1
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
2
|
Ngo HTT, Nguyen DH, You SH, Van Nguyen K, Kim SY, Hong Y, Min JJ. Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy. Mol Imaging Biol 2024; 26:148-161. [PMID: 38017353 DOI: 10.1007/s11307-023-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Attenuated Salmonella typhimurium is a potential biotherapeutic antitumor agent because it can colonize tumors and inhibit their growth. The present study aimed to develop a doxycycline (Doxy)-inducible gene switch system in attenuated S. typhimurium and assess its therapeutic efficacy in various tumor-bearing mice models. PROCEDURES A Doxy-inducible gene switch system comprising two plasmids was engineered to trigger the expression of cargo genes (Rluc8 and clyA). Attenuated S. typhimurium carrying Rluc8 were injected intravenously into BALB/c mice bearing CT26 tumors, and bioluminescence images were captured at specified intervals post-administration of doxycycline. The tumor-suppressive effects of bacteria carrying clyA were evaluated in BALB/c mice bearing CT26 tumors and in C57BL/6 mice bearing MC38 tumors. RESULTS Expression of the fimE gene, induced only in the presence of Doxy, triggered a unidirectional switch of the POXB20 promoter to induce expression of the cargo genes. The switch event was maintained over a long period of bacterial culture. After intravenous injection of transformed Salmonella into mice bearing CT26 tumors, the bacteria transformed with the Doxy-inducible gene switch system for Rluc8 targeted only tumor tissues and expressed the payloads 2 days after Doxy treatment. Notably, bacteria carrying the Doxy-inducible gene switch system for clyA effectively suppressed tumor growth and prolonged survival, even after just one Doxy induction. CONCLUSIONS These results suggest that attenuated S. typhimurium carrying this novel gene switch system elicited significant therapeutic effects through a single induction triggering and were a potential biotherapeutic agent for tumor therapy.
Collapse
Affiliation(s)
- Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, No 1, Ton That Tung St., Dong Da, Hanoi, 100000, Vietnam
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
3
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Saldaña-Ahuactzi Z, Soria-Bustos J, Martínez-Santos VI, Yañez-Santos JA, Martínez-Laguna Y, Cedillo-Ramirez ML, Puente JL, Girón JA. The Fis Nucleoid Protein Negatively Regulates the Phase Variation fimS Switch of the Type 1 Pilus Operon in Enteropathogenic Escherichia coli. Front Microbiol 2022; 13:882563. [PMID: 35572706 PMCID: PMC9096935 DOI: 10.3389/fmicb.2022.882563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023] Open
Abstract
In Escherichia coli the expression of type 1 pili (T1P) is determined by the site-specific inversion of the fimS ON–OFF switch located immediately upstream of major fimbrial subunit gene fimA. Here we investigated the role of virulence (Ler, GrlR, and GrlA) and global regulators (H-NS, IHF, and Fis) in the regulation of the fimS switch in the human enteropathogenic E. coli (EPEC) O127:H6 strain E2348/69. This strain does not produce detectable T1P and PCR analysis of the fimS switch confirmed that it is locked in the OFF orientation. Among the regulator mutants analyzed, only the ∆fis mutant produced significantly high levels of T1P on its surface and yielded high titers of agglutination of guinea pig erythrocytes. Expression analysis of the fimA, fimB, and fimE promoters using lacZ transcriptional fusions indicated that only PfimA activity is enhanced in the absence of Fis. Collectively, these data demonstrate that Fis is a negative regulator of T1P expression in EPEC and suggest that it is required for the FimE-dependent inversion of the fimS switch from the ON-to-OFF direction. It is possible that a similar mechanism of T1P regulation exists in other intestinal and extra-intestinal pathogenic classes of E. coli.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Jorge A Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - José L Puente
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Li J, Wang J, Ruiz-Cruz S, Espinosa M, Zhang JR, Bravo A. In vitro DNA Inversions Mediated by the PsrA Site-Specific Tyrosine Recombinase of Streptococcus pneumoniae. Front Mol Biosci 2020; 7:43. [PMID: 32266289 PMCID: PMC7096588 DOI: 10.3389/fmolb.2020.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Site-specific recombination is a DNA breaking and reconstructing process that plays important roles in various cellular pathways for both prokaryotes and eukaryotes. This process requires a site-specific recombinase and direct or inverted repeats. Some tyrosine site-specific recombinases catalyze DNA inversions and regulate subpopulation diversity and phase variation in many bacterial species. In Streptococcus pneumoniae, the PsrA tyrosine recombinase was shown to control DNA inversions in the three DNA methyltransferase hsdS genes of the type I restriction-modification cod locus. Such DNA inversions are mediated by three inverted repeats (IR1, IR2, and IR3). In this work, we purified an untagged form of the PsrA protein and studied its DNA-binding and catalytic features. Gel retardation assays showed that PsrA binds to linear and supercoiled DNAs, containing or not inverted repeats. Nevertheless, DNase I footprinting assays showed that, on linear DNAs, PsrA has a preference for sites that include an IR1 sequence (IR1.1 or IR1.2) and its boundary sequences. Furthermore, on supercoiled DNAs, PsrA was able to generate DNA inversions between specific inverted repeats (IR1, IR2, and IR3), which supports its ability to locate specific target sites. Unlike other site-specific recombinases, PsrA showed reliance on magnesium ions for efficient catalysis of IR1-mediated DNA inversions. We discuss that PsrA might find its specific binding sites on the bacterial genome by a mechanism that involves transitory non-specific interactions between protein and DNA.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Basic Medical Science, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Department of Basic Medical Science, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Sofía Ruiz-Cruz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jing-Ren Zhang
- Department of Basic Medical Science, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Comprehensive Identification of Fim-Mediated Inversions in Uropathogenic Escherichia coli with Structural Variation Detection Using Relative Entropy. mSphere 2019; 4:4/2/e00693-18. [PMID: 30971446 PMCID: PMC6458436 DOI: 10.1128/msphere.00693-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI. Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depends on an extracellular organelle (type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole-genome sequencing with a newly developed algorithm (structural variation detection using relative entropy [SVRE]) for calling structural variations using paired-end short-read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coli. IMPORTANCE UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI.
Collapse
|
8
|
Zhang H, Susanto TT, Wan Y, Chen SL. Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:4182-7. [PMID: 27035967 PMCID: PMC4839427 DOI: 10.1073/pnas.1522958113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Collapse
Affiliation(s)
- Huibin Zhang
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672
| | - Teodorus T Susanto
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Yue Wan
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Swaine L Chen
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
9
|
Kingston AW, Roussel-Rossin C, Dupont C, Raleigh EA. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12. PLoS One 2015; 10:e0130813. [PMID: 26162088 PMCID: PMC4498929 DOI: 10.1371/journal.pone.0130813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/27/2015] [Indexed: 01/19/2023] Open
Abstract
In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.
Collapse
Affiliation(s)
- Anthony W. Kingston
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | | | - Claire Dupont
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | - Elisabeth A. Raleigh
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bateman SL, Seed PC. Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli. Mol Microbiol 2012; 83:908-25. [PMID: 22221182 DOI: 10.1111/j.1365-2958.2012.07977.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.
Collapse
Affiliation(s)
- Stacey L Bateman
- Department of Molecular Genetics and Microbiology Center for Microbial Pathogenesis Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
11
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
12
|
Müller CM, Åberg A, Straseviçiene J, Emődy L, Uhlin BE, Balsalobre C. Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 2009; 5:e1000303. [PMID: 19229313 PMCID: PMC2636892 DOI: 10.1371/journal.ppat.1000303] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/18/2009] [Indexed: 12/11/2022] Open
Abstract
Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues.
Collapse
Affiliation(s)
- Claudia M. Müller
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anna Åberg
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jurate Straseviçiene
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Levente Emődy
- Institute of Medical Microbiology and Immunology, University of Pécs Medical School, Budapest, Hungary
- Veterinary Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Carlos Balsalobre
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Abstract
The Gram-negative bacterium Escherichia coli and its close relative Salmonella enterica have made important contributions historically to our understanding of how bacteria control DNA supercoiling and of how supercoiling influences gene expression and vice versa. Now they are contributing again by providing examples where changes in DNA supercoiling affect the expression of virulence traits that are important for infectious disease. Available examples encompass both the earliest stages of pathogen–host interactions and the more intimate relationships in which the bacteria invade and proliferate within host cells. A key insight concerns the link between the physiological state of the bacterium and the activity of DNA gyrase, with downstream effects on the expression of genes with promoters that sense changes in DNA supercoiling. Thus the expression of virulence traits by a pathogen can be interpreted partly as a response to its own changing physiology. Knowledge of the molecular connections between physiology, DNA topology and gene expression offers new opportunities to fight infection.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|