1
|
Huang SH, Abrametz K, McGrath SL, Kobryn K. Design and characterization of hyperactive mutants of the Agrobacterium tumefaciens telomere resolvase, TelA. PLoS One 2024; 19:e0307590. [PMID: 39052566 PMCID: PMC11271964 DOI: 10.1371/journal.pone.0307590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Telomere resolvases are a family of DNA cleavage and rejoining enzymes that produce linear DNAs terminated by hairpin telomeres from replicated intermediates in bacteria that possess linear replicons. The telomere resolvase of Agrobacterium tumefaciens, TelA, has been examined at the structural and biochemical level. The N-terminal domain of TelA, while not required for telomere resolution, has been demonstrated to play an autoinhibitory role in telomere resolution, conferring divalent metal responsiveness on the reaction. The N-terminal domain also inhibits the competing reactions of hp telomere fusion and recombination between replicated telomere junctions. Due to the absence of the N-terminal domain from TelA/DNA co-crystal structures we produced an AlphaFold model of a TelA monomer. The AlphaFold model suggested the presence of two inhibitory interfaces; one between the N-terminal domain and the catalytic domain and a second interface between the C-terminal helix and the N-core domain of the protein. We produced mutant TelA's designed to weaken these putative interfaces to test the validity of the modeled interfaces. While our analysis did not bear out the details of the predicted interfaces the model was, nonetheless, extremely useful in guiding design of mutations that, when combined, demonstrated an additive activation of TelA exceeding 250-fold. For some of these hyperactive mutants stimulation of telomere resolution has also been accompanied by activation of competing reactions. However, we have also characterized hyperactive TelA mutants that retain enough autoinhibition to suppress the competing reactions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kayla Abrametz
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siobhan L. McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
McGrath SL, Huang SH, Kobryn K. The N-terminal domain of the Agrobacterium tumefaciens telomere resolvase, TelA, regulates its DNA cleavage and rejoining activities. J Biol Chem 2022; 298:101951. [PMID: 35447111 PMCID: PMC9111995 DOI: 10.1016/j.jbc.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Linear replicons can be found in a minority of prokaryotic organisms, including Borrelia species and Agrobacterium tumefaciens. The problem with replicating the lagging strand end of linear DNAs is circumvented in these organisms by the presence of covalently closed DNA hairpin telomeres at the DNA termini. Telomere resolvases are enzymes responsible for generating these hairpin telomeres from a dimeric replication intermediate through a two-step DNA cleavage and rejoining reaction referred to as telomere resolution. It was previously shown that the agrobacterial telomere resolvase, TelA, possesses ssDNA annealing activity in addition to telomere resolution activity. The annealing activity derives, chiefly, from the N-terminal domain. This domain is dispensable for telomere resolution. In this study, we used activity analyses of an N-terminal domain deletion mutant, domain add back experiments, and protein–protein interaction studies and we report that the N-terminal domain of TelA is involved in inhibitory interactions with the remainder of TelA that are relieved by the binding of divalent metal ions. We also found that the regulation of telomere resolution by the N-terminal domain of TelA extends to suppression of inappropriate enzymatic activity, including hairpin telomere fusion (reaction reversal) and recombination between replicated telomeres to form a Holliday junction.
Collapse
Affiliation(s)
- Siobhan L McGrath
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Shu Hui Huang
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada
| | - Kerri Kobryn
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Abstract
Covalently closed hairpin ends, also known as hairpin telomeres, provide an unusual solution to the end replication problem. The hairpin telomeres are generated from replication intermediates by a process known as telomere resolution. This is a DNA breakage and reunion reaction promoted by hairpin telomere resolvases (also referred to as protelomerases) found in a limited number of phage and bacteria. The reaction promoted by these enzymes is a chemically isoenergetic two-step transesterification without a requirement for divalent metal ions or high-energy cofactors and uses an active site and mechanism similar to that for type IB topoisomerases and tyrosine recombinases. The small number of unrelated telomere resolvases characterized to date all contain a central, catalytic core domain with the active site, but in addition carry variable C- and N-terminal domains with different functions. Similarities and differences in the structure and function of the telomere resolvases are discussed. Of particular interest are the properties of the Borrelia telomere resolvases, which have been studied most extensively at the biochemical level and appear to play a role in shaping the unusual segmented genomes in these organisms and, perhaps, to play a role in recombinational events.
Collapse
|
4
|
Lucyshyn D, Huang SH, Kobryn K. Spring loading a pre-cleavage intermediate for hairpin telomere formation. Nucleic Acids Res 2015; 43:6062-74. [PMID: 26007659 PMCID: PMC4499125 DOI: 10.1093/nar/gkv497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/05/2015] [Indexed: 02/03/2023] Open
Abstract
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.
Collapse
Affiliation(s)
- Danica Lucyshyn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
5
|
Construction and characterization of a Borrelia burgdorferi strain with conditional expression of the essential telomere resolvase, ResT. J Bacteriol 2014; 196:2396-404. [PMID: 24748617 DOI: 10.1128/jb.01435-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Borrelia species are unique in the bacterial world in possessing segmented genomes which sometimes contain over 20 genetic elements. Most elements are linear and contain covalently closed hairpin ends requiring a specialized process, telomere resolution, for their generation. Hairpin telomere resolution is mediated by the telomere resolvase, ResT. Although the process has been studied extensively in vitro, the essential nature of the resT gene has precluded biological studies to further probe the role of ResT. In this work, we have generated a B. burgdorferi strain that carries an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible resT gene controlled by a tightly regulated promoter. ResT is expressed in this strain at ~14,000 monomers per cell, similar to the ~15,000 monomers observed for the parental strain. We demonstrate ResT depletion with a half-life of 16 h upon IPTG washout. ResT depletion resulted in arrested growth 48 h after washout. Interestingly, not all spirochetes died after ResT washout, and at least 15% remained quiescent and could be resuscitated even at 2 weeks postwashout. Significant levels of DNA synthesis were not observed upon growth arrest, suggesting that ResT might interact directly or indirectly with factors controlling the initiation or elongation of DNA synthesis. Analysis of the linear plasmids lp17 and lp28-2 showed that the linear forms of these plasmids began to disappear and be replaced by higher-molecular-weight forms by 24 h post-IPTG washout. Treatment of DNA from the ResT-depleted strain with ResT in vitro revealed the presence of replicated telomeres expected in replication intermediates.
Collapse
|
6
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
7
|
Doublet V, Helleu Q, Raimond R, Souty-Grosset C, Marcadé I. Inverted repeats and genome architecture conversions of terrestrial isopods mitochondrial DNA. J Mol Evol 2013; 77:107-18. [PMID: 24068302 DOI: 10.1007/s00239-013-9587-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial DNA (mtDNA) is usually depicted as a circular molecule, however, there is increasing evidence that linearization of mtDNA evolved independently many times in organisms such as fungi, unicellular eukaryotes, and animals. Recent observations in various models with linear mtDNA revealed the presence of conserved inverted repeats (IR) at both ends that, when they become single-stranded, may be able to fold on themselves to create telomeric-hairpins involved in genome architecture conversions. The atypical mtDNA of terrestrial isopods (Crustacea: Oniscidea) composed of linear monomers and circular dimers is an interesting model to study genome architecture conversions. Here, we present the mtDNA control region sequences of two species of the genus Armadillidium: A. vulgare and A. pelagicum. All features of arthropods mtDNA control regions are present (origin of replication, poly-T stretch, GA and TA-rich blocks and one variable domain), plus a conserved IR. This IR can potentially fold into a hairpin structure and is present in two different orientations among the A. vulgare populations: either in one sense or in its reverse complement. This polymorphism, also observed in a single individual (heteroplasmy), might be a signature of genome architecture conversions from linear to circular monomeric mtDNA via successive opening and closing of the molecules.
Collapse
Affiliation(s)
- Vincent Doublet
- Equipe Ecologie Evolution Symbiose, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers Cedex, France,
| | | | | | | | | |
Collapse
|
8
|
Mir T, Huang SH, Kobryn K. The telomere resolvase of the Lyme disease spirochete, Borrelia burgdorferi, promotes DNA single-strand annealing and strand exchange. Nucleic Acids Res 2013; 41:10438-48. [PMID: 24049070 PMCID: PMC3905847 DOI: 10.1093/nar/gkt832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpin telomeres. Hairpin telomeres present an uninterrupted DNA chain to the replication machinery overcoming the 'end-replication problem' for the linear replicons. Hairpin telomeres are formed from inverted repeat replicated telomere junctions by the telomere resolvase, ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. We report here that ResT also possesses single-strand annealing activity and a limited ability to promote DNA strand exchange reactions on partial duplex substrates. This combination of activities suggests ResT is a nexus between the seemingly distinct processes of telomere resolution and homologous recombination. Implications for hairpin telomere replication and linear plasmid recombination, including antigenic variation, are discussed.
Collapse
Affiliation(s)
- Taskia Mir
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | | | | |
Collapse
|
9
|
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 2011; 39:4202-19. [PMID: 21266473 PMCID: PMC3105423 DOI: 10.1093/nar/gkq1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Briffotaux J, Kobryn K. Preventing broken Borrelia telomeres: ResT couples dual hairpin telomere formation with product release. J Biol Chem 2010; 285:41010-8. [PMID: 20952394 DOI: 10.1074/jbc.m110.150060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of ϕKO2.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | |
Collapse
|
11
|
Chaconas G, Kobryn K. Structure, Function, and Evolution of Linear Replicons inBorrelia. Annu Rev Microbiol 2010; 64:185-202. [DOI: 10.1146/annurev.micro.112408.134037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- George Chaconas
- Department of Biochemistry & Molecular Biology and Department of Microbiology & Infectious Diseases, The University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
12
|
Conversion of Linear DNA with Hairpin Telomeres into a Circular Molecule in the Course of Phage N15 Lytic Replication. J Mol Biol 2009; 391:261-8. [DOI: 10.1016/j.jmb.2009.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022]
|
13
|
Moriarty TJ, Chaconas G. Identification of the determinant conferring permissive substrate usage in the telomere resolvase, ResT. J Biol Chem 2009; 284:23293-301. [PMID: 19561077 DOI: 10.1074/jbc.m109.023549] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linear genome stability requires specialized telomere replication and protection mechanisms. A common solution to this problem in non-eukaryotes is the formation of hairpin telomeres by telomere resolvases (also known as protelomerases). These enzymes perform a two-step transesterification on replication intermediates to generate hairpin telomeres using an active site similar to that of tyrosine recombinases and type IB topoisomerases. Unlike phage telomere resolvases, the telomere resolvase from the Lyme disease pathogen Borrelia burgdorferi (ResT) is a permissive enzyme that resolves several types of telomere in vitro. However, the ResT region and residues mediating permissive substrate usage have not been identified. The relapsing fever Borrelia hermsii ResT exhibits a more restricted substrate usage pattern than B. burgdorferi ResT and cannot efficiently resolve a Type 2 telomere. In this study, we determined that all relapsing fever ResTs process Type 2 telomeres inefficiently. Using a library of chimeric and mutant B. hermsii/B. burgdorferi ResTs, we mapped the determinants in B. burgdorferi ResT conferring the ability to resolve multiple Type 2 telomeres. Type 2 telomere resolution was dependent on a single proline in the ResT catalytic region that was conserved in all Lyme disease but not relapsing fever ResTs and that is part of a 2-amino acid insertion absent from phage telomere resolvase sequences. The identification of a permissive substrate usage determinant explains the ability of B. burgdorferi ResT to process the 19 unique telomeres found in its segmented genome and will aid further studies on the structure and function of this essential enzyme.
Collapse
Affiliation(s)
- Tara J Moriarty
- Department of Biochemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|