1
|
Borsellini A, Kunetsky V, Friedhoff P, Lamers MH. Cryogenic electron microscopy structures reveal how ATP and DNA binding in MutS coordinates sequential steps of DNA mismatch repair. Nat Struct Mol Biol 2022; 29:59-66. [PMID: 35013597 DOI: 10.1038/s41594-021-00707-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.
Collapse
Affiliation(s)
- Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Akbari A, Padidar K, Salehi N, Mashayekhi M, Almadani N, Sadighi Gilani MA, Bashambou A, McElreavey K, Totonchi M. Rare missense variant in MSH4 associated with primary gonadal failure in both 46, XX and 46, XY individuals. Hum Reprod 2021; 36:1134-1145. [PMID: 33448284 DOI: 10.1093/humrep/deaa362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) reveal a shared pathogenic variant responsible for primary gonadal failure in both male and female patients from a consanguineous family? SUMMARY ANSWER Patients with primary ovarian insufficiency (POI) and non-obstructive azoospermia (NOA) were homozygous for the rare missense variant p. S754L located in the highly conserved MSH4 MutS signature motif of the ATPase domain. An oligozoospermic patient was heterozygous for the variant. WHAT IS KNOWN ALREADY MSH4 is a meiosis-specific protein expressed at a certain level in the testes and ovaries. Along with its heterodimer partner MSH5, it is responsible for double-strand Holliday junction recognition and stabilization, to ensure accurate chromosome segregation during meiosis. Knockout male and female mice for Msh4 and Msh5 are reportedly infertile due to meiotic arrest. In humans, MSH4 is associated with male and female gonadal failure, with distinct variations in the MutS domain V. STUDY DESIGN, SIZE, DURATION This was a retrospective genetics study of a consanguineous family with multiple cases of gonadal failure in both genders. The subject family was recruited in Iran, in 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS The proband who is affected by POI, an NOA brother, a fertile sister and their parents were subjected to WES. The discovered variant was validated in these individuals, and the rest of the family was also genotyped by Sanger sequencing. The variant was not detected in 800 healthy Iranian individuals from the Iranome database nor in 30 sporadic NOA and 30 sporadic POI patients. Suggested effect in aberrant splicing was studied by RT-PCR. Moreover, protein homology modeling was used to further investigate the amino acid substitution in silico. MAIN RESULTS AND THE ROLE OF CHANCE The discovered variant is very rare and has never been reported in the homozygous state. It occurs in the ATPase domain at Serine 754, the first residue within the highly conserved MutS signature motif, substituting it with a Leucine. All variant effect prediction tools indicated this variant as deleterious. Since the substitution occurs immediately before the Walker B motif at position 755, further investigations based on protein homology were conducted. Considering the modeling results, the nature of the substituted amino acid residue and the distances between p. S754L variation and the residues of the Walker B motif suggested the possibility of conformational changes affecting the ATPase activity of the protein. LARGE SCALE DATA We have submitted dbSNP entry rs377712900 to ClinVar under SCV001169709, SCV001169708 and SCV001142647 for oligozoospermia, NOA and POI, respectively. LIMITATIONS, REASONS FOR CAUTION Studies in model organisms can shed more light on the role of this variant as our results were obtained by variant effect prediction tools and protein homology modeling. WIDER IMPLICATIONS OF THE FINDINGS Identification of variants in meiotic genes should improve genetic counseling for both male and female infertility. Also, as two of our NOA patients underwent testicular sperm extraction (TESE) with no success, ruling out the existence of pathogenic variants in meiotic genes in such patients prior to TESE could prove useful. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by Royan Institute in Tehran, Iran, and Institut Pasteur in Paris, France. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kimiya Padidar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Najmeh Salehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anu Bashambou
- Human Developmental Genetics Unit, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institut Pasteur, Paris, France
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Ashktorab H, Mokarram P, Azimi H, Olumi H, Varma S, Nickerson ML, Brim H. Targeted exome sequencing reveals distinct pathogenic variants in Iranians with colorectal cancer. Oncotarget 2018; 8:7852-7866. [PMID: 28002797 PMCID: PMC5341754 DOI: 10.18632/oncotarget.13977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Next Generation Sequencing (NGS) is currently used to establish mutational profiles in many multigene diseases such as colorectal cancer (CRC), which is on the rise in many parts of the developing World including, Iran. Little is known about its genetic hallmarks in these populations. AIM To identify variants in 15 CRC-associated genes in patients of Iranian descent. RESULTS There were 51 validated variants distributed on 12 genes: 22% MSH3 (n = 11/51), 10% MSH6 (n = 5/51), 8% AMER1 (n = 4/51), 20% APC (n = 10/51), 2% BRAF (n = 1/51), 2% KRAS (n = 1/51), 12% PIK3CA (n = 6/51), 8% TGFβR2A (n = 4/51), 2% SMAD4 (n = 1/51), 4% SOX9 (n = 2/51), 6% TCF7L2 (n = 3/51), and 6% TP53 (n = 3/51). Most known and distinct variants were in mismatch repair genes (MMR, 32%) and APC (20%). Among oncogenes, PIK3CA was the top target (12%). MATERIALS AND METHODS CRC specimens from 63 Shirazi patients were used to establish the variant' profile on an Ion Torrent platform by targeted exome sequencing. To rule-out technical artifacts, the variants were validated in 13 of these samples using an Illumina NGS platform. Validated variants were annotated and compared to variants from publically available databases. An in-silico functional analysis was performed. MSI status of the analyzed samples was established. CONCLUSION These results illustrate for the first time CRC mutational profile in Iranian patients. MSH3, MSH6, APC and PIK3CA genes seem to play a bigger role in the path to cancer in this population. These findings will potentially lead to informed genetic diagnosis protocol and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Pooneh Mokarram
- Current address: Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Azimi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hasti Olumi
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | | | - Michael L Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
4
|
Ashktorab H, Azimi H, Varma S, Tavakoli P, Nickerson ML, Brim H. Distinctive DNA mismatch repair and APC rare variants in African Americans with colorectal neoplasia. Oncotarget 2017; 8:99966-99977. [PMID: 29245953 PMCID: PMC5725144 DOI: 10.18632/oncotarget.21557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE African Americans have a higher incidence and mortality from colorectal cancer. This disparity might be due, in part, to the type of mutations in driver genes. In this study, we examined alterations specific to APC, MSH3, and MSH6 genes using targeted exome sequencing to determine distinctive variants in the course of neoplastic transformation. EXPERIMENTAL DESIGN A total of 140 African American colon samples (30 normal, 21 adenomas, 33 advanced adenomas and 56 cancers) were used as our discovery set on an Ion Torrent platform. A 36 samples subset was resequenced on an Illumina platform for variants' validation. Bioinformatics analyses were performed and novel validated variants are reported. RESULTS Two novel MSH6 variants were validated and mapped to the MutS-V region near the MSH2 binding site. For MSH3, 4 known variants were validated and were located in exon 10 (3 non-synonymous) and exon 18 (1 synonymous). As for APC, 20 variants were validated with 4 novel variants: 3 stopgain and 1 non-synonymous. These variants mapped prior to and on the Armadillo repeats region, to the 15-amino acid repeat region, and to the 20-amino acid repeats region, respectively. CONCLUSION We defined novel variants that target DNA mismatch repair and APC genes in African Americans with colorectal lesions. A greater frequency of variants in genes encoding DNA mismatch repair functions and APC likely plays major roles in colorectal cancer initiation and higher incidence of the disease in African Americans.
Collapse
Affiliation(s)
| | - Hamed Azimi
- Department of Medicine and Cancer Center, Washington, DC, USA
| | | | - Payaam Tavakoli
- Department of Medicine and Cancer Center, Washington, DC, USA
| | - Michael L. Nickerson
- Laboratory of Translational Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
5
|
Wang B, Francis J, Sharma M, Law SM, Predeus AV, Feig M. Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways. PLoS Comput Biol 2016; 12:e1005159. [PMID: 27768684 PMCID: PMC5074593 DOI: 10.1371/journal.pcbi.1005159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Joshua Francis
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Monika Sharma
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alexander V. Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
- * E-mail:
| |
Collapse
|
6
|
Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc Natl Acad Sci U S A 2015; 112:E6898-906. [PMID: 26575623 DOI: 10.1073/pnas.1507386112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches.
Collapse
|
7
|
Mutations in the conserved glycine and serine of the MutS ABC signature motif affect nucleotide exchange, kinetics of sliding clamp release of mismatch and mismatch repair. Mutat Res 2009; 684:56-65. [PMID: 19954745 DOI: 10.1016/j.mrfmmm.2009.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 12/19/2022]
Abstract
The MutS protein controls genomic stability by coordinating recognition and repair of DNA mismatches with ATP utilization. The nature of this coordination is unclear. This study demonstrates the importance of a highly conserved flexible loop found in Escherichia coli MutS (residues 658-670) in DNA mismatch repair. This loop is speculated to be analogous to the ABC signature motif of drug transporters based on its proximity to the ATP catalytic site in crystal structures. Our studies show that amino acid residues G666 and S668 control MutS functions subsequent to mismatch recognition by MutS, i.e., nucleotide-mediated exchange and ATP-dependent dissociation from mismatch. G666V mutation affects mismatch-provoked ADP-ATP exchange and results in slower dissociation kinetics of MutS from the mismatch while S668A mutation affects stable clamp formation and dissociation kinetics but does not affect nucleotide exchange. Both mutants harbor defects in ATP hydrolysis and cause a significant mutator phenotype in vivo. The mutator effect of S668A is indistinguishable from that of a MutS-deficient background and is similar to that seen with G658A. Neither mutations affect protein stability or cause a dominant mutator effect. Together with our studies on G658, D661 and F670 [1], this study implicates the signature motif as a primary regulator of MutS function and suggests concerted action of the individual amino acid residues within this motif in mediating communication between the Walker and mismatch recognition domains.
Collapse
|
8
|
Tomé S, Holt I, Edelmann W, Morris GE, Munnich A, Pearson CE, Gourdon G. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice. PLoS Genet 2009; 5:e1000482. [PMID: 19436705 PMCID: PMC2674216 DOI: 10.1371/journal.pgen.1000482] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/14/2009] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system. Myotonic dystrophy type 1 is a neuromuscular disease characterized by highly variable clinical manifestations, including muscular and neuropsychological symptoms. DM1 results from the dramatic expansion of an unstable CTG repeat in the DMPK gene. Longer CTG repeats cause a more severe form of the disease and an earlier age of onset. The DNA mismatch repair proteins MSH2 and MSH3 are known to be major players in the formation of trinucleotide expansions. Nevertheless, the mode of action of these proteins remains elusive. In order to get further insight into the role of MSH2 in the formation of CTG expansions, we used a mouse model carrying a mutation in the conserved ATPase domain of Msh2. This mutation affects the function of this domain and alters the DNA repair mismatch activity. After breeding of these mice with mice carrying highly unstable CTG repeats, we found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions. Our findings show that expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and support the hypothesis, according to which a functional MMR activity is required to generate expansions.
Collapse
Affiliation(s)
- Stéphanie Tomé
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Glenn E. Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom
| | - Arnold Munnich
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Geneviève Gourdon
- INSERM, U781, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|