract
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
Collapse
|
27
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|
28
|
Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol 2008; 69:1385-98. [PMID: 18673441 DOI: 10.1111/j.1365-2958.2008.06359.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY In the ascomycete fungus Aspergillus nidulans, the transcriptional activation of nitrate assimilating genes (niiA, niaD) depends on the cooperativity between a general nitrogen status-sensing regulator (the GATA factor AreA) and a pathway-specific activator (the Zn-cluster regulator NirA). Because nitrate assimilation leads to intracellular ammonium formation, it is difficult to determine the individual contributions of NirA and AreA in this complex activation/inactivation process. In an attempt to find a suitable marker for the nitrogen status sensed by AreA, we determined the intracellular free amino acid levels on different nitrogen growth conditions. We show that the amount of glutamine (Gln) inversely correlates with all known AreA activities. We find that AreA mediates chromatin remodelling by increasing histone H3 acetylation, a process triggered by transcriptional activation and, independently of transcription, by nitrogen starvation. NirA also participates in the chromatin opening process during nitrate induction but its function is not related to histone acetylation. This chromatin remodelling function of NirA is dispensable only in nitrogen-starved cells, conditions that lead to elevated AreA chromatin occupancy and histone H3 hyperacetylation. Continuous nitrate assimilation leads to self-nitrogen metabolite repression but nitrate-activated NirA is partially compensating for lowered AreA activities under these conditions.
Collapse
Affiliation(s)
- Harald Berger
- Fungal Genomics Unit, Austrian Research Centers, Tech Gate Vienna, Donau-City-Strasse 1, 1220 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|