1
|
Lye LF, Dobson DE, Beverley SM, Tung MC. RNA interference in protozoan parasites and its application. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00008-8. [PMID: 39884870 DOI: 10.1016/j.jmii.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression, via small RNA triggers derived from double-stranded RNA that can target specific genes; it is a natural process that plays a role in both the regulation of protein synthesis and in immunity. Discovery of RNAi by Fire and Mello in 1998 had a profound impact on unraveling novel aspects of eukaryotic biology. RNA interference (RNAi) has proven to be an immensely useful tool for studying gene function and validation of potential drug targets in almost all organisms. A great advance in parasitic protozoa was achieved by the experimental demonstration of RNAi in Trypanosoma brucei, and in other protists such as Leishmania braziliensis, Entamoeba histolytica and Giardia lamblia/intestinalis. These organisms exhibit numerous differences beyond the core 'dicer' and 'slicer' activities, thereby expanding knowledge of the evolutionary diversification of this pathway in eukaryotes. When present, RNAi has led to new technologies for engineering powerful and facile knockdowns in gene expression, revolutionizing biomedical research and opening clinical potentialities. In this review, we discuss the distribution of RNAi pathways, their biological roles, and experimental applications in protozoan parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Min-Che Tung
- Department of Urology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Chen D, Gao J, He D, He J, Li Y, Zhang M, Li W, Chen X, He X, Fu T. Plasmonic Bridge Sensor Enabled by Carbon Nanotubes and Au-Ag Nano-Rambutan for Multifunctional Detection of Biomechanics and Bio/Chemical Molecules. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8783-8793. [PMID: 36723501 DOI: 10.1021/acsami.2c22634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable, noninvasive, and simultaneous sensing of subtle strains and eccrine molecules on human body is essential for future health monitoring and personalized medicine. However, there is a huge chasm between biomechanics and bio/chemical molecule detections. Here, a wearable plasmonic bridge sensor with multiple abilities to monitor subtle strains and molecules is developed. Hollow Au-Ag nano-rambutans and carbon nanotubes (CNTs) are adsorbed in the nonwoven fabrics (NWFs) conjointly, where the gap between the conducting network of CNTs is bridged by the Au-Ag nano-rambutans during the subtle strain sensing, and the detection sensitivity for stress is improved at least 1 order of magnitude compared to that with the only CNTs. In order to acquire the accurate human action recognition, a machine learning algorithm (support vector machines) based on output biomechanics data is designed. The average accuracy of our plasmonic bridge sensor reaches 89.0% for human action recognition. Moreover, due to the hollow structure and high nanoroughness, the single Au-Ag nano-rambutan particle has strong localized surface plasmon resonance effect and high surface-enhanced Raman scattering (SERS) activity. Based on their unique SERS spectra introduced by the hollow Au-Ag nano-rambutan adsorbed in the NWFs, noninvasive extraction and "fingerprint" recognition of bio/chemical molecules could be realized during the wearable sensing. In sum, the NWFs/CNTs/Au-Ag sensor bridges the barrier between the bodily strain detection and molecule recognition during the wearable sensing. Such integrated and multifunctional sensing strategy for universal biomechanics and bio/chemical molecules means to assess human health to be of importance.
Collapse
Affiliation(s)
- Dongzhen Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Jianzhao Gao
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Dan He
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an710049, China
| | - Jingshun He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Yang Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Meng Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Wenya Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Xin Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Xinhai He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
3
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
4
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
5
|
Tschudi C, Shi H, Franklin JB, Ullu E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics 2012; 13:427. [PMID: 22925482 PMCID: PMC3447711 DOI: 10.1186/1471-2164-13-427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/24/2012] [Indexed: 01/24/2023] Open
Abstract
Background At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering RNAs (siRNAs). Results To test whether such endogenous siRNAs are present in T. brucei and to probe the individual role of the two Dicer-like enzymes, we affinity purified TbAGO1 from wild-type procyclic trypanosomes, as well as from cells deficient in the cytoplasmic (TbDCL1) or nuclear (TbDCL2) Dicer, and subjected the bound RNAs to Illumina high-throughput sequencing. In wild-type cells the majority of reads originated from two classes of retroposons. We also considerably expanded the repertoire of trypanosome siRNAs to encompass a family of 147-bp satellite-like repeats, many of the regions where RNA polymerase II transcription converges, large inverted repeats and two pseudogenes. Production of these newly described siRNAs is strictly dependent on the nuclear DCL2. Notably, our data indicate that putative centromeric regions, excluding the CIR147 repeats, are not a significant source for endogenous siRNAs. Conclusions Our data suggest that endogenous RNAi targets may be as evolutionarily old as the mechanism itself.
Collapse
Affiliation(s)
- Christian Tschudi
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
6
|
Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C. Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 2011; 6:e25112. [PMID: 21957477 PMCID: PMC3177853 DOI: 10.1371/journal.pone.0025112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022] Open
Abstract
In many eukaryotes, messenger RNAs with premature termination codons are destroyed by a process called "nonsense-mediated decay", which requires the RNA helicase Upf1 and also, usually, an interacting factor, Upf2. Recognition of premature termination codons may rely on their distance from either a splice site or the polyadenylation site, and long 3'-untranslated regions can trigger mRNA decay. The protist Trypanosoma brucei relies heavily on mRNA degradation to determine mRNA levels, and 3'-untranslated regions play a major role in control of mRNA decay. We show here that trypanosomes have a homologue of Upf1, TbUPF1, which interacts with TbUPF2 and (in an RNA-dependent fashion) with poly(A) binding protein 1, PABP1. Introduction of a premature termination codon in either an endogenous gene or a reporter gene decreased mRNA abundance, as expected for nonsense-mediated decay, but a dependence of this effect on TbUPF1 could not be demonstrated, and depletion of TbUPF1 by over 95% had no effect on parasite growth or the mRNA transcriptome. Further investigations of the reporter mRNA revealed that increases in open reading frame length tended to increase mRNA abundance. In contrast, inhibition of translation, either using 5'-secondary structures or by lengthening the 5'-untranslated region, usually decreased reporter mRNA abundance. Meanwhile, changing the length of the 3'-untranslated region had no consistent effect on mRNA abundance. We suggest that in trypanosomes, translation per se may inhibit mRNA decay, and interactions with multiple RNA-binding proteins preclude degradation based on 3'-untranslated region length alone.
Collapse
Affiliation(s)
- Praveen Delhi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Diana Inchaustegui
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Hedielberg, Germany
- * E-mail: (PD); (CC)
| |
Collapse
|
7
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
8
|
The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 2011; 27:321-7. [PMID: 21497553 DOI: 10.1016/j.pt.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
A new RNA world has emerged in the past 10 years with the discovery of a plethora of 20- to 30-nucleotide long small RNAs that are involved in various gene silencing mechanisms. These small RNAs have considerably changed our view of the regulation of gene expression in eukaryotic organisms, with a major shift towards epigenetic and post-transcriptional mechanisms. In this article, we focus on the striking diversity of small silencing RNAs that have been identified in several protozoan parasites and their potential biological role.
Collapse
|
9
|
Lye LF, Owens K, Shi H, Murta SMF, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 2010; 6:e1001161. [PMID: 21060810 PMCID: PMC2965760 DOI: 10.1371/journal.ppat.1001161] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/23/2010] [Indexed: 01/02/2023] Open
Abstract
RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance), and/or alterations in parasite virulence. RNAi interference pathways play fundamental roles in eukaryotes and provide important methods for the analysis of gene function. Occasionally RNAi has been lost, precluding its use as a tool, as well as raising the question of what forces could lead to loss of such a key pathway. Genomic and functional studies previously showed that within trypanosomatids protozoans RNAi was absent in both Leishmania major and Trypanosoma cruzi. The genome of L. braziliensis, a member of the early diverging Leishmania subgenus Viannia, retained key genes required for RNAi such as an Argonaute. We demonstrated that in fact L. braziliensis shows strong RNAi activity with reporter and endogenous genes affecting flagellar function. These data suggest that RNAi may be productively applied for functional genomic studies in L. braziliensis. We mapped the evolutionary point at which RNAi was lost in lineage leading to Leishmania and Crithidia, and establish that RNAi must have been lost at least twice in the trypanosomatids, once on the lineage leading to T. cruzi and independently following the divergence of the Viannia subgenus from other Leishmania species. Lastly, we discuss hypotheses concerning the forces leading to the loss of RNAi in Leishmania evolution, including viral invasion, increased genome plasticity, and altered virulence.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Owens
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Silvane M. F. Murta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ana Carolina Vieira
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Christian Tschudi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Epidemiology & Public Health, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Denninger V, Fullbrook A, Bessat M, Ersfeld K, Rudenko G. The FACT subunit TbSpt16 is involved in cell cycle specific control of VSG expression sites in Trypanosoma brucei. Mol Microbiol 2010; 78:459-74. [PMID: 20879999 PMCID: PMC3034197 DOI: 10.1111/j.1365-2958.2010.07350.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The African trypanosome Trypanosoma brucei monoallelically expresses one of more than 1000 Variant Surface Glycoprotein (VSG) genes. The active VSG is transcribed from one of about 15 telomeric VSG expression sites (ESs). It is unclear how monoallelic expression of VSG is controlled, and how inactive VSG ESs are silenced. Here, we show that blocking synthesis of the T. brucei FACT subunit TbSpt16 triggers a G2/early M phase cell cycle arrest in both bloodstream and insect form T. brucei. Segregation of T. brucei minichromosomes in these stalled cells is impaired, implicating FACT in maintenance of centromeres. Strikingly, knock-down of TbSpt16 results in 20- to 23-fold derepression of silent VSG ES promoters in bloodstream form T. brucei, with derepression specific to the G2/M cell cycle stage. In insect form T. brucei TbSpt16 knock-down results in 16- to 25-fold VSG ES derepression. Using chromatin immunoprecipitation (ChIP), TbSpt16 was found to be particularly enriched at the promoter region of silent but not active VSG ESs in bloodstream form T. brucei. The chromatin remodeler FACT is therefore implicated in maintenance of repressed chromatin present at silent VSG ES promoters, but is also essential for chromosome segregation presumably through maintenance of functional centromeres.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College, South Kensington, London SW72AZ, UK
| | | | | | | | | |
Collapse
|
11
|
Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S. Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 2010; 38:7236-47. [PMID: 20601683 PMCID: PMC2978370 DOI: 10.1093/nar/gkq599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that snoRNA dicing and slicing takes place in the nucleus, and further suggesting that AGO1 is active in nuclear silencing. snoRNAi was next utilized to elucidate the function of an abundant snoRNA, TB11Cs2C2 (92 nt), present in a cluster together with the spliced leader associated RNA (SLA1) and snR30, which are both H/ACA RNAs with special nuclear functions. Using AMT-UV cross-linking and RNaseH cleavage, we provide evidence for the interaction of TB11Cs2C2 with the small rRNAs, srRNA-2 and srRNA-6, which are part of the large subunit (LSU) rRNA. snoRNAi of TB11Cs2C2 resulted in defects in generating srRNA-2 and LSUβ rRNA. This is the first snoRNA described so far to engage in trypanosome-specific processing events.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | | | | | | | | | | |
Collapse
|
12
|
Alsford S, Kemp LE, Kawahara T, Horn D. RNA interference, growth and differentiation appear normal in African trypanosomes lacking Tudor staphylococcal nuclease. Mol Biochem Parasitol 2010; 174:70-3. [PMID: 20558212 PMCID: PMC2935966 DOI: 10.1016/j.molbiopara.2010.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 01/12/2023]
Abstract
Ribonucleases play important roles in the RNA interference (RNAi) pathway. The Dicer endonuclease converts double-stranded (ds)RNA into small interfering (si)RNA and the Slicer endonuclease, as a component of the RNA induced silencing complex (RISC), cleaves mRNA. Tudor staphylococcal nuclease (Tudor-SN) is another component of RISC in humans, flies and nematodes and is therefore implicated in the RNAi pathway. Here, we explore the potential role of African trypanosome Tudor-SN in RNAi. First, we assembled tudor-sn null mutants and showed that the gene is dispensable for normal growth and for differentiation. Next, we developed an inducible RNAi reporter system and demonstrated that Tudor-SN is dispensable for RNAi. The kinetics of mRNA knock-down, protein knock-down and protein recovery following inactivation of dsRNA expression are all unperturbed in the absence of Tudor-SN. We conclude that if this nuclease plays a role in the destruction or processing of dsRNA, mRNA or siRNA in the RNAi pathway, it is likely a minor one.
Collapse
Affiliation(s)
| | | | | | - David Horn
- Corresponding author. Tel.: +44 20 7927 2352.
| |
Collapse
|
13
|
Müller M, Padmanabhan PK, Papadopoulou B. Selective inactivation of SIDER2 retroposon-mediated mRNA decay contributes to stage- and species-specific gene expression in Leishmania. Mol Microbiol 2010; 77:471-91. [PMID: 20497500 DOI: 10.1111/j.1365-2958.2010.07226.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite their high genomic synteny, the Leishmania major and Leishmania infantum species exhibit extensive differences in mRNA expression patterns throughout the parasite's development. Yet, the underlying mechanisms for this species-specific differential gene expression are largely unknown. Here we report that Short Interspersed DEgenerated Retroposons of the SIDER2 subfamily, shown previously to promote rapid mRNA turnover, confer differential regulation of orthologous transcripts resulting in a stage- and species-specific gene expression. We demonstrate that SIDER2-mediated decay of two L. major transcripts encoding a hypothetical protein and an aminomethyltransferase to a similar extent in promastigote and amastigote developmental forms results in a constitutive low expression of the corresponding proteins. In contrast, their L. infantum orthologs are differentially expressed due to the selective inactivation of SIDER2 in intracellular amastigotes. Inactivation of the SIDER2 function blocks the SIDER2-mediated deadenylation-independent decay pathway, and stabilized transcripts are degraded by a slower, deadenylation-dependent mechanism. Sequence variations in SIDER2 retroposons between orthologous transcripts do not contribute to SIDER2 inactivation. Our data suggest that SIDER2 inactivation is 3'-untranslated region context-dependent and that involves possibly species- and stage-specific trans-acting factor(s). These findings further emphasize the important contribution of SIDER retroposons in the control of gene expression across the Leishmania genus.
Collapse
Affiliation(s)
- Michaela Müller
- Infectious Disease Research Center, CHUL Research Center and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
14
|
Abstract
A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Thomas MC, Macias F, Alonso C, López MC. The biology and evolution of transposable elements in parasites. Trends Parasitol 2010; 26:350-62. [PMID: 20444649 DOI: 10.1016/j.pt.2010.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are dynamic elements that can reshape host genomes by generating rearrangements with the potential to create or disrupt genes, to shuffle existing genes, and to modulate their patterns of expression. In the genomes of parasites that infect mammals several TEs have been identified that probably have been maintained throughout evolution due to their contribution to gene function and regulation of gene expression. This review addresses how TEs are organized, how they colonize the genomes of mammalian parasites, the functional role these elements play in parasite biology, and the interactions between these elements and the parasite genome.
Collapse
Affiliation(s)
- M Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra - CSIC, Parque Tecnológico de Ciencias de la Salud, 18100 Granada, Spain
| | | | | | | |
Collapse
|
16
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
17
|
Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes. EUKARYOTIC CELL 2009; 9:136-47. [PMID: 19915073 DOI: 10.1128/ec.00281-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
African trypanosomes regulate transcription differently from other eukaryotes. Most of the trypanosome genome is constitutively transcribed by RNA polymerase II (Pol II) as large polycistronic transcription units while the genes encoding the major surface proteins are transcribed by RNA polymerase I (Pol I). In bloodstream form Trypanosoma brucei, the gene encoding the variant surface glycoprotein (VSG) coat is expressed in a monoallelic fashion from one of about 15 VSG bloodstream form expression sites (BESs). Little is known about the chromatin structure of the trypanosome genome, and the chromatin state of active versus silent VSG BESs remains controversial. Here, we determined histone H3 occupancy within the genome of T. brucei, focusing on active versus silent VSG BESs in the bloodstream form. We found that histone H3 was most enriched in the nontranscribed 50-bp and 177-bp repeats and relatively depleted in Pol I, II, and III transcription units, with particular depletion over promoter regions. Using two isogenic T. brucei lines containing marker genes in different VSG BESs, we determined that histone H3 is 11- to 40-fold depleted from active VSG BESs compared with silent VSG BESs. Quantitative PCR analysis of fractionated micrococcal nuclease-digested chromatin revealed that the active VSG BES is depleted of nucleosomes. Therefore, in contrast to earlier views, nucleosome positioning appears to be involved in the monoalleleic control of VSG BESs in T. brucei. This may provide a level of epigenetic regulation enabling bloodstream form trypanosomes to efficiently pass on the transcriptional state of active and silent BESs to daughter cells.
Collapse
|
18
|
Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:17933-8. [PMID: 19815526 DOI: 10.1073/pnas.0907766106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei is one of the most ancient eukaryotes where RNA interference (RNAi) is operational and is the only single-cell pathogen where RNAi has been extensively studied and used as a tool for functional analyses. Here, we report that the T. brucei RNAi pathway, although relying on a single Argonaute protein (AGO1), is initiated by the activities of two distinct Dicer-like enzymes. Both TbDCL1, a mostly cytoplasmic protein, and the previously undescribed nuclear enzyme TbDCL2 contribute to the biogenesis of siRNAs from retroposons. However, TbDCL2 has a predominant role in generating siRNAs from chromosomal internal repeat transcripts that accumulate at the nucleolus in RNAi-deficient cells and in initiating the endogenous RNAi response against retroposons and repeats alike. Moreover, siRNAs generated by both TbDCL1 and TbDCL2 carry a 5'-monophosphate and a blocked 3' terminus, suggesting that 3' end modification is an ancient trait of siRNAs. We thus propose a model whereby TbDCL2 fuels the T. brucei nuclear RNAi pathway and TbDCL1 patrols the cytoplasm, posttranscriptionally silencing potentially harmful nucleic acid parasites that may access the cytoplasm. Nevertheless, we also provide evidence for cross-talk between the two Dicer-like enzymes, because TbDCL2 is implicated in the generation of 35- to 65-nucleotide intermediate transcripts that appear to be substrates for TbDCL1. Our finding that dcl2KO cells are more sensitive to RNAi triggers than wild-type cells has significant implications for reverse genetic analyses in this important human pathogen.
Collapse
|
19
|
Das A, Bellofatto V. The non-canonical CTD of RNAP-II is essential for productive RNA synthesis in Trypanosoma brucei. PLoS One 2009; 4:e6959. [PMID: 19742309 PMCID: PMC2734056 DOI: 10.1371/journal.pone.0006959] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/07/2009] [Indexed: 11/25/2022] Open
Abstract
The carboxy-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II (RNAP-II) is essential for gene expression in metazoa and yeast. The canonical CTD is characterized by heptapeptide repeats. Differential phosphorylation of canonical CTD orchestrates transcriptional and co-transcriptional maturation of mRNA and snRNA. Many organisms, including trypanosomes, lack a canonical CTD. In these organisms, the CTD is called a non-canonical CTD or pseudo-CTD (ΨCTD. In the African trypanosome, Trypanosoma brucei, the ΨCTD is ∼285 amino acids long, rich in serines and prolines, and phosphorylated. We report that T. brucei RNAP-II lacking the entire ΨCTD or containing only a 95-amino-acid-long ΨCTD failed to support cell viability. In contrast, RNAP-II with a 186-amino-acid-long ΨCTD maintained cellular growth. RNAP-II with ΨCTD truncations resulted in abortive initiation of transcription. These data establish that non-canonical CTDs play an important role in gene expression.
Collapse
Affiliation(s)
- Anish Das
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (AD); (VB)
| | - Vivian Bellofatto
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (AD); (VB)
| |
Collapse
|
20
|
snoRNAs in Giardia lamblia: a novel role in RNA silencing? Trends Parasitol 2009; 25:348-50. [PMID: 19616476 DOI: 10.1016/j.pt.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
Abstract
In the expanding world of small regulatory RNAs, a recent paper by Saraiya and Wang has reported the identification in the protozoan parasite Giardia lamblia of a novel class of small RNAs, which are derived by Dicer processing of small nucleolar RNAs and have the potential to function as micro RNAs. Interestingly, these RNAs occur not only in this parasite but also in humans.
Collapse
|