1
|
Oklitschek M, Carreira LAM, Muratoğlu M, Søgaard-Andersen L, Treuner-Lange A. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA. J Bacteriol 2024; 206:e0010824. [PMID: 39404445 PMCID: PMC11580455 DOI: 10.1128/jb.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Type IVa pili (T4aP) are widespread and enable bacteria to translocate across surfaces. T4aP engage in cycles of extension, surface adhesion, and retraction, thereby pulling cells forward. Accordingly, the number and localization of T4aP are critical to efficient translocation. Here, we address how T4aP formation is regulated in Myxococcus xanthus, which translocates with a well-defined leading and lagging cell pole using T4aP at the leading pole. This localization is orchestrated by the small GTPase MglA and its downstream effector SgmX that both localize at the leading pole and recruit the PilB extension ATPase to the T4aP machinery at this pole. Here, we identify the previously uncharacterized protein SopA and show that it interacts directly with SgmX, localizes at the leading pole, stimulates polar localization of PilB, and is important for T4aP formation. We corroborate that MglA also recruits FrzS to the leading pole, and FrzS stimulates SgmX recruitment. In addition, FrzS and SgmX separately recruit SopA. Precise quantification of T4aP-formation and T4aP-dependent motility in various mutants supports a model whereby the main pathway for stimulating T4aP formation is the MglA/SgmX pathway. FrzS stimulates this pathway by recruiting SgmX and SopA. SopA stimulates the MglA/SgmX pathway by stimulating the function of SgmX, likely by promoting the SgmX-dependent recruitment of PilB to the T4aP machinery. The architecture of the MglA/SgmX/FrzS/SopA protein interaction network for orchestrating T4aP formation allows for combinatorial regulation of T4aP levels at the leading cell pole resulting in discrete levels of T4aP-dependent motility. IMPORTANCE Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in translocation across surfaces, surface adhesion, biofilm formation, and virulence. T4aP-dependent translocation crucially depends on the number of pili. To address how the number of T4aP is regulated, we focused on M. xanthus, which assembles T4aP at the leading cell pole and is a model organism for T4aP biology. Our results support a model whereby the four proteins MglA, SgmX, FrzS, and the newly identified SopA protein establish a highly intricate interaction network for orchestrating T4aP formation at the leading cell pole. This network allows for combinatorial regulation of the number of T4aP resulting in discrete levels of T4aP-dependent motility.
Collapse
Affiliation(s)
- Michel Oklitschek
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Memduha Muratoğlu
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Onwunma J, Binsabaan S, Allen SP, Sankaran B, Wohlever ML. The structural and biophysical basis of substrate binding to the hydrophobic groove in Ubiquilin Sti1 domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602902. [PMID: 39026758 PMCID: PMC11257586 DOI: 10.1101/2024.07.10.602902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ubiquilins are a family of cytosolic proteins that ferry ubiquitinated substrates to the proteasome for degradation. Recent work has demonstrated that Ubiquilins can also act as molecular chaperones, utilizing internal Sti1 domains to directly bind to hydrophobic sequences. Ubiquilins are associated with several neurodegenerative diseases with point mutations in UBQLN2 causing dominant, X-linked Amyotrophic Lateral Sclerosis (ALS). The molecular basis of Ubiquilin chaperone activity and how ALS mutations in the Sti1 domains affect Ubiquilin activity are poorly understood. This study presents the first crystal structure of the Sti1 domain from a fungal Ubiquilin homolog bound to a transmembrane domain (TMD). The structure reveals that two Sti1 domains form a head-to-head dimer, creating a hydrophobic cavity that accommodates two TMDs. Mapping the UBQLN2 sequence onto the structure shows that several ALS mutations are predicted to disrupt the hydrophobic groove. Using a newly developed competitive binding assay, we show that Ubiquilins preferentially bind to hydrophobic substrates with low helical propensity, motifs that are enriched in both substrates and in Ubiquilins. This study provides insights into the molecular and structural basis for Ubiquilin substrate binding, with broad implications for the role of the Sti1 domain in phase separation and ALS.
Collapse
Affiliation(s)
- Joan Onwunma
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | | | - Shawn P Allen
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Banumathi Sankaran
- Lawrence Berkley National Lab, Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging
| | - Matthew L Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
3
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
4
|
Bautista S, Schmidt V, Guiseppi A, Mauriello EMF, Attia B, Elantak L, Mignot T, Mercier R. FrzS acts as a polar beacon to recruit SgmX, a central activator of type IV pili during Myxococcus xanthus motility. EMBO J 2022; 42:e111661. [PMID: 36345779 PMCID: PMC9811614 DOI: 10.15252/embj.2022111661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.
Collapse
Affiliation(s)
- Sarah Bautista
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Emillia M F Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Bouchra Attia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Romain Mercier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| |
Collapse
|
5
|
The upcycled roles of pseudoenzymes in two-component signal transduction. Curr Opin Microbiol 2021; 61:82-90. [PMID: 33872991 DOI: 10.1016/j.mib.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022]
Abstract
Upon first glance at a bacterial genome, pseudoenzymes appear unremarkable due to their lack of critical motifs that facilitate catalysis. These pseudoenzymes exist within signal transduction enzymes including histidine kinases, response regulators, diguanylate cyclases, and phosphodiesterases. Here, we summarize recent studies of bacterial pseudo-histidine kinases and pseudo-response regulators that regulate cell division, capsule formation, and the circadian rhythm. These examples illuminate the mechanistic potential of catalytically dead signaling enzymes and their impact upon bacterial signal transduction. Moreover, proteins lacking characteristic catalytic features of two-component systems reveal the sophisticated underlying potential of canonical two-component systems.
Collapse
|
6
|
Desai SK, Kenney LJ. To ∼P or Not to ∼P? Non-canonical activation by two-component response regulators. Mol Microbiol 2016; 103:203-213. [PMID: 27656860 DOI: 10.1111/mmi.13532] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Bacteria sense and respond to their environment through the use of two-component regulatory systems. The ability to adapt to a wide range of environmental stresses is directly related to the number of two-component systems an organism possesses. Recent advances in this area have identified numerous variations on the archetype systems that employ a sensor kinase and a response regulator. It is now evident that many orphan regulators that lack cognate kinases do not rely on phosphorylation for activation and new roles for unphosphorylated response regulators have been identified. The significance of recent findings and suggestions for further research are discussed.
Collapse
Affiliation(s)
- Stuti K Desai
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Guzzo M, Agrebi R, Espinosa L, Baronian G, Molle V, Mauriello EMF, Brochier-Armanet C, Mignot T. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genet 2015; 11:e1005460. [PMID: 26291327 PMCID: PMC4546325 DOI: 10.1371/journal.pgen.1005460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Rym Agrebi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Grégory Baronian
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
- * E-mail:
| |
Collapse
|
8
|
Maule AF, Wright DP, Weiner JJ, Han L, Peterson FC, Volkman BF, Silvaggi NR, Ulijasz AT. The aspartate-less receiver (ALR) domains: distribution, structure and function. PLoS Pathog 2015; 11:e1004795. [PMID: 25875291 PMCID: PMC4395418 DOI: 10.1371/journal.ppat.1004795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023] Open
Abstract
Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains.
Collapse
Affiliation(s)
- Andrew F. Maule
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David P. Wright
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Joshua J. Weiner
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail: (ATU); (NRS)
| | - Andrew T. Ulijasz
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail: (ATU); (NRS)
| |
Collapse
|
9
|
Allosteric activation of bacterial response regulators: the role of the cognate histidine kinase beyond phosphorylation. mBio 2014; 5:e02105. [PMID: 25406381 PMCID: PMC4251995 DOI: 10.1128/mbio.02105-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis. We establish that phosphorylation of the receiver domain of DesR is allosterically coupled to two distinct exposed surfaces of the protein, controlling noncanonical dimerization/tetramerization, cooperative activation, and DesK binding. One of these surfaces is critical for both homodimerization- and kinase-triggered allosteric activations. Moreover, DesK induces a phosphorylation-independent activation of DesR in vivo, uncovering a novel and stringent level of specificity among kinases and regulators. Our results support a model that helps to explain how response regulators restrict phosphorylation by small-molecule phosphoryl donors, as well as cross talk with noncognate sensors. The ability to sense and respond to environmental variations is an essential property for cell survival. Two-component systems mediate key signaling pathways that allow bacteria to integrate extra- or intracellular signals. Here we focus on the DesK/DesR system, which acts as a molecular thermometer in B. subtilis, regulating the cell membrane’s fluidity. Using a combination of complementary approaches, including determination of the crystal structures of active and inactive forms of the response regulator DesR, we unveil novel molecular mechanisms of DesR’s activation switch. In particular, we show that the association of the cognate histidine kinase DesK triggers DesR activation beyond the transfer of the phosphoryl group. On the basis of sequence and structural analyses of other two-component systems, this activation mechanism appears to be used in a wide range of sensory systems, contributing a further level of specificity control among different signaling pathways.
Collapse
|
10
|
Kakuda T, Hirota T, Takeuchi T, Hagiuda H, Miyazaki S, Takai S. VirS, an OmpR/PhoB subfamily response regulator, is required for activation of vapA gene expression in Rhodococcus equi. BMC Microbiol 2014; 14:243. [PMID: 25281192 PMCID: PMC4190465 DOI: 10.1186/s12866-014-0243-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/09/2014] [Indexed: 11/12/2022] Open
Abstract
Background Rhodococcus equi is an important pulmonary pathogen in foals and in immunocompromised individuals. Virulent R. equi strains carry an 80-90 kb virulence plasmid that expresses the virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH. The LysR-type transcriptional regulator, VirR, is involved in the regulation of the vapA gene. To examine the mechanism underlying transcriptional regulation of vapA, we characterized an R. equi mutant in which another putative transcriptional regulator encoded on the virulence plasmid, VirS, was deleted. Results Deletion of virS reduced vapA promoter activity to non-inducible levels. Complementary expression of VirS in the virS deletion mutant restored transcription at the PvapA promoter, even under non-inducing conditions (30°C and pH 8.0). In addition, VirS expression increased PvapA promoter activity in the absence of functional VirR. Further, transcription of the icgA operon containing virS was regulated by pH and temperature in the same manner as vapA. Conclusions This study suggests that VirS is required for VapA expression and that regulation of PvapA-promoter activity may be achieved by controlling VirS expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0243-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada 034-8628, Aomori, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Ozaki S, Schalch-Moser A, Zumthor L, Manfredi P, Ebbensgaard A, Schirmer T, Jenal U. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol Microbiol 2014; 94:580-94. [PMID: 25171231 DOI: 10.1111/mmi.12777] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 01/12/2023]
Abstract
When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co-option as c-di-GMP effector protein. While the C-terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N-terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N-terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c-di-GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S-phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.
Collapse
Affiliation(s)
- Shogo Ozaki
- Focal Area of Infection Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 2014; 10:e1004554. [PMID: 25101778 PMCID: PMC4125116 DOI: 10.1371/journal.pgen.1004554] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/12/2014] [Indexed: 01/09/2023] Open
Abstract
The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI). Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells. Two-component signal transduction systems are a primary means of regulating gene expression in bacteria. Recognizing the diversity of mechanisms associated with these systems is therefore critical to understanding the full signaling potential of bacterial cells. We have analyzed the behavior of two orphan, atypical response regulators that play key roles in controlling morphological differentiation in the filamentous bacteria Streptomyces-BldM and WhiI. We demonstrate that BldM activates its Group I target promoters as a homodimer, but that it subsequently activates its Group II target promoters by forming a functional heterodimer with WhiI. BldM-WhiI heterodimer formation thus represents an unusual mechanism for the coactivation of target genes and the integration of regulatory signals at promoters, enhancing the known repertoire of signaling capabilities associated with two-component systems.
Collapse
|
13
|
Barta ML, Hickey JM, Anbanandam A, Dyer K, Hammel M, Hefty PS. Atypical response regulator ChxR from Chlamydia trachomatis is structurally poised for DNA binding. PLoS One 2014; 9:e91760. [PMID: 24646934 PMCID: PMC3960148 DOI: 10.1371/journal.pone.0091760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to its cognate cis-acting element was generated.
Collapse
Affiliation(s)
- Michael L. Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Asokan Anbanandam
- Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Kevin Dyer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - P. Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Response to metronidazole and oxidative stress is mediated through homeostatic regulator HsrA (HP1043) in Helicobacter pylori. J Bacteriol 2013; 196:729-39. [PMID: 24296668 DOI: 10.1128/jb.01047-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metronidazole (MTZ) is often used in combination therapies to treat infections caused by the gastric pathogen Helicobacter pylori. Resistance to MTZ results from loss-of-function mutations in genes encoding RdxA and FrxA nitroreductases. MTZ-resistant strains, when cultured at sub-MICs of MTZ (5 to 20 μg/ml), show dose-dependent defects in bacterial growth; depressed activities of many Krebs cycle enzymes, including pyruvate:ferredoxin oxidoreductase (PFOR); and low transcript levels of porGDAB (primer extension), phenotypes consistent with an involvement of a transcriptional regulator. Using a combination of protein purification steps, electrophoretic mobility shift assays (EMSAs), and mass spectrometry analyses of proteins bound to porG promoter sequences, we identified HP1043, an essential homeostatic global regulator (HsrA [for homeostatic stress regulator]). Competition EMSAs and supershift analyses with HsrA-enriched protein fractions confirmed specific binding to porGDAB and hsrA promoter sequences. Exposure to MTZ resulted in >10-fold decreases in levels of HsrA and in levels of the HsrA-regulated gene products PFOR and TlpB. Exposure to paraquat (PQ), hydrogen peroxide, or organic peroxides showed near equivalence with MTZ, revealing a common oxidative stress response pathway. Finally, direct superoxide dismutase (SOD) assays showed an inverse relationship between HsrA levels and SOD activity, suggesting that HsrA may serve as a repressor of sodB. As a homeostatic sentinel, HsrA appears to be ideally positioned to enable rapid shutdown of genes associated with metabolism and growth while activating (directly or indirectly) oxidative defense genes in response to low levels of toxic metabolites (MTZ or oxygen) before they reach DNA-damaging levels.
Collapse
|
15
|
Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 2013; 81:1439-49. [PMID: 23429531 DOI: 10.1128/iai.01193-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori establishes lifelong infections of the gastric mucosa, a niche considered hostile to most microbes. While responses to gastric acidity and local inflammation are understood, little is known as to how they are integrated into homeostatic control of cell division and growth-stage gene expression. Here we investigate the essential orphan response regulator HP1043, a member of the OmpR/PhoB subfamily of transcriptional regulators that is unique to the Epsilonproteobacteria and that lacks phosphorylation domains. To test the hypothesis that conformational changes in the homodimer might lead to defects in gene expression, we sought mutations that might alter DNA-binding efficiency. Two introduced mutations (C215S, C221S) C terminal to the DNA-binding domain of HP1043 (HP1043CC11) resulted in a 2-fold higher affinity for its own promoter by footprinting. Modeling studies with the crystal structure of HP1043 suggested that C215S might affect the helix-turn-helix domain. Genomic replacement of the hp1043 allele with the hp1043CC11 mutant allele resulted in a 2-fold decrease in protein levels, despite a dramatic increase in mRNA. The mutations did not affect in vitro growth rates or colonization efficiency in a mouse model. Proteomic profiling (CC11 mutant strain versus wild type) identified many expression differences, and quantitative PCR further revealed that 11 out of 12 examined genes had lost growth-stage regulation and that 6 of the genes contained HP1043 binding consensus sequences within the promoter regions (fur, cagA, cag23, flhA, flip, and napA). Our studies show that mutations that affect DNA-binding affinity can be used to identify new members of the HP1043 regulon.
Collapse
|
16
|
Xu Q, Christen B, Chiu HJ, Jaroszewski L, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Figurski DH, Shapiro L, Wilson IA. Structure of the pilus assembly protein TadZ from Eubacterium rectale: implications for polar localization. Mol Microbiol 2012; 83:712-27. [PMID: 22211578 DOI: 10.1111/j.1365-2958.2011.07954.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg(2+) , was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker-A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N-terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped-down 'active site'. Homology modelling of the N-terminal atypical receiver domain of CpaE indicates that it has a conserved protein-protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.
Collapse
|
17
|
Zhang Y, Ducret A, Shaevitz J, Mignot T. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 2011; 36:149-64. [PMID: 22091711 DOI: 10.1111/j.1574-6976.2011.00307.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/23/2011] [Accepted: 09/02/2011] [Indexed: 01/05/2023] Open
Abstract
In bird flocks, fish schools, and many other living organisms, regrouping among individuals of the same kin is frequently an advantageous strategy to survive, forage, and face predators. However, these behaviors are costly because the community must develop regulatory mechanisms to coordinate and adapt its response to rapid environmental changes. In principle, these regulatory mechanisms, involving communication between individuals, may also apply to cellular systems which must respond collectively during multicellular development. Dissecting the mechanisms at work requires amenable experimental systems, for example, developing bacteria. Myxococcus xanthus, a Gram-negative delatproteobacterium, is able to coordinate its motility in space and time to swarm, predate, and grow millimeter-size spore-filled fruiting bodies. A thorough understanding of the regulatory mechanisms first requires studying how individual cells move across solid surfaces and control their direction of movement, which was recently boosted by new cell biology techniques. In this review, we describe current molecular knowledge of the motility mechanism and its regulation as a lead-in to discuss how multicellular cooperation may have emerged from several layers of regulation: chemotaxis, cell-cell signaling, and the extracellular matrix. We suggest that Myxococcus is a powerful system to investigate collective principles that may also be relevant to other cellular systems.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratoire de Chimie Bactérienne - CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Université Aix-marseille, Marseille Cedex, France
| | | | | | | |
Collapse
|
18
|
Hickey JM, Lovell S, Battaile KP, Hu L, Middaugh CR, Hefty PS. The atypical response regulator protein ChxR has structural characteristics and dimer interface interactions that are unique within the OmpR/PhoB subfamily. J Biol Chem 2011; 286:32606-16. [PMID: 21775428 PMCID: PMC3173177 DOI: 10.1074/jbc.m111.220574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/06/2011] [Indexed: 02/03/2023] Open
Abstract
Typically as a result of phosphorylation, OmpR/PhoB response regulators form homodimers through a receiver domain as an integral step in transcriptional activation. Phosphorylation stabilizes the ionic and hydrophobic interactions between monomers. Recent studies have shown that some response regulators retain functional activity in the absence of phosphorylation and are termed atypical response regulators. The two currently available receiver domain structures of atypical response regulators are very similar to their phospho-accepting homologs, and their propensity to form homodimers is generally retained. An atypical response regulator, ChxR, from Chlamydia trachomatis, was previously reported to form homodimers; however, the residues critical to this interaction have not been elucidated. We hypothesize that the intra- and intermolecular interactions involved in forming a transcriptionally competent ChxR are distinct from the canonical phosphorylation (activation) paradigm in the OmpR/PhoB response regulator subfamily. To test this hypothesis, structural and functional studies were performed on the receiver domain of ChxR. Two crystal structures of the receiver domain were solved with the recently developed method using triiodo compound I3C. These structures revealed many characteristics unique to OmpR/PhoB subfamily members: typical or atypical. Included was the absence of two α-helices present in all other OmpR/PhoB response regulators. Functional studies on various dimer interface residues demonstrated that ChxR forms relatively stable homodimers through hydrophobic interactions, and disruption of these can be accomplished with the introduction of a charged residue within the dimer interface. A gel shift study with monomeric ChxR supports that dimerization through the receiver domain is critical for interaction with DNA.
Collapse
Affiliation(s)
| | - Scott Lovell
- the Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Kevin P. Battaile
- the Hauptman-Woodward Medical Research Institute, IMCA-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lei Hu
- Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | | | | |
Collapse
|
19
|
Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo YE, Zusman DR. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 2011; 6:e23920. [PMID: 21886839 PMCID: PMC3158785 DOI: 10.1371/journal.pone.0023920] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 02/02/2023] Open
Abstract
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.
Collapse
Affiliation(s)
- James E. Berleman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Juan J. Vicente
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Annie E. Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sharon Y. Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Young-Eun Seo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David R. Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
The atypical OmpR/PhoB response regulator ChxR from Chlamydia trachomatis forms homodimers in vivo and binds a direct repeat of nucleotide sequences. J Bacteriol 2010; 193:389-98. [PMID: 21057008 DOI: 10.1128/jb.00833-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two-component signal transduction systems are widespread in bacteria and are essential regulatory mechanisms for many biological processes. These systems predominantly rely on a sensor kinase to phosphorylate a response regulator for controlling activity, which is frequently transcriptional regulation. In recent years, an increasing number of atypical response regulators have been discovered in phylogenetically diverse bacteria. These atypical response regulators are not controlled by phosphorylation and exhibit transcriptional activity in their wild-type form. Relatively little is known regarding the mechanisms utilized by these atypical response regulators and the conserved characteristics of these atypical response regulators. Chlamydia spp. are medically important bacteria and encode an atypical OmpR/PhoB subfamily response regulator termed ChxR. In this study, protein expression analysis supports that ChxR is likely exerting its effect during the middle and late stages of the chlamydial developmental cycle, stages that include the formation of infectious elementary bodies. In the absence of detectable phosphorylation, ChxR formed homodimers in vitro and in vivo, similar to a phosphorylated OmpR/PhoB subfamily response regulator. ChxR was demonstrated to bind to its own promoter in vivo, supporting the role of ChxR as an autoactivator. Detailed analysis of the ChxR binding sites within its own promoter revealed a conserved cis-acting motif that includes a tandem repeat sequence. ChxR binds specifically to each of the individual sites and exhibits a relatively large spectrum of differential affinity. Taken together, these observations support the conclusion that ChxR, in the absence of phosphorylation, exhibits many of the characteristics of a phosphorylated (active) OmpR/PhoB subfamily response regulator.
Collapse
|
21
|
Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 2010; 285:32325-35. [PMID: 20702407 PMCID: PMC2952233 DOI: 10.1074/jbc.m110.157164] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.
Collapse
Affiliation(s)
- Christopher M. Barbieri
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Timothy R. Mack
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Graduate School of Biomedical Sciences, and
| | - Victoria L. Robinson
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Matthew T. Miller
- From the Center for Advanced Biotechnology and Medicine
- the Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ann M. Stock
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| |
Collapse
|
22
|
Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 2010; 6:e1001104. [PMID: 20862323 PMCID: PMC2940757 DOI: 10.1371/journal.ppat.1001104] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 08/13/2010] [Indexed: 11/22/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis. Borrelia burgdorferi, the causative agent of Lyme disease, is maintained in nature in a complex enzootic cycle involving Ixodes ticks and mammals. A novel regulatory network, the Rrp2-RpoN-RpoS pathway, which governs differential expression of numerous genes of B. burgdorferi, is essential for this complex life cycle. In this study, we provide evidence showing that the activation of the Rrp2-RpoN-RpoS pathway is modulated, not by the predicted histidine kinase for Rrp2, but rather by acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) metabolic pathway. Based on our findings, we propose that during the enzootic cycle of B. burgdorferi, changes in environmental cues and nutrient conditions lead to an increase in the intracellular acetyl∼P pool in B. burgdorferi, which in turn modulates the activation of the Rrp2-RpoN-RpoS pathway.
Collapse
|
23
|
Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 2010; 74:229-49. [PMID: 20508248 DOI: 10.1128/mmbr.00043-09] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.
Collapse
|
24
|
Bourret RB. Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 2010; 13:142-9. [PMID: 20211578 DOI: 10.1016/j.mib.2010.01.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During signal transduction by two-component regulatory systems, sensor kinases detect and encode input information while response regulators (RRs) control output. Most receiver domains function as phosphorylation-mediated switches within RRs, but some transfer phosphoryl groups in multistep phosphorelays. Conserved features of receiver domain amino acid sequence correlate with structure and hence function. Receiver domains catalyze their own phosphorylation and dephosphorylation in reactions requiring a divalent cation. Molecular dynamics simulations are supplementing structural investigation of the conformational changes that underlie receiver domain switch function. As understanding of features shared by all receiver domains matures, factors conferring differences (e.g. in reaction rate or specificity) are receiving increased attention. Numerous examples of atypical receiver or pseudo-receiver domains that function without phosphorylation have recently been characterized.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
25
|
Stepchild phosphohistidine: acid-labile phosphorylation becomes accessible by functional proteomics. Anal Bioanal Chem 2010; 397:3209-12. [PMID: 20063153 DOI: 10.1007/s00216-009-3372-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/22/2022]
Abstract
Bioanalytical techniques were preferentially developed for the investigation of phosphohydroxyamino acids in the past and there is a wealth of information on the detection of serine, threonine and tyrosine phosphorylation in functional proteomics. However, similarly important for protein regulation and signalling is the phosphorylation of other amino acids such as histidine, but its detection is hampered by the sensitivity to acid. Mass spectrometry in conjunction with chromatographic methods is allowing us to start to get a handle on phosphohistidine. (32)P-labelling and amino acid analysis for phosphorylation site determination is increasingly complemented by typical proteomic approaches based on reversed-phase peptide separation and gas-phase fragmentation. Chemical phosphorylation of peptides is a valuable tool, therefore, for the generation of analytical standards for use in method development.
Collapse
|
26
|
Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 2009; 106:8617-8622. [PMID: 19423672 PMCID: PMC2688989 DOI: 10.1073/pnas.0900592106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Indexed: 02/06/2024] Open
Abstract
In bacteria, many "atypical" response regulators (ARRs) lack the conserved residues important for phosphorylation by which typical response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. However, such mechanisms have not been established. JadR1, an OmpR-type ARR of Streptomyces venezuelae, appears to activate the transcription of jadomycin B (JdB) biosynthetic genes while repressing its own gene. JadR1 activities were inhibited in cells induced to produce JdB, which was found to bind directly to the N-terminal receiver domain of JadR1, causing JadR1 to dissociate from target promoters. The activity of a NarL-type ARR, RedZ, that regulates production of another antibiotic was likewise modulated by the end product (undecylprodigisines), implying that end-product-mediated control of antibiotic pathway-specific ARRs may be widespread. These results could prove relevant to knowledge-based improvements in yield of commercially important antibiotics.
Collapse
Affiliation(s)
- Linqi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiuyun Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haihua Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Gangming Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
27
|
Genome expression analyses revealing the modulation of the Salmonella Rcs regulon by the attenuator IgaA. J Bacteriol 2009; 191:1855-67. [PMID: 19124574 DOI: 10.1128/jb.01604-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular growth attenuator A (IgaA) was identified as a Salmonella enterica regulator limiting bacterial growth inside fibroblasts. Genetic evidence further linked IgaA to repression of the RcsCDB regulatory system, which responds to envelope stress. How IgaA attenuates this system is unknown. Here, we present genome expression profiling data of S. enterica serovar Typhimurium igaA mutants grown at high osmolarity and displaying exacerbated Rcs responses. Transcriptome data revealed that IgaA attenuates gene expression changes requiring phosphorylated RcsB (RcsB~P) activity. Some RcsB-regulated genes, yciGFE and STM1862 (pagO)-STM1863-STM1864, were equally expressed in wild-type and igaA strains, suggesting a maximal expression at low levels of RcsB ~P. Other genes, such as metB, ypeC, ygaC, glnK, glnP, napA, glpA, and nirB, were shown for the first time and by independent methods to be regulated by the RcsCDB system. Interestingly, IgaA-deficient strains with reduced RcsC or RcsD levels exhibited different Rcs responses and distinct virulence properties. spv virulence genes were differentially expressed in most of the analyzed strains. spvA expression required RcsB and IgaA but, unexpectedly, was also impaired upon stimulation of the RcsC-->RcsD-->RcsB phosphorelay. Overproduction of either RcsB(+) or a nonphosphorylatable RcsB(D56Q) variant in strains displaying low spvA expression unveiled that both dephosphorylated RcsB and RcsB~P are required for optimal spvA expression. Taken together, our data support a model with IgaA attenuating the RcsCDB system by favoring the switch of RcsB~P to the dephosphorylated state. This role of IgaA in constantly fine-tuning the RcsB~P/RcsB ratio may ensure the proper expression of important virulence factors, such as the Spv proteins.
Collapse
|
28
|
Ruiz D, Salinas P, Lopez-Redondo ML, Cayuela ML, Marina A, Contreras A. Phosphorylation-independent activation of the atypical response regulator NblR. MICROBIOLOGY-SGM 2008; 154:3002-3015. [PMID: 18832306 DOI: 10.1099/mic.0.2008/020677-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In Synechococcus sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high-light stress require activation by the orphan response regulator NblR, a member of the OmpR/PhoB family. Although NblR contains a putative phosphorylatable residue (Asp57), it lacks other conserved residues required to chelate the Mg(2+) necessary for aspartic acid phosphorylation or to transduce the phosphorylation signal. In close agreement with these features, NblR was not phosphorylated in vitro by the low-molecular-mass phosphate donor acetyl phosphate and mutation of Asp57 to Ala had no impact on previously characterized NblR functions in Synechococcus. On the other hand, in vitro and in vivo assays show that the default state of NblR is monomeric, suggesting that, despite input differences, NblR activation could involve the same general mechanism of activation by dimerization present in known members of the OmpR/PhoB family. Structural and functional data indicate that the receiver domain of NblR shares similarities with other phosphorylation-independent response regulators such as FrzS and HP1043. To acknowledge the peculiarities of these atypical 'two-component' regulators with phosphorylation-independent signal transduction mechanisms, we propose the term PIARR, standing for phosphorylation-independent activation of response regulator.
Collapse
Affiliation(s)
- Diego Ruiz
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Paloma Salinas
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | | | - Maria Luisa Cayuela
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (CSIC) and CIBERER, 46010 Valencia, Spain
| | - Asunción Contreras
- División de Genética, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
| |
Collapse
|
29
|
Mignot T, Kirby JR. Genetic circuitry controlling motility behaviors of Myxococcus xanthus. Bioessays 2008; 30:733-43. [PMID: 18623059 DOI: 10.1002/bies.20790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.
Collapse
Affiliation(s)
- Tâm Mignot
- Institut de Biologie Structurale et Microbiologie. Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Groupe de Biologie Cellulaire de la Motilité Bactérienne, Marseille, France.
| | | |
Collapse
|
30
|
Mauriello EM, Zusman DR. Polarity of motility systems in Myxococcus xanthus. Curr Opin Microbiol 2007; 10:624-9. [PMID: 17981496 DOI: 10.1016/j.mib.2007.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Myxococcus xanthus is a gliding bacterium that contains two motility systems: S-motility, powered by polar type IV pili, and A-motility, powered by uncharacterized motors and adhesion complexes. The localization and coordination of the two motility engines is essential for directed motility as cells move forward and reverse. During cell reversals, the polarity and localization of motility proteins are rapidly inverted, rendering this system a fascinating example of dynamic protein localization.
Collapse
Affiliation(s)
- Emilia Mf Mauriello
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, United States
| | | |
Collapse
|
31
|
|
32
|
Mignot T, Merlie JP, Zusman DR. Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol Microbiol 2007; 65:363-72. [PMID: 17590236 DOI: 10.1111/j.1365-2958.2007.05789.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myxococcus xanthus utilizes two motility systems for surface locomotion: A-motility and S-motility. S-motility is mediated by extension and retraction of type IV pili. Cells exhibiting S-motility periodically reverse by switching the assembly of type IV pili from the old leading pole to the new leading pole. These cellular reversals involve regulated pole-to-pole oscillations of the FrzS protein. We constructed and characterized in-frame deletion mutations in several FrzS domains to determine their roles in protein localization. We found that FrzS has distinct domains required for residence at the leading cell pole, pole-to-pole transport and lagging cell pole. Our results are consistent with a model whereby S-motility reversals are mediated by a protein translocation system that delivers motility proteins such as FrzS from the leading cell pole to the lagging cell pole.
Collapse
Affiliation(s)
- Tâm Mignot
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|