1
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Diene SM, Pinault L, Baron SA, Azza S, Armstrong N, Hadjadj L, Chabrière E, Rolain JM, Pontarotti P, Raoult D. A metallo-β-lactamase enzyme for internal detoxification of the antibiotic thienamycin. Sci Rep 2021; 11:10062. [PMID: 33980996 PMCID: PMC8115136 DOI: 10.1038/s41598-021-89600-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Thienamycin, the first representative of carbapenem antibiotics was discovered in the mid-1970s from soil microorganism, Streptomyces cattleya, during the race to discover inhibitors of bacterial peptidoglycan synthesis. Chemically modified into imipenem (N-formimidoyl thienamycin), now one of the most clinically important antibiotics, thienamycin is encoded by a thienamycin gene cluster composed of 22 genes (thnA to thnV) from S. cattleya NRRL 8057 genome. Interestingly, the role of all thn-genes has been experimentally demonstrated in the thienamycin biosynthesis, except thnS, despite its annotation as putative β-lactamase. Here, we expressed thnS gene and investigated its activities against various substrates. Our analyses revealed that ThnS belonged to the superfamily of metallo-β-lactamase fold proteins. Compared to known β-lactamases such as OXA-48 and NDM-1, ThnS exhibited a lower affinity and less efficiency toward penicillin G and cefotaxime, while imipenem is more actively hydrolysed. Moreover, like most MBL fold enzymes, additional enzymatic activities of ThnS were detected such as hydrolysis of ascorbic acid, single strand DNA, and ribosomal RNA. ThnS appears as a MBL enzyme with multiple activities including a specialised β-lactamase activity toward imipenem. Thus, like toxin/antitoxin systems, the role of thnS gene within the thienamycin gene cluster appears as an antidote against the produced thienamycin.
Collapse
Affiliation(s)
- Seydina M Diene
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Saïd Azza
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,CNRS, Marseille, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
3
|
Baş L, Otur Ç, Kurt-Kızıldoğan A. Enhanced Tunicamycin Biosynthesis in BldG Overexpressed Streptomyces clavuligerus. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s000368382004002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2020; 11:406. [PMID: 32265866 PMCID: PMC7105598 DOI: 10.3389/fmicb.2020.00406] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Krause J, Handayani I, Blin K, Kulik A, Mast Y. Disclosing the Potential of the SARP-Type Regulator PapR2 for the Activation of Antibiotic Gene Clusters in Streptomycetes. Front Microbiol 2020; 11:225. [PMID: 32132989 PMCID: PMC7040171 DOI: 10.3389/fmicb.2020.00225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Streptomyces antibiotic regulatory protein (SARP) family regulators are well-known activators of antibiotic biosynthesis in streptomycetes. The respective genes occur in various types of antibiotic gene clusters encoding, e.g., for polyketides, ribosomally and non-ribosomally synthesized peptides, or β-lactam antibiotics. We found that overexpression of the SARP-type regulator gene papR2 from Streptomyces pristinaespiralis in Streptomyces lividans leads to the activation of the silent undecylprodigiosin (Red) gene cluster. The activation happens upon the inducing function of PapR2, which takes over the regulatory role of RedD, the latter of which is the intrinsic SARP regulator of Red biosynthesis in S. lividans. Due to the broad abundance of SARP genes in different antibiotic gene clusters of various actinomycetes and the uniform activating principle of the encoded regulators, we suggest that this type of regulator is especially well suited to be used as an initiator of antibiotic biosynthesis in actinomycetes. Here, we report on a SARP-guided strategy to activate antibiotic gene clusters. As a proof of principle, we present the PapR2-driven activation of the amicetin/plicacetin gene cluster in the novel Indonesian strain isolate Streptomyces sp. SHP22-7.
Collapse
Affiliation(s)
- Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Ira Handayani
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
7
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
8
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
9
|
Ordóñez-Robles M, Santos-Beneit F, Martín JF. Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics (Basel) 2018; 7:antibiotics7020039. [PMID: 29724001 PMCID: PMC6022917 DOI: 10.3390/antibiotics7020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Streptomyces tsukubaensis stands out among actinomycetes by its ability to produce the immunosuppressant tacrolimus. Discovered about 30 years ago, this macrolide is widely used as immunosuppressant in current clinics. Other potential applications for the treatment of cancer and as neuroprotective agent have been proposed in the last years. In this review we introduce the discovery of S. tsukubaensis and tacrolimus, its biosynthetic pathway and gene cluster (fkb) regulation. We have focused this work on the omic studies performed in this species in order to understand tacrolimus production. Transcriptomics, proteomics and metabolomics have improved our knowledge about the fkb transcriptional regulation and have given important clues about nutritional regulation of tacrolimus production that can be applied to improve production yields. Finally, we address some points of S. tsukubaensis biology that deserve more attention.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo 33006, Spain.
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
| |
Collapse
|
10
|
Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 Biotech 2017; 7:250. [PMID: 28718097 DOI: 10.1007/s13205-017-0875-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
Collapse
|
11
|
Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. Appl Microbiol Biotechnol 2017; 101:4581-4592. [DOI: 10.1007/s00253-017-8242-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023]
|
12
|
FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19. J Ind Microbiol Biotechnol 2016; 43:1693-1703. [PMID: 27757551 DOI: 10.1007/s10295-016-1849-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89 % compared to the parental strain.
Collapse
|
13
|
González A, Rodríguez M, Braña AF, Méndez C, Salas JA, Olano C. New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microb Cell Fact 2016; 15:56. [PMID: 27001601 PMCID: PMC4802897 DOI: 10.1186/s12934-016-0452-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Background Streptomyces albus J1074 produces glycosylated antibiotics paulomycin A, B and E that derive from chorismate and contain an isothiocyanate residue in form of paulic acid. Paulomycins biosynthesis pathway involves two glycosyltransferases, three acyltransferases, enzymes required for paulic acid biosynthesis (in particular an aminotransferase and a sulfotransferase), and enzymes involved in the biosynthesis of two deoxysugar moieties: D-allose and L-paulomycose. Results Inactivation of genes encoding enzymes involved in deoxysugar biosynthesis, paulic acid biosynthesis, deoxysugar transfer, and acyl moieties transfer has allowed the identification of several biosynthetic intermediates and shunt products, derived from paulomycin intermediates, and to propose a refined version of the paulomycin biosynthesis pathway. Furthermore, several novel bioactive derivatives of paulomycins carrying modifications in the L-paulomycose moiety have been generated by combinatorial biosynthesis using different plasmids that direct the biosynthesis of alternative deoxyhexoses. Conclusions The paulomycins biosynthesis pathway has been defined by inactivation of genes encoding glycosyltransferases, acyltransferases and enzymes involved in paulic acid and L-paulomycose biosynthesis. These experiments have allowed the assignment of each of these genes to specific paulomycin biosynthesis steps based on characterization of products accumulated by the corresponding mutant strains. In addition, novel derivatives of paulomycin A and B containing L-paulomycose modified moieties were generated by combinatorial biosynthesis. The production of such derivatives shows that L-paulomycosyl glycosyltransferase Plm12 possesses a certain degree of flexibility for the transfer of different deoxysugars. In addition, the pyruvate dehydrogenase system form by Plm8 and Plm9 is also flexible to catalyze the attachment of a two-carbon side chain, derived from pyruvate, into both 2,6-dideoxyhexoses and 2,3,6-trideoxyhexoses. The activity of the novel paulomycin derivatives carrying modifications in the L-paulomycose moiety is lower than the original compounds pointing to some interesting structure–activity relationships. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aránzazu González
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, C/Julian Claveria s/n, 33006, Oviedo (Asturias), Spain.
| |
Collapse
|
14
|
Flórez AB, Álvarez S, Zabala D, Braña AF, Salas JA, Méndez C. Transcriptional regulation of mithramycin biosynthesis in Streptomyces argillaceus: dual role as activator and repressor of the PadR-like regulator MtrY. MICROBIOLOGY-SGM 2015; 161:272-284. [PMID: 25416691 DOI: 10.1099/mic.0.080895-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mithramycin biosynthesis gene cluster of Streptomyces argillaceus ATCC 12956 contains 34 ORFs and includes two putative regulatory genes (mtmR and mtrY), which encode proteins of the SARP (Streptomyces antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of mtrY indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in S. argillaceus polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host Streptomyces albus, were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (mtmR-mtmE, mtmQ-mtmTII, mtmX-mtmY, mtmV-mtmTIII, mtmW-mtmMI and mtmGI-mtrB) and one monocistronic unit (mtmGII) in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the mtrYp promoter that directs expression of the regulator mtrY and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the mtmRp promoter that controls expression of the mtmR regulator, amongst others.
Collapse
Affiliation(s)
- Ana B Flórez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Susana Álvarez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
15
|
Reen FJ, Romano S, Dobson ADW, O'Gara F. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Mar Drugs 2015; 13:4754-83. [PMID: 26264003 PMCID: PMC4557003 DOI: 10.3390/md13084754] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Stefano Romano
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
16
|
The Pathway-Specific Regulator ClaR of Streptomyces clavuligerus Has a Global Effect on the Expression of Genes for Secondary Metabolism and Differentiation. Appl Environ Microbiol 2015; 81:6637-48. [PMID: 26187955 DOI: 10.1128/aem.00916-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 12/11/2022] Open
Abstract
Streptomyces clavuligerus claR::aph is a claR-defective mutant, but in addition to its claR defect it also carries fewer copies of the resident linear plasmids pSCL2 and pSCL4 (on the order of 4 × 10(5)-fold lower than the wild-type strain), as shown by qPCR. To determine the function of ClaR without potential interference due to plasmid copy number, a new strain, S. clavuligerus ΔclaR::aac, with claR deleted and carrying the wild-type level of plasmids, was constructed. Transcriptomic analyses were performed in S. clavuligerus ΔclaR::aac and S. clavuligerus ATCC 27064 as the control strain. The new ΔclaR mutant did not produce clavulanic acid (CA) and showed a partial expression of genes for the early steps of the CA biosynthesis pathway and a very poor expression (1 to 8%) of the genes for the late steps of the CA pathway. Genes for cephamycin C biosynthesis were weakly upregulated (1.7-fold at 22.5 h of culture) in the ΔclaR mutant, but genes for holomycin biosynthesis were expressed at levels from 3- to 572-fold higher than in the wild-type strain, supporting the observed overproduction of holomycin by S. clavuligerus ΔclaR::aac. Interestingly, three secondary metabolites produced by gene clusters SMCp20, SMCp22, and SMCp24, encoding still-cryptic compounds, had partially or totally downregulated their genes in the mutant, suggesting a regulatory role for ClaR wider than previously reported. In addition, the amfR gene was downregulated, and consequently, the mutant did not produce aerial mycelium. Expression levels of about 100 genes in the genome were partially up- or downregulated in the ΔclaR mutant, many of them related to the upregulation of the sigma factor-encoding rpoE gene.
Collapse
|
17
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
18
|
Braña AF, Rodríguez M, Pahari P, Rohr J, García LA, Blanco G. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Arch Microbiol 2014; 196:345-55. [PMID: 24633227 DOI: 10.1007/s00203-014-0977-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 01/09/2023]
Abstract
Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Vior NM, Olano C, García I, Méndez C, Salas JA. Collismycin A biosynthesis in Streptomyces sp. CS40 is regulated by iron levels through two pathway-specific regulators. Microbiology (Reading) 2014; 160:467-478. [DOI: 10.1099/mic.0.075218-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two putative pathway-specific regulators have been identified in the collismycin A gene cluster: ClmR1, belonging to the TetR-family, and the LuxR-family transcriptional regulator ClmR2. Inactivation of clmR1 led to a moderate increase of collismycin A yields along with an early onset of its production, suggesting an inhibitory role for the product of this gene. Inactivation of clmR2 abolished collismycin A biosynthesis, whereas overexpression of ClmR2 led to a fourfold increase in production yields, indicating that ClmR2 is an activator of collismycin A biosynthesis. Expression analyses of the collismycin gene cluster in the wild-type strain and in ΔclmR1 and ΔclmR2 mutants confirmed the role proposed for both regulatory genes, revealing that ClmR2 positively controls the expression of most of the genes in the cluster and ClmR1 negatively regulates both its own expression and that of clmR2. Additionally, production assays and further transcription analyses confirmed the existence of a higher regulatory level modulating collismycin A biosynthesis in response to iron concentrations in the culture medium. Thus, high iron levels inhibit collismycin A biosynthesis through the repression of clmR2 transcription. These results have allowed us to propose a regulatory model that integrates the effect of iron as the main environmental stimulus controlling collismycin A biosynthesis.
Collapse
Affiliation(s)
- Natalia M. Vior
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio García
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
20
|
Li R, Lloyd EP, Moshos KA, Townsend CA. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009. Chembiochem 2014; 15:320-31. [PMID: 24420617 PMCID: PMC3972073 DOI: 10.1002/cbic.201300319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/25/2013] [Indexed: 11/11/2022]
Abstract
Nearly 50 naturally occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. Although the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by Streptomyces argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that the genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster, and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22 and -23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (USA)
| | - Evan P. Lloyd
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (USA)
| | | | - Craig. A Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (USA)
| |
Collapse
|
21
|
Alvarez-Álvarez R, Rodríguez-García A, Santamarta I, Pérez-Redondo R, Prieto-Domínguez A, Martínez-Burgo Y, Liras P. Transcriptomic analysis of Streptomyces clavuligerus ΔccaR::tsr: effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation. Microb Biotechnol 2014; 7:221-31. [PMID: 24450885 PMCID: PMC3992018 DOI: 10.1111/1751-7915.12109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022] Open
Abstract
Streptomyces clavuligerus ATCC 27064 and S. clavuligerus ΔccaR::tsr cultures were grown in asparagine-starch medium, and samples were taken in the exponential and stationary growth phases. Transcriptomic analysis showed that the expression of 186 genes was altered in the ccaR-deleted mutant. These genes belong to the cephamycin C gene cluster, clavulanic acid gene cluster, clavams, holomycin, differentiation, carbon, nitrogen, amino acids or phosphate metabolism and energy production. All the clavulanic acid biosynthesis genes showed Mc values in the order of -4.23. The blip gene-encoding a β-lactamase inhibitory protein was also controlled by the cephamycin C-clavulanic acid cluster regulator (Mc -2.54). The expression of the cephamycin C biosynthesis genes was greatly reduced in the mutant (Mc values up to -7.1), while the genes involved in putative β-lactam resistance were less affected (Mc average -0.88). Genes for holomycin biosynthesis were upregulated. In addition, the lack of clavulanic acid and cephamycin production negatively affected the expression of genes for the clavulanic acid precursor arginine and of miscellaneous genes involved in nitrogen metabolism (amtB, glnB, glnA3, glnA2, glnA1). The transcriptomic results were validated by quantative reverse transcription polymerase chain reaction and luciferase assay of luxAB-coupled promoters. Transcriptomic analysis of the homologous genes of S. coelicolor validated the results obtained for S. clavuligerus primary metabolism genes.
Collapse
Affiliation(s)
- R Alvarez-Álvarez
- Área de Microbiología, Departamento de Biología Molecular, Facultad de CC, Biológicas y Ambientales, Universidad de León, León, Spain; Instituto de Biotecnología de Léon (INBIOTEC), Parque Científico de León, León, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E, Meredith T, Luzhetskyy A, Bechthold A, Walker S, Fedorenko V. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 2013; 3:130121. [PMID: 24153004 PMCID: PMC3814723 DOI: 10.1098/rsob.130121] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production—bldA, adpA and absB—exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNALeuUAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs—that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.
Collapse
Affiliation(s)
- Roman Makitrynskyy
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv 79005, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor. J Bacteriol 2013; 195:2072-8. [PMID: 23457252 DOI: 10.1128/jb.00040-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) compose a large family and are responsible for various physiological functions in bacteria, while little is understood about their regulatory mechanism on secondary metabolism in Streptomyces. Here we reported that StgR, a typical LTTR in Streptomyces coelicolor, was a negative regulator of undecylprodigiosin (Red) and γ-actinorhodin (Act) production in the early developmental phase of secondary metabolism by suppressing the expression of two pathway-specific regulator genes, redD and actII-orf4, respectively. Meanwhile, stgR expression was downregulated during secondary metabolism to remove its repressive effects on antibiotic production. Moreover, stgR expression was positively autoregulated by direct binding of StgR to its own promoter (stgRp), and the binding site adjacent to translation start codon was determined by a DNase I footprinting assay. Furthermore, the StgR-stgRp interaction could be destroyed by the antibiotic γ-actinorhodin produced from S. coelicolor. Thus, our results suggested a positive feedback regulatory mechanism of stgR expression and antibiotic production for the rapid and irreversible development of secondary metabolism in Streptomyces.
Collapse
|
24
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
25
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
26
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Gómez C, Olano C, Méndez C, Salas JA. Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology (Reading) 2012; 158:2504-2514. [DOI: 10.1099/mic.0.061325-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
28
|
Comparative analysis of a cryptic thienamycin-like gene cluster identified in Streptomyces flavogriseus by genome mining. Arch Microbiol 2011; 194:549-55. [DOI: 10.1007/s00203-011-0781-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
29
|
Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 2011; 193:5055-6. [PMID: 21868806 DOI: 10.1128/jb.05583-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces cattleya, a producer of the antibiotics thienamycin and cephamycin C, is one of the rare bacteria known to synthesize fluorinated metabolites. The genome consists of two linear replicons. The genes involved in fluorine metabolism and in the biosynthesis of the antibiotic thienamycin were mapped on both replicons.
Collapse
|
30
|
Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus. J Bacteriol 2011; 193:4214-23. [PMID: 21665968 DOI: 10.1128/jb.05062-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin.
Collapse
|
31
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
32
|
Rodríguez M, Núñez LE, Braña AF, Méndez C, Salas JA, Blanco G. Mutational analysis of the thienamycin biosynthetic gene cluster from Streptomyces cattleya. Antimicrob Agents Chemother 2011; 55:1638-49. [PMID: 21263049 PMCID: PMC3067130 DOI: 10.1128/aac.01366-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/09/2010] [Accepted: 01/14/2011] [Indexed: 11/20/2022] Open
Abstract
The generation of non-thienamycin-producing mutants with mutations in the thnL, thnN, thnO, and thnI genes within the thn gene cluster from Streptomyces cattleya and their involvement in thienamycin biosynthesis and regulation were previously reported. Four additional mutations were independently generated in the thnP, thnG, thnR, and thnT genes by insertional inactivation. Only the first two genes were found to play a role in thienamycin biosynthesis, since these mutations negatively or positively affect antibiotic production. A mutation of thnP results in the absence of thienamycin production, whereas a 2- to 3-fold increase in thienamycin production was observed for the thnG mutant. On the other hand, mutations in thnR and thnT showed that although these genes were previously reported to participate in this pathway, they seem to be nonessential for thienamycin biosynthesis, as thienamycin production was not affected in these mutants. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) analysis of all available mutants revealed some putative intermediates in the thienamycin biosynthetic pathway. A compound with a mass corresponding to carbapenam-3-carboxylic acid was detected in some of the mutants, suggesting that the assembly of the bicyclic nucleus of thienamycin might proceed in a way analogous to that of the simplest natural carbapenem, 1-carbapen-2-em-3-carboxylic acid biosynthesis. The accumulation of a compound with a mass corresponding to 2,3-dihydrothienamycin in the thnG mutant suggests that it might be the last intermediate in the biosynthetic pathway. These data, together with the establishment of cross-feeding relationships by the cosynthesis analysis of the non-thienamycin-producing mutants, lead to a proposal for some enzymatic steps during thienamycin assembly.
Collapse
Affiliation(s)
- Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Luz Elena Núñez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alfredo F. Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
33
|
Martín JF, Liras P. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 2010; 13:263-73. [DOI: 10.1016/j.mib.2010.02.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
34
|
SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN–sanO intergenic region in Streptomyces ansochromogenes. Microbiology (Reading) 2010; 156:828-837. [DOI: 10.1099/mic.0.033605-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptomyces ansochromogenes SanG is a pathway-specific regulator that mainly controls the transcription of two transcriptional units involved in nikkomycin biosynthesis. SanG consists of three major functional domains: an N-terminal Streptomyces antibiotic regulatory protein (SARP) domain, a central ATPase domain, and a C-terminal half homologous to guanylate cyclases belonging to the LuxR family. SanG was expressed in Escherichia coli as a C-terminally His6-tagged protein. The purified SanG-His6 was shown to be a dimer in solution by dynamic light scattering. An electrophoretic mobility-shift assay showed that the purified SanG protein could bind to the DNA fragment containing the bidirectional sanN–sanO promoter region. The SanG-binding sites within the bidirectional sanN–sanO promoter region were determined by footprinting analysis and identified a consensus-directed repeat sequence 5′-CGGCAAG-3′. SanG showed significant ATPase/GTPase activity in vitro, and addition of ATP/GTP enhanced the affinity of SanG for target DNA, but ATP/GTP hydrolysis was not essential for SanG binding to the target DNA. However, real-time reverse transcription PCR showed that mutation of the ATPase/GTPase domain of SanG significantly decreased the transcriptional level of sanN–I and sanO–V. These results indicated that the ATPase/GTPase activity of SanG modulated the transcriptional activation of SanG target genes during nikkomycin biosynthesis.
Collapse
|
35
|
Rodríguez M, Méndez C, Salas JA, Blanco G. Transcriptional organization of ThnI-regulated thienamycin biosynthetic genes in Streptomyces cattleya. J Antibiot (Tokyo) 2010; 63:135-8. [DOI: 10.1038/ja.2009.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Rebets Y, Boll R, Horbal L, Fedorenko V, Bechthold A. Production of avilamycin A is regulated by AviC1 and AviC2, two transcriptional activators. J Antibiot (Tokyo) 2009; 62:461-4. [PMID: 19609289 DOI: 10.1038/ja.2009.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuriy Rebets
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Universität Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
38
|
Identification and characterization of NocR as a positive transcriptional regulator of the beta-lactam nocardicin A in Nocardia uniformis. J Bacteriol 2008; 191:1066-77. [PMID: 19028891 DOI: 10.1128/jb.01833-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nocardicin A is a monocyclic beta-lactam isolated from the actinomycete Nocardia uniformis, which shows moderate activity against a broad spectrum of gram-negative bacteria. Within the biosynthetic gene cluster of nocardicin A, nocR encodes a 583-amino-acid protein with high similarity to a class of transcriptional regulators known as streptomyces antibiotic regulatory proteins. Insertional inactivation of this gene resulted in a mutant showing morphology and growth characteristics similar to the wild type, but one that did not produce detectable levels of nocardicin A or the early precursor p-hydroxybenzoyl formate. Similar disruptions of nocD, nocE, and nocO yielded mutants that maintained production of nocardicin A at levels similar to the wild-type strain. In trans complementation of the nocR::apr mutant partially restored the wild-type phenotype. Transcriptional analysis of the nocR::apr mutant using reverse transcription-PCR found an absence of mRNA transcripts for the early-stage nocardicin A biosynthetic genes. In addition, transcription of the genes responsible for the biosynthesis of the nonproteinogenic p-hydroxyphenylglycine (pHPG) precursor was attenuated on the nocR disruption mutant. NocR was heterologously expressed and purified from Escherichia coli as an N-terminal maltose binding protein-tagged fusion protein. DNA binding assays demonstrated that NocR is a DNA binding protein, targeting the 126-bp intergenic region between nocF and nocA. Within this intergenic region is the likely binding motif, a direct hexameric repeat, TGATAA, with a 5-bp spacer. These experiments establish NocR as a positive transcriptional regulator of the nocardicin A biosynthetic pathway, coordinating the initial steps of nocardicin A biosynthesis to the production of its pHPG precursor.
Collapse
|