1
|
Ali AE, Li LL, Courtney MJ, Pentikäinen OT, Postila PA. Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. Brief Bioinform 2024; 25:bbae458. [PMID: 39311700 PMCID: PMC11418247 DOI: 10.1093/bib/bbae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.
Collapse
Affiliation(s)
- Aliaa E Ali
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Li-Li Li
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Michael J Courtney
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
2
|
Atay G, Holyavkin C, Can H, Arslan M, Topaloğlu A, Trotta M, Çakar ZP. Evolutionary engineering and molecular characterization of cobalt-resistant Rhodobacter sphaeroides. Front Microbiol 2024; 15:1412294. [PMID: 38993486 PMCID: PMC11236759 DOI: 10.3389/fmicb.2024.1412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
With its versatile metabolism including aerobic and anaerobic respiration, photosynthesis, photo-fermentation and nitrogen fixation, Rhodobacter sphaeroides can adapt to diverse environmental and nutritional conditions, including the presence of various stressors such as heavy metals. Thus, it is an important microorganism to study the molecular mechanisms of bacterial stress response and resistance, and to be used as a microbial cell factory for biotechnological applications or bioremediation. In this study, a highly cobalt-resistant and genetically stable R. sphaeroides strain was obtained by evolutionary engineering, also known as adaptive laboratory evolution (ALE), a powerful strategy to improve and characterize genetically complex, desired microbial phenotypes, such as stress resistance. For this purpose, successive batch selection was performed in the presence of gradually increased cobalt stress levels between 0.1-15 mM CoCl2 for 64 passages and without any mutagenesis of the initial population prior to selection. The mutant individuals were randomly chosen from the last population and analyzed in detail. Among these, a highly cobalt-resistant and genetically stable evolved strain called G7 showed significant cross-resistance against various stressors such as iron, magnesium, nickel, aluminum, and NaCl. Growth profiles and flame atomic absorption spectrometry analysis results revealed that in the presence of 4 mM CoCl2 that significantly inhibited growth of the reference strain, the growth of the evolved strain was unaffected, and higher levels of cobalt ions were associated with G7 cells than the reference strain. This may imply that cobalt ions accumulated in or on G7 cells, indicating the potential of G7 for cobalt bioremediation. Whole genome sequencing of the evolved strain identified 23 single nucleotide polymorphisms in various genes that are associated with transcriptional regulators, NifB family-FeMo cofactor biosynthesis, putative virulence factors, TRAP-T family transporter, sodium/proton antiporter, and also in genes with unknown functions, which may have a potential role in the cobalt resistance of R. sphaeroides.
Collapse
Affiliation(s)
- Güneş Atay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Hanay Can
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Massimo Trotta
- IPCF-CNR Istituto per I processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| |
Collapse
|
3
|
Chandler DE, Strümpfer J, Sener M, Scheuring S, Schulten K. Light harvesting by lamellar chromatophores in Rhodospirillum photometricum. Biophys J 2015; 106:2503-10. [PMID: 24896130 DOI: 10.1016/j.bpj.2014.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/26/2022] Open
Abstract
Purple photosynthetic bacteria harvest light using pigment-protein complexes which are often arranged in pseudo-organelles called chromatophores. A model of a chromatophore from Rhodospirillum photometricum was constructed based on atomic force microscopy data. Molecular-dynamics simulations and quantum-dynamics calculations were performed to characterize the intercomplex excitation transfer network and explore the interplay between close-packing and light-harvesting efficiency.
Collapse
Affiliation(s)
- Danielle E Chandler
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Johan Strümpfer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
4
|
Analyzing effects of naturally occurring missense mutations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:805827. [PMID: 22577471 PMCID: PMC3346971 DOI: 10.1155/2012/805827] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.
Collapse
|
5
|
Jakob-Grun S, Radeck J, Braun P. Ca(2+)-binding reduces conformational flexibility of RC-LH1 core complex from thermophile Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2012; 111:139-147. [PMID: 22367594 DOI: 10.1007/s11120-012-9727-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
The light-harvesting complex, LH1, of thermophile purple bacteria Thermochromatium tepidum consists of an array of α- and β-polypeptides which assemble the photoactive bacteriochlorophyll and closely interact with the membrane-lipids. In this study, we investigated the effect of calcium and manganese ions on the protein structure and thermostability of the reaction centre (RC)-LH1/lipid complex. The binding of Ca(2+), but not Mn(2+) is shown to shift the LH1 Q ( y ) absorption maximum from ~889 to 915 nm and to significantly raise the thermostability of the RC-LH1 complex. The ATR-FTIR spectra indicate that interaction of Ca(2+) as monitored by the carboxylates' vibration of aspartate residues, but not Mn(2+) induces changes in the α-helix packing arrangement. The reduced rate of (1)H/(2)H exchange of proteins' amide protons shows that the accessibility to (2)H(2)O is significantly lowered in Ca(2+)-substituted RC-LH1/lipid complexes. In particular, exchange with the associated lipid molecules, is significantly retarded. These results suggest that the thermostability of the RC-LH1 complex is raised by the distinct interaction with calcium cations which reduces the RC-LH1/lipid dynamics, particularly, at the membrane-water interface.
Collapse
Affiliation(s)
- Selma Jakob-Grun
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
6
|
Contreras FX, Ernst AM, Wieland F, Brügger B. Specificity of intramembrane protein-lipid interactions. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004705. [PMID: 21536707 DOI: 10.1101/cshperspect.a004705] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein-lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein-lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein-lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein-lipid interactions as well as roles of lipids as chaperones in protein folding and transport.
Collapse
|
7
|
Membrane curvature induced by aggregates of LH2s and monomeric LH1s. Biophys J 2010; 97:2978-84. [PMID: 19948127 DOI: 10.1016/j.bpj.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/22/2022] Open
Abstract
The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and LH2), which pack tightly together in the chromatophore. It has been suggested that the shape of LH2, together with its close packing in the membrane, induces membrane curvature. The mechanism of LH2-induced curvature is explored via molecular dynamics simulations of multiple LH2 complexes in a membrane patch. LH2s from three species-Rb. sphaeroides, Rps. acidophila, and Phsp. molischianum-were simulated in different packing arrangements. In each case, the LH2s pack together and tilt with respect to neighboring LH2s in a way that produces an overall curvature. This curvature appears to be driven by a combination of LH2's shape and electrostatic forces that are modulated by the presence of well-conserved cytoplasmic charged residues, the removal of which inhibits LH2 curvature. The interaction of LH2s and an LH1 monomer is also explored, and it suggests that curvature is diminished by the presence of LH1 monomers. The implications of our results for chromatophore shape are discussed.
Collapse
|
8
|
Schniederberend M, Zimmann P, Bogdanov M, Dowhan W, Altendorf K. Influence of K+-dependent membrane lipid composition on the expression of the kdpFABC operon in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:32-9. [PMID: 19850005 DOI: 10.1016/j.bbamem.2009.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
The membrane-bound sensor kinase KdpD and the cytoplasmic response regulator KdpE regulate the expression of the kdpFABC operon coding for the high affinity potassium uptake system KdpFABC in Escherichia coli. The signal transduction cascade of this two component system is activated under K(+)-limiting conditions in the medium, but is less sensitive to high osmolality. In order to test whether K(+) limitation affects membrane phospholipid composition and whether this change affects kdpFABC expression, we analysed the phospholipid composition of E. coli under these conditions. Our measurements revealed that there is an increase in the cardiolipin (CL) content during the exponential growth phase at the expense of the zwitterionic phospholipid phosphatidylethanolamine. The higher anionic phospholipid content occurs along with an increase of transcriptional activity of the cls gene coding for CL synthase. Furthermore, in vivo studies with E. coli derivatives carrying mutations in genes coding for enzymes involved in phospholipid biosynthesis revealed that the increase in the anionic lipid composition enhances the expression rate of the kdpFABC operon. Finally, we show that kinase activity of KdpD is stimulated in its native membrane environment by fusion with liposomes of anionic, but reduced with liposomes of zwitterionic phospholipids.
Collapse
Affiliation(s)
- Maren Schniederberend
- Universität Osnabrück, Fachbereich Biologie/ Chemie, Abteilung Mikrobiologie, D- 49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|