1
|
Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes. BMC Genomics 2015; 16:1084. [PMID: 26689194 PMCID: PMC4687349 DOI: 10.1186/s12864-015-2288-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023] Open
Abstract
Background Avoidance of palindromic recognition sites of Type II restriction-modification (R-M) systems was shown for many R-M systems in dozens of prokaryotic genomes. However the phenomenon has not been investigated systematically for all presently available genomes and annotated R-M systems. We have studied all known recognition sites in thousands of prokaryotic genomes and found factors that influence their avoidance. Results Only Type II R-M systems consisting of independently acting endonuclease and methyltransferase (called ‘orthodox’ here) cause avoidance of their sites, both palindromic and asymmetric, in corresponding prokaryotic genomes; the avoidance takes place for ~ 50 % of 1774 studied cases. It is known that prokaryotes can acquire and lose R-M systems. Thus it is possible to talk about the lifespan of an R-M system in a genome. We have shown that the recognition site avoidance correlates with the lifespan of R-M systems. The sites of orthodox R-M systems that are encoded in host genomes for a long time are avoided more often (up to 100 % in certain cohorts) than the sites of recently acquired ones. We also found cases of site avoidance in absence of the corresponding R-M systems in the genome. An analysis of closely related bacteria shows that such avoidance can be a trace of lost R-M systems. Sites of Type I, IIС/G, IIM, III, and IV R-M systems are not avoided in vast majority of cases. Conclusions The avoidance of orthodox Type II R-M system recognition sites in prokaryotic genomes is a widespread phenomenon. Presence of an R-M system without an underrepresentation of its site may indicate that the R-M system was acquired recently. At the same time, a significant underrepresentation of a site may be a sign of presence of the corresponding R-M system in this organism or in its ancestors for a long time. The drastic difference between site avoidance for orthodox Type II R-M systems and R-M systems of other types can be explained by a higher rate of specificity changes or a less self-toxicity of the latter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2288-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Rusinov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Anna Ershova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Anna Karyagina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Sergey Spirin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| | - Andrei Alexeevski
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| |
Collapse
|
2
|
Gao Y, Nelson SW. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain. J Biol Chem 2014; 289:26505-26513. [PMID: 25077970 DOI: 10.1074/jbc.m114.583625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
3
|
Gilmore JL, Suzuki Y, Tamulaitis G, Siksnys V, Takeyasu K, Lyubchenko YL. Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 2009; 48:10492-8. [PMID: 19788335 DOI: 10.1021/bi9010368] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The study of interactions of protein with DNA is important for gaining a fundamental understanding of how numerous biological processes occur, including recombination, transcription, repair, etc. In this study, we use the EcoRII restriction enzyme, which employs a three-site binding mechanism to catalyze cleavage of a single recognition site. Using high-speed atomic force microscopy (HS-AFM) to image single-molecule interactions in real time, we were able to observe binding, translocation, and dissociation mechanisms of the EcoRII protein. The results show that the protein can translocate along DNA to search for the specific binding site. Also, once specifically bound at a single site, the protein is capable of translocating along the DNA to locate the second specific binding site. Furthermore, two alternative modes of dissociation of the EcoRII protein from the loop structure were observed, which result in the protein stably bound as monomers to two sites or bound to a single site as a dimer. From these observations, we propose a model in which this pathway is involved in the formation and dynamics of a catalytically active three-site complex.
Collapse
Affiliation(s)
- Jamie L Gilmore
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | | | | | | | |
Collapse
|