1
|
Nambala P, Noyes H, Namulondo J, Nyangiri O, Alibu VP, Nerima B, MacLeod A, Matovu E, Musaya J, Mulindwa J. Transcriptome profiles of Trypanosoma brucei rhodesiense in Malawi reveal focus specific gene expression profiles associated with pathology. PLoS Negl Trop Dis 2024; 18:e0011516. [PMID: 38701067 PMCID: PMC11095692 DOI: 10.1371/journal.pntd.0011516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sleeping sickness caused by Trypanosoma brucei rhodesiense is a fatal disease and endemic in Southern and Eastern Africa. There is an urgent need to develop novel diagnostic and control tools to achieve elimination of rhodesiense sleeping sickness which might be achieved through a better understanding of trypanosome gene expression and genetics using endemic isolates. Here, we describe transcriptome profiles and population structure of endemic T. b. rhodesiense isolates in human blood in Malawi. METHODOLOGY Blood samples of r-HAT cases from Nkhotakota and Rumphi foci were collected in PaxGene tubes for RNA extraction before initiation of r-HAT treatment. 100 million reads were obtained per sample, reads were initially mapped to the human genome reference GRCh38 using HiSat2 and then the unmapped reads were mapped against Trypanosoma brucei reference transcriptome (TriTrypDB54_TbruceiTREU927) using HiSat2. Differential gene expression analysis was done using the DeSeq2 package in R. SNP calling from reads that were mapped to the T. brucei genome was done using GATK in order to identify T.b. rhodesiense population structure. RESULTS 24 samples were collected from r-HAT cases of which 8 were from Rumphi and 16 from Nkhotakota foci. The isolates from Nkhotakota were enriched with transcripts for cell cycle arrest and stumpy form markers, whereas isolates in Rumphi focus were enriched with transcripts for folate biosynthesis and antigenic variation pathways. These parasite focus-specific transcriptome profiles are consistent with the more virulent disease observed in Rumphi and a less symptomatic disease in Nkhotakota associated with the non-dividing stumpy form. Interestingly, the Malawi T.b. rhodesiense isolates expressed genes enriched for reduced cell proliferation compared to the Uganda T.b. rhodesiense isolates. PCA analysis using SNPs called from the RNAseq data showed that T. b. rhodesiense parasites from Nkhotakota are genetically distinct from those collected in Rumphi. CONCLUSION Our results suggest that the differences in disease presentation in the two foci is mainly driven by genetic differences in the parasites in the two major endemic foci of Rumphi and Nkhotakota rather than differences in the environment or host response.
Collapse
Affiliation(s)
- Peter Nambala
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Joyce Namulondo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Oscar Nyangiri
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Vincent Pius Alibu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Barbara Nerima
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Janelisa Musaya
- Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Julius Mulindwa
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
da Silva BB, da Silva Junior AB, Araújo LDS, Santos ENFN, da Silva ACM, Florean EOPT, van Tilburg MF, Guedes MIF. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Trop Med Infect Dis 2023; 8:444. [PMID: 37755905 PMCID: PMC10534909 DOI: 10.3390/tropicalmed8090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Visceral leishmaniasis is a high-burden disease caused by parasites of the Leishmania genus. The K39 kinesin is a highly antigenic protein of Leishmania infantum, but little is known about the immune response elicited by this antigen. We evaluated the humoral immune response of female BALB/c mice (n = 6) immunized with the rK39-HFBI construct, formed by the fusion of the K39 antigen to a hydrophobin partner. The rK39-HFBI construct was administered through subcutaneous, oral, and intranasal routes using saponin as an adjuvant. We analyzed the kinetics of IgG, IgG1, and IgG2a production. The groups were then challenged by an intravenous infection with L. infantum promastigote cells. The rK39-HFBI antigen-induced high levels of total IgG (p < 0.05) in all groups, but only the subcutaneous route was associated with increased production of IgG1 and IgG2a 42 days after immunization (p < 0.05), suggesting a potential secondary immune response following the booster dose. There was no reduction in the splenic parasite load; thus, the rK39-HFBI failed to protect the mice against infection under the tested conditions. The results presented here demonstrate that the high antigenicity of the K39 antigen does not contribute to a protective immune response against visceral leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Izabel Florindo Guedes
- Laboratory of Biotechnology and Molecular Biology, Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza 60714903, Brazil
| |
Collapse
|
3
|
Simonson P, Bhattacharyya T, El-Safi S, Miles MA. Linear and conformational determinants of visceral leishmaniasis diagnostic antigens rK28 and rK39. Parasit Vectors 2022; 15:387. [PMID: 36273150 PMCID: PMC9587664 DOI: 10.1186/s13071-022-05495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recombinant antigens rK39 (based on kinesin sequence) and rK28 (comprising kinesin and HASPB sequences) are a mainstay of serological diagnosis for visceral leishmaniasis (VL). However, their key epitopes and the significance of their structural conformation are not clearly defined, particularly in relation to reported cross-reactivity with sera from patients with malaria, schistosomiasis, and tuberculosis. Methods To assess the effect of conformation on antigenicity with Sudanese VL sera, antigens rK39 and rK28 were heat-denatured at 95 °C for 10 min and then assayed by enzyme-linked immunosorbent assay (ELISA). Amino acid sequences of rK39 and rK28 were submitted to NCBI BLASTp to assess homology with Plasmodium, Schistosoma, and Mycobacterium. Results Heat denaturation significantly diminished the antigenicity of rK39 compared to non-denatured antigen (P = 0.001), but not for rK28 (P = 0.275). In BLASTp searches, HASPB sequences from rK28 had similarities with sequences from Plasmodium, encompassing software-predicted B-cell epitopes. Conclusions The antigenicity of rK39 appears to be dependent on structural conformation, whereas that of rK28 depends on linear sequence. HASPB sequence homology with Plasmodium may be responsible for the reported cross-reactivity of rK28 with malaria sera. Further work is warranted to refine the specificity of these antigens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Poppy Simonson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sayda El-Safi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Gene design, optimization of protein expression and preliminary evaluation of a new chimeric protein for the serological diagnosis of both human and canine visceral leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008488. [PMID: 32716931 PMCID: PMC7410341 DOI: 10.1371/journal.pntd.0008488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/06/2020] [Accepted: 06/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is a major neglected disease, potentially fatal, whose control is still impaired by inefficient and/or expensive treatment and diagnostic methods. The most promising approach for VL diagnosis uses serological assays with recombinant proteins, since they are more efficient and easier to perform. Tests developed for the human form of the disease, however, have not been shown to be efficient for its diagnosis in the canine host, the major reservoir for the American VL. Methodology/Principal findings Here, we describe a systematic approach aimed at the production of a new chimeric protein potentially able to be used for both human and canine VL diagnosis and based both on in silico gene design and experimental data. Starting from the previous identification of Leishmania infantum recombinant antigens efficient for the diagnosis of either human or canine VL, three of the best performing antigens were selected (Lci2, Lci3 and Lci12). After a preliminary evaluation validating the chimeric approach, DNA fragments encoding predicted antigenic regions from each protein, enriched with repeats, were joined in various combinations to generate a total of seventeen chimeric genes optimized for prokaryotic expression. These were assessed for optimal expression and purification yield, with four chimeric proteins being efficiently produced. Their diagnostic potential was then evaluated through ELISA assays with sera from VL afflicted humans and dogs. After two rounds of gene design, the results showed high levels of sensitivity for the best chimeric protein, named Q5, in humans (82%) and dogs (100%) with 100% specificity in comparison with healthy controls. A single non-specific reaction was seen with serum from individuals with tegumentary leishmaniasis. Conclusion The newly described chimeric protein is potentially useful for the detection of both humans and dogs afflicted with VL, with its use in rapid tests necessary for validation as a new diagnostic tool. Visceral leishmaniasis (VL) is a major neglected disease, potentially fatal, caused mainly by Leishmania infantum and L. donovani. Its control is still impaired by inefficient and/or expensive treatment and diagnostic methods. VL diagnosis is mostly dependent on serological assays made with bacterially expressed Leishmania proteins. Tests developed for the human form of the disease, however, are not efficient for its diagnosis in the canine host. Dogs are the major reservoir for the American VL and their infection also needs to be monitored, requiring a distinct diagnostic test. Here, we describe a new chimeric protein potentially able to be used for both human and canine VL diagnosis. Based on a systematic approach using three Leishmania proteins known to be efficient for the diagnosis of either human or canine VL, fragments of each were joined in various combinations. The diagnostic potential of different chimeric proteins was then evaluated with human and canine sera from VL afflicted individuals. The best protein showed high levels of sensitivity in humans and dogs with no relevant false positive results with healthy controls or humans with tegumentary leishmaniasis. It is then potentially useful for the detection of both humans and dogs afflicted with VL in novel diagnostic tests.
Collapse
|
5
|
Siripattanapipong S, Kato H, Tan-ariya P, Mungthin M, Leelayoova S. Comparison of Recombinant Proteins of Kinesin 39, Heat Shock Protein 70, Heat Shock Protein 83, and Glycoprotein 63 for Antibody Detection ofLeishmania martiniquensisInfection. J Eukaryot Microbiol 2017; 64:820-828. [DOI: 10.1111/jeu.12415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity; Jichi Medical University; Tochigi 329-0498 Japan
| | - Peerapan Tan-ariya
- Department of Microbiology, Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| | - Mathirut Mungthin
- Department of Parasitology; Phramongkutklao College of Medicine; Bangkok 10400 Thailand
| | - Saovanee Leelayoova
- Department of Parasitology; Phramongkutklao College of Medicine; Bangkok 10400 Thailand
| |
Collapse
|
6
|
Bhattacharyya T, Marlais T, Miles MA. Diagnostic antigens for visceral leishmaniasis: clarification of nomenclatures. Parasit Vectors 2017; 10:178. [PMID: 28407812 PMCID: PMC5390433 DOI: 10.1186/s13071-017-2120-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/29/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Stimulated by the increasing recent use of 'K' or 'rK' nomenclature for antigens reported for visceral leishmaniasis (VL) diagnostic serology, we wished to give a chronological synopsis of their reporting and the potentially confusing terminology. METHODS The literature was examined for 'K' or 'rK' terminology for VL diagnostic antigens, with emphasis on the original publications in which terms were first used. RESULTS A chronological account of the first use of these 'K' and 'rK' nomenclatures was compiled. Since the original use of this terminology in 1993 in the name rK39 for a Leishmania antigen fragment, we found nine subsequent instances where 'K' or 'rK' have been used to maintain consistency with this nomenclature. We also found instances where there were ambiguities regarding reported strain name, origin and GenBank accession numbers. CONCLUSIONS We have documented here the uses in the literature of the 'K' or 'rK' prefix for VL diagnostic antigen nomenclature. We suggest that, to avoid confusion, the use of such nomenclature for future antigens should either provide the logical derivation of the term or indicate that the designation is entirely empirical.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Tegwen Marlais
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 2014; 10:e1003938. [PMID: 24586154 PMCID: PMC3937319 DOI: 10.1371/journal.ppat.1003938] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/06/2014] [Indexed: 01/18/2023] Open
Abstract
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms. Leishmania, the cause of a deadly spectrum of diseases in humans, surmounts a number of environmental challenges, including changes in the availability of salvageable nutrients, to successfully colonize its host. Adaptation to environmental stress is clearly of significance in parasite biology, but the underlying mechanisms are not well understood. To simulate the response to periodic nutrient scarcity in vivo, we have induced purine starvation in vitro. Purines are essential for growth and viability, and serve as the major energy currency of cells. Leishmania cannot synthesize purines and must salvage them from the surroundings. Extracellular purine depletion in culture induces a robust survival response in Leishmania, whereby growth arrests, but parasites persist for months. To profile the events that enable endurance of purine starvation, we used shotgun proteomics. Our data suggest that purine starvation induces extensive proteome remodeling, tailored to enhance purine capture and recycling, reduce energy expenditures, and maintain viability of the metabolically active, non-dividing population. Through global and targeted approaches, we reveal that proteome remodeling is multifaceted, and occurs through an array of responses at the mRNA, translational, and post-translational level. Our data provide one of the most inclusive views of adaptation to microenvironmental stress in Leishmania.
Collapse
|
8
|
Bhattacharyya T, Boelaert M, Miles MA. Comparison of visceral leishmaniasis diagnostic antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific polymorphisms. PLoS Negl Trop Dis 2013; 7:e2057. [PMID: 23469296 PMCID: PMC3585016 DOI: 10.1371/journal.pntd.0002057] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/28/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL), caused by infection with Leishmania donovani complex, remains a major public health problem in endemic regions of South Asia, East Africa, and Brazil. If untreated, symptomatic VL is usually fatal. Rapid field diagnosis relies principally on demonstration of anti-Leishmania antibodies in clinically suspect cases. The rK39 immunochromatographic rapid diagnostic test (RDT) is based on rK39, encoded by a fragment of a kinesin-related gene derived from a Brazilian L. chagasi, now recognised as L. infantum, originating from Europe. Despite its reliability in South Asia, the rK39 test is reported to have lower sensitivity in East Africa. A reason for this differential response may reside in the molecular diversity of the rK39 homologous sequences among East African L. donovani strains. METHODOLOGY/PRINCIPAL FINDINGS Coding sequences of rK39 homologues from East African L. donovani strains were amplified from genomic DNA, analysed for diversity from the rK39 sequence, and compared to South Asian sequences. East African sequences were revealed to display significant diversity from rK39. Most coding changes in the 5' half of repeats were non-conservative, with multiple substitutions involving charge changes, whereas amino acid substitutions in the 3' half of repeats were conservative. Specific polymorphisms were found between South Asian and East African strains. Diversity of HASPB1 and HASPB2 gene repeat sequences, used to flank sequences of a kinesin homologue in the synthetic antigen rK28 designed to reduce variable RDT performance, was also investigated. Non-canonical combination repeat arrangements were revealed for HASPB1 and HASPB2 gene products in strains producing unpredicted size amplicons. CONCLUSIONS/SIGNIFICANCE We demonstrate that there is extensive kinesin genetic diversity among strains in East Africa and between East Africa and South Asia, with ample scope for influencing performance of rK39 diagnostic assays. We also show the importance of targeted comparative genomics in guiding optimisation of recombinant/synthetic diagnostic antigens.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | |
Collapse
|
9
|
Oliveira GGS, Magalhães FB, Teixeira MCA, Pereira AM, Pinheiro CGM, Santos LR, Nascimento MB, Bedor CNG, Albuquerque AL, dos-Santos WLC, Gomes YM, Moreira ED, Brito MEF, Pontes de Carvalho LC, de Melo Neto OP. Characterization of novel Leishmania infantum recombinant proteins encoded by genes from five families with distinct capacities for serodiagnosis of canine and human visceral leishmaniasis. Am J Trop Med Hyg 2012; 85:1025-34. [PMID: 22144438 DOI: 10.4269/ajtmh.2011.11-0102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To expand the available panel of recombinant proteins that can be useful for identifying Leishmania-infected dogs and for diagnosing human visceral leishmaniasis (VL), we selected recombinant antigens from L. infantum, cDNA, and genomic libraries by using pools of serum samples from infected dogs and humans. The selected DNA fragments encoded homologs of a cytoplasmic heat-shock protein 70, a kinesin, a polyubiquitin, and two novel hypothetical proteins. Histidine-tagged recombinant proteins were produced after subcloning these DNA fragments and evaluated by using an enzyme-linked immunosorbent assays with panels of canine and human serum samples. The enzyme-linked immunosorbent assays with different recombinant proteins had different sensitivities (67.4-93.0% and 36.4-97.2%) and specificities (76.1-100% and 90.4-97.3%) when tested with serum samples from Leishmania-infected dogs and human patients with VL. Overall, no single recombinant antigen was sufficient to serodiagnosis all canine or human VL cases.
Collapse
Affiliation(s)
- Geraldo G S Oliveira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, Colombara D, Abdoon AO, Mukhtar MM, Mondal D, Esfandiari J, Kumar S, Chun P, Reed SG, Bhatia A. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis 2010; 4. [PMID: 20856856 PMCID: PMC2939046 DOI: 10.1371/journal.pntd.0000822] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/16/2010] [Indexed: 12/01/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is diagnosed by microscopic confirmation of the parasite in bone marrow, spleen or lymph node aspirates. These procedures are unsuitable for rapid diagnosis of VL in field settings. The development of rK39-based rapid diagnostic tests (RDT) revolutionized diagnosis of VL by offering high sensitivity and specificity in detecting disease in the Indian subcontinent; however, these tests have been less reliable in the African subcontinent (sensitivity range of 75–85%, specificity of 70–92%). We have addressed limitations of the rK39 with a new synthetic polyprotein, rK28, followed by development and evaluation of two new rK28-based RDT prototype platforms. Methodology/Principal Findings Evaluation of 62 VL-confirmed sera from Sudan provided sensitivities of 96.8% and 93.6% (95% CI = K28: 88.83–99.61%; K39: 84.30–98.21%) and specificities of 96.2% and 92.4% (95% CI = K28: 90.53–98.95%; K39: 85.54–96.65%) for rK28 and rK39, respectively. Of greater interest was the observation that individual VL sera with low rK39 reactivity often had much higher rK28 reactivity. This characteristic of the fusion protein was exploited in the development of rK28 rapid tests, which may prove to be crucial in detecting VL among patients with low rK39 antibody levels. Evaluation of two prototype lateral flow-based rK28 rapid tests on 53 VL patients in Sudan and 73 VL patients in Bangladesh provided promisingly high sensitivities (95.9% [95% CI = 88.46–99.1 in Sudan and 98.1% [95% CI = 89.93–99.95%] in Bangladesh) compared to the rK39 RDT (sensitivities of 86.3% [95% CI = 76.25–93.23%] in Sudan and 88.7% [95% CI = 76.97–95.73%] in Bangladesh). Conclusions/Significance Our study compares the diagnostic accuracy of rK39 and rK28 in detecting active VL cases and our findings indicate that rK28 polyprotein has great potential as a serodiagnostic tool. A new rK28-based RDT will prove to be a valuable asset in simplifying VL disease confirmation at the point-of-care. Visceral Leishmaniasis caused by Leishmania donovani is endemic in several parts of South Asia, East Africa, South and Central America. It is a vector-borne disease transmitted by bites of infected sand flies and often fatal in the absence of chemotherapy. Timely diagnosis is an essential first step in providing proper patient care and in controlling transmission. VL diagnosis in East Africa and Latin America are currently based on microscopic confirmation of parasites in tissue aspirates. The Kalazar Detect rapid test is widely used as a confirmatory test in India with very high accuracy, but sensitivity issues have severely limited its usefulness in the African sub-continent. Direct Agglutination Test is another confirmatory test used widely in East Africa and offers high sensitivity but is not field-friendly. We report on the design of a novel synthetic fusion protein capable of sequestering antibodies against three different Leishmania donovani antigens and the development of point-of-care tests for improving VL diagnosis. We believe the ease of use of these rapid tests and their high accuracy in detecting VL cases could make them useful as a first-line test, thereby eliminating the need for painful biopsies and ensuring better patient care.
Collapse
Affiliation(s)
- Sowmya Pattabhi
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Jacqueline Whittle
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Raodoh Mohamath
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sayda El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Garner G. Moulton
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Jeffrey A. Guderian
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Danny Colombara
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Asem O. Abdoon
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Maowia M. Mukhtar
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Dinesh Mondal
- Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Javan Esfandiari
- Chembio Diagnostic Systems, Inc., Medford, New York, United States of America
| | - Shailendra Kumar
- Chembio Diagnostic Systems, Inc., Medford, New York, United States of America
| | - Peter Chun
- Ease-Medtrend, Shanghai, People's Republic of China
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ajay Bhatia
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sahasrabuddhe AA, Nayak RC, Gupta CM. Ancient Leishmania coronin (CRN12) is involved in microtubule remodeling during cytokinesis. J Cell Sci 2009; 122:1691-9. [DOI: 10.1242/jcs.044651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In general, coronins play an important role in actin-based processes, and are expressed in a variety of eukaryotic cells, including Leishmania. Here, we show that Leishmania coronin preferentially distributes to the distal tip during cytokinesis, and interacts with microtubules through a microtubule-based motor, kinesin K39. We further show that reduction in coronin levels by 40-50% in heterozygous coronin mutants results in generation of bipolar cells (25-30%), specifically in the log phase, owing to unregulated growth of the corset microtubules. Further analysis of bipolar cells revealed that the main cause of generation of bipolar cell morphology is the intrusion of the persistently growing corset microtubules into the other daughter cell corset from the opposite direction. This defect in cytokinesis, however, disappears upon episomal gene complementation. Additionally, our attempts to prepare homozygous mutants were unsuccessful, as only the aneuploid cells survive the selection process. These results indicate that coronin regulates microtubule remodeling during Leishmania cytokinesis and is essentially required for survival of these parasites in culture.
Collapse
Affiliation(s)
- Amogh A. Sahasrabuddhe
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Ramesh C. Nayak
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| | - Chhitar M. Gupta
- Division of Molecular and Structural Biology, Central Drug Research Institute, M.G. Marg, Lucknow 226001, India
| |
Collapse
|
12
|
Katta SS, Sahasrabuddhe AA, Gupta CM. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol Biochem Parasitol 2008; 164:105-10. [PMID: 19121339 DOI: 10.1016/j.molbiopara.2008.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 12/11/2022]
Abstract
Leishmania major genome analysis revealed the presence of putative genes corresponding to two myosins, which have been designated to class IB and a novel class, class XXI, specifically present in kinetoplastids. To characterize these myosin homologs in Leishmania, we have cloned and over-expressed the full-length myosin XXI gene and variable region of myosin IB gene in bacteria, purified the corresponding proteins, and then used the affinity purified anti-sera to analyze the expression and intracellular distribution of these proteins. Whereas myosin XXI was expressed in both the promastigote and amastigote stages, no expression of myosin IB could be detected in any of the two stages of these parasites. Further, myosin XXI expression was more predominant in the promastigote stage where it was preferentially localized in the proximal region of the flagellum. The observed flagellar localization was not dependent on the myosin head region or actin but was exclusively determined by the myosin tail region, as judged by over-expressing GFP conjugates of full-length myosin XXI, its head domain and its tail domain separately in Leishmania. Furthermore, immunofluorescence and immuno-gold electron microscopy analyses revealed that this protein was partly associated with paraflagellar rod proteins but not with tubulins in the flagellar axoneme. Our results, for the first time, report the expression and detailed analysis of cellular localization of a novel class of myosin, myosin XXI in trypanosomatids.
Collapse
Affiliation(s)
- Santharam S Katta
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
13
|
Mahajan B, Selvapandiyan A, Gerald NJ, Majam V, Zheng H, Wickramarachchi T, Tiwari J, Fujioka H, Moch JK, Kumar N, Aravind L, Nakhasi HL, Kumar S. Centrins, Cell Cycle Regulation Proteins in Human Malaria Parasite Plasmodium falciparum. J Biol Chem 2008; 283:31871-83. [DOI: 10.1074/jbc.m800028200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Sivakumar R, Dey A, Sharma P, Singh S. Expression and characterization of a recombinant kinesin antigen from an old Indian strain (DD8) of Leishmania donovani and comparing it with a commercially available antigen from a newly isolated (KE16) strain of L. donovani. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2008; 8:313-22. [PMID: 18374635 DOI: 10.1016/j.meegid.2008.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 02/04/2008] [Accepted: 02/08/2008] [Indexed: 02/07/2023]
Abstract
Recently we had prepared a recombinant antigen (Ld-rKE16) from a newly isolated Indian strain of Leishmania donovani (MHOM/IN/KE16/1998) with high sensitivity and specificity and the same has been commercialized. While comparing the sequence data of kinesin gene of this (KE16) strain and its expressed protein with another commercially available recombinant antigen (Lc-rK39) from kinesin gene of L. chagasi we found significant genetic and amino acid variations. This prompted us to undertake the present study to unravel whether the kinesin gene and its expressed protein from another old but Indian isolate of L. donovani (MHOM/IN/DD8/1968) had any genetic and amino acid heterogeneity. Sequencing of the kinesin gene revealed that the kinesin gene of DD8 strain is 3016bp long and has immunodominant region consisting of 4.8 tandem repeats, 117 base pairs each. Further blast analysis of the immunodominant regions of 5 strains of L. donovani revealed that it has only 79% homology with L. chagasi, and 80% homology with L. infantum; while it had 82% homology with Sudan strain of L. donovani, 82% with another (Morena) strain of Indian L. donovani but highest homology of 83% with L. donovani KE16 strain of India. We also evaluated the diagnostic potential of the recombinant DD8 antigen (Ld-rDD8) and compared the results with that of Ld-rKE16. The study revealed that Ld-rKDD8 antigen was less sensitive and specific as compared to rKE16 antigen for the diagnosis of visceral and post-kala-azar dermal leishmaniasis. This was probably due to prolong in vitro culture maintenance of the DD8 strain.
Collapse
Affiliation(s)
- Ramu Sivakumar
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
15
|
Gerald NJ, Coppens I, Dwyer DM. Molecular characterization and expression of a novel kinesin which localizes with the kinetoplast in the human pathogen,Leishmania donovani. ACTA ACUST UNITED AC 2008; 65:269-80. [DOI: 10.1002/cm.20259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|