1
|
Dong S, Chen C, Li J, Liu Y, Bayer EA, Lamed R, Mizrahi I, Cui Q, Feng Y. Unique Fn3-like biosensor in σ I/anti-σ I factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens. Protein Sci 2024; 33:e5193. [PMID: 39470320 PMCID: PMC11520246 DOI: 10.1002/pro.5193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.
Collapse
Affiliation(s)
- Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Ya‐Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Edward A. Bayer
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
- Department of Life Sciences and the National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeershebaIsrael
| | - Raphael Lamed
- Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeershebaIsrael
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandongChina
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Benvenuti JL, Casa PL, Pessi de Abreu F, Martinez GS, de Avila E Silva S. From straight to curved: A historical perspective of DNA shape. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:46-54. [PMID: 39260792 DOI: 10.1016/j.pbiomolbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
DNA is the macromolecule responsible for storing the genetic information of a cell and it has intrinsic properties such as deformability, stability and curvature. DNA Curvature plays an important role in gene transcription and, consequently, in the subsequent production of proteins, a fundamental process of cells. With recent advances in bioinformatics and theoretical biology, it became possible to analyze and understand the involvement of DNA Curvature as a discriminatory characteristic of gene-promoting regions. These regions act as sites where RNAp (ribonucleic acid-polymerase) binds to initiate transcription. This review aims to describe the formation of Curvature, as well as highlight its importance in predicting promoters. Furthermore, this article provides the potential of DNA Curvature as a distinguishing feature for promoter prediction tools, as well as outlining the calculation procedures that have been described by other researchers. This work may support further studies directed towards the enhancement of promoter prediction software.
Collapse
Affiliation(s)
- Jean Lucas Benvenuti
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil.
| | - Pedro Lenz Casa
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fernanda Pessi de Abreu
- Universidade de Caxias do Sul. Petrópolis, Caxias do Sul, Rio Grande do Sul, Brazil; Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
3
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological Roles of an Acinetobacter-specific σ Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602572. [PMID: 39026751 PMCID: PMC11257525 DOI: 10.1101/2024.07.08.602572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
| | - Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Joy R. An evaluation of the xenobotic cognitive project: Towards Stage 1 of xenobotic cognition. ENDEAVOUR 2024; 48:100927. [PMID: 38679490 DOI: 10.1016/j.endeavour.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/30/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Xenobot, the world's first biological robot, puts numerous philosophical riddles before us. One among them pertains to the cognitive status of these entities. Are these biological robots cognitive? To evaluate the cognitive status of xenobots and to resolve the puzzle of a single mind emerging from smaller sub-units, in this article, I juxtapose the cognitive capacities of xenobots with that of two other minimal models of cognition, i.e., basal cognition and nonliving active matter cognition. Further, the article underlines the essential cognitive capabilities that xenobots need to achieve to enter what I call stage 1 of xenobotic cognition. Stage 1 is characterized by numerous cognitive mechanisms, which are integral for the survival and cognition of basal organisms. Finally, I suggest that developing xenobots that can reach Stage 1 can help us achieve sophistication in the areas of evolution of the human mind, robotics, biology and medicine, and artificial intelligence (AI).
Collapse
Affiliation(s)
- Reshma Joy
- Indian Institute of Technology Ropar, India.
| |
Collapse
|
5
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty WL, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter RF, Feldman MF. Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2321910121. [PMID: 38422018 PMCID: PMC10927553 DOI: 10.1073/pnas.2321910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
Affiliation(s)
- Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Biswanath Jana
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | | | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
6
|
Meier D, Rauch C, Wagner M, Klemm P, Blumenkamp P, Müller R, Ellenberger E, Karia KM, Vecchione S, Serrania J, Lechner M, Fritz G, Goesmann A, Becker A. A MoClo-Compatible Toolbox of ECF Sigma Factor-Based Regulatory Switches for Proteobacterial Chassis. BIODESIGN RESEARCH 2024; 6:0025. [PMID: 38384496 PMCID: PMC10880074 DOI: 10.34133/bdr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024] Open
Abstract
The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.
Collapse
Affiliation(s)
- Doreen Meier
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Christian Rauch
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Raphael Müller
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Eric Ellenberger
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Kinnari M. Karia
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Stefano Vecchione
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- The University of Western Australia, School of Molecular Sciences, Perth, Australia
| | - Alexander Goesmann
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Gumerov VM, Ulrich LE, Zhulin IB. MiST 4.0: a new release of the microbial signal transduction database, now with a metagenomic component. Nucleic Acids Res 2024; 52:D647-D653. [PMID: 37791884 PMCID: PMC10767990 DOI: 10.1093/nar/gkad847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Signal transduction systems in bacteria and archaea link environmental stimuli to specific adaptive cellular responses. They control gene expression, motility, biofilm formation, development and other processes that are vital to survival. The microbial signal transduction (MiST) database is an online resource that stores tens of thousands of genomes and allows users to explore their signal transduction profiles, analyze genomes in bulk using the database application programming interface (API) and make testable hypotheses about the functions of newly identified signaling systems. However, signal transduction in metagenomes remained completely unexplored. To lay the foundation for research in metagenomic signal transduction, we have prepared a new release of the MiST database, MiST 4.0, which features over 10 000 metagenome-assembled genomes (MAGs), a scaled representation of proteins and detailed BioSample information. In addition, several thousands of new genomes have been processed and stored in the database. A new interface has been developed that allows users to seamlessly switch between genomes and MAGs. MiST 4.0 is freely available at https://mistdb.com; metagenomes and MAGs can also be explored using the API available on the same page.
Collapse
Affiliation(s)
- Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Structure of the transcription open complex of distinct σ I factors. Nat Commun 2023; 14:6455. [PMID: 37833284 PMCID: PMC10575876 DOI: 10.1038/s41467-023-41796-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haonan Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongyu Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Energy Institute, 266101, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ping Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
9
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
10
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
11
|
Ku RH, Li LH, Liu YF, Hu EW, Lin YT, Lu HF, Yang TC. Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA299-356-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0108023. [PMID: 37284772 PMCID: PMC10433810 DOI: 10.1128/spectrum.01080-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal β-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to β-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fu Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty W, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter R, Feldman MF. Dual Membrane-spanning Anti-Sigma Factors Regulate Vesiculation in Gut Bacteroidota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548920. [PMID: 37503209 PMCID: PMC10369966 DOI: 10.1101/2023.07.13.548920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are at least partially mediated by O uter M embrane V esicles (OMVs). In this work, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron ( Bt ). Our screening led us to the identification of a novel family of D ual M embrane-spanning A nti-sigma factors (Dma), which regulate OMV biogenesis in Bt . We employed molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, results in hypervesiculation by modulating the expression of NigD1, which belongs to a family of uncharacterized proteins found throughout Bacteroidota. Dma1 has an unprecedented domain organization: it contains a C-terminal β-barrel embedded in the OM; its N-terminal domain interacts with its cognate sigma factor in the cytoplasm, and both domains are tethered via an intrinsically disordered region that traverses the periplasm. Phylogenetic analyses reveal that the Dma family is a unique feature of Bacteroidota. This study provides the first mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
|
13
|
Rey-Varela D, Balado M, Lemos ML. The Sigma Factor AsbI Is Required for the Expression of Acinetobactin Siderophore Transport Genes in Aeromonas salmonicida. Int J Mol Sci 2023; 24:ijms24119672. [PMID: 37298622 DOI: 10.3390/ijms24119672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Balado
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel L Lemos
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Gautam P, Erill I, Cusick KD. Linking Copper-Associated Signal Transduction Systems with Their Environment in Marine Bacteria. Microorganisms 2023; 11:microorganisms11041012. [PMID: 37110435 PMCID: PMC10141476 DOI: 10.3390/microorganisms11041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Copper is an essential trace element for living cells. However, copper can be potentially toxic for bacterial cells when it is present in excess amounts due to its redox potential. Due to its biocidal properties, copper is prevalent in marine systems due to its use in antifouling paints and as an algaecide. Thus, marine bacteria must possess means of sensing and responding to both high copper levels and those in which it is present at only typical trace metal levels. Bacteria harbor diverse regulatory mechanisms that respond to intracellular and extracellular copper and maintain copper homeostasis in cells. This review presents an overview of the copper-associated signal transduction systems in marine bacteria, including the copper efflux systems, detoxification, and chaperone mechanisms. We performed a comparative genomics study of the copper-regulatory signal transduction system on marine bacteria to examine the influence of the environment on the presence, abundance, and diversity of copper-associated signal transduction systems across representative phyla. Comparative analyses were performed among species isolated from sources, including seawater, sediment, biofilm, and marine pathogens. Overall, we observed many putative homologs of copper-associated signal transduction systems from various copper systems across marine bacteria. While the distribution of the regulatory components is mainly influenced by phylogeny, our analyses identified several intriguing trends: (1) Bacteria isolated from sediment and biofilm displayed an increased number of homolog hits to copper-associated signal transduction systems than those from seawater. (2) A large variability exists for hits to the putative alternate σ factor CorE hits across marine bacteria. (3) Species isolated from seawater and marine pathogens harbored fewer CorE homologs than those isolated from the sediment and biofilm.
Collapse
Affiliation(s)
- Pratima Gautam
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Kathleen D Cusick
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
15
|
Honma K, Sasaki H, Hamada N, Sharma A. An Extracytoplasmic Function Sigma/Anti-Sigma Factor System Regulates β-Glucanase Expression in Tannerella forsythia in Response to Fusobacterium nucleatum Sensing. J Bacteriol 2022; 204:e0031322. [PMID: 36448787 PMCID: PMC9765289 DOI: 10.1128/jb.00313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The periodontal pathogen Tannerella forsythia expresses a β-glucanase (TfGlcA) whose expression is induced in response to Fusobacterium nucleatum, a bridge bacterium of the oral cavity. TfGlcA cleaves β-glucans to release glucose, which can serve as a carbon source for F. nucleatum and other cohabiting organisms. A two-gene cluster encoding a putative extracytoplasmic function (ECF) sigma factor and a FecR-like anti-sigma factor has been recognized upstream of a TfGlcA operon. We characterized and analyzed the role of these putative ECF sigma and anti-sigma factors in the regulation of TfGlcA expression. For this purpose, deletion mutants were constructed and analyzed for β-glucanase expression. In addition, an Escherichia coli-produced ECF sigma factor recombinant protein was evaluated for transcriptional and DNA binding activities. The results showed that the recombinant protein promoted transcription by the RNA polymerase core enzyme from the glcA promoter. Furthermore, in comparison to those in the parental strain, the β-glucanase expression levels were significantly reduced in the ECF sigma-factor deletion mutant and increased significantly in the FecR anti-sigma factor deletion mutant. The levels did not change in the mutants following coincubation with the F. nucleatum whole cells or cell extracts. Finally, the levels of β-glucanase produced by T. forsythia strains paralleled F. nucleatum biomass in cobiofilms. In conclusion, we identified a β-glucanase operon regulatory system in T. forsythia comprising an ECF sigma factor (TfSigG) and a cognate FecR-like anti-sigma factor responsive to F. nucleatum and potentially other stimuli. IMPORTANCE Previous studies have shown that F. nucleatum forms robust biofilms with T. forsythia utilizing glucose from the hydrolysis of β-glucans by T. forsythia β-glucanase, induced by F. nucleatum. In this study, we showed that a regulatory system comprising of an ECF sigma factor, TfSigG, and a FecR-like anti-sigma factor, TfFecR, is responsible for the β-glucanase induction in response to F. nucleatum, suggesting that this system plays roles in the mutualistic interactions of T. forsythia and F. nucleatum. The findings suggest the development and potential utility of small-molecule inhibitors targeting the β-glucanase activity or the TfSigG/TfFecR system as therapeutic drugs against dental plaque formation and periodontitis.
Collapse
Affiliation(s)
- Kiyonobu Honma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Haruka Sasaki
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
16
|
Abstract
Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.
Collapse
|
17
|
The Global Regulator MftR Controls Virulence and Siderophore Production in Burkholderia thailandensis. J Bacteriol 2022; 204:e0023722. [PMID: 36286517 PMCID: PMC9664960 DOI: 10.1128/jb.00237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules.
Collapse
|
18
|
Ponath F, Zhu Y, Cosi V, Vogel J. Expanding the genetic toolkit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum. Proc Natl Acad Sci U S A 2022; 119:e2201460119. [PMID: 36161895 PMCID: PMC9546586 DOI: 10.1073/pnas.2201460119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| |
Collapse
|
19
|
High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection. Infect Immun 2022; 90:e0032922. [PMID: 36169312 PMCID: PMC9584290 DOI: 10.1128/iai.00329-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in rnfE gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the hxuIRA gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.
Collapse
|
20
|
De Wannemaeker L, Bervoets I, De Mey M. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. Biotechnol Adv 2022; 60:108028. [PMID: 36031082 DOI: 10.1016/j.biotechadv.2022.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Synthetic biology can play a major role in the development of sustainable industrial biotechnology processes. However, the development of economically viable production processes is currently hampered by the limited availability of host organisms that can be engineered for a specific production process. To date, standard hosts such as Escherichia coli and Saccharomyces cerevisiae are often used as starting points for process development since parts and tools allowing their engineering are readily available. However, their suboptimal metabolic background or impaired performance at industrial scale for a desired production process, can result in increased costs associated with process development and/or disappointing production titres. Building a universal and portable gene expression system allowing genetic engineering of hosts across the bacterial domain would unlock the bacterial domain for industrial biotechnology applications in a highly standardized manner and doing so, render industrial biotechnology processes more competitive compared to the current polluting chemical processes. This review gives an overview of a selection of bacterial hosts highly interesting for industrial biotechnology based on both their metabolic and process optimization properties. Moreover, the requirements and progress made so far to enable universal, standardized, and portable gene expression across the bacterial domain is discussed.
Collapse
Affiliation(s)
- Lien De Wannemaeker
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Indra Bervoets
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Sivakumar R, Gunasekaran P, Rajendhran J. Extracytoplasmic sigma factor AlgU contributes to fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. Mol Genet Genomics 2022; 297:1537-1552. [PMID: 35980488 DOI: 10.1007/s00438-022-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
22
|
Novel switchable ECF sigma factor transcription system for improving thaxtomin A production in Streptomyces. Synth Syst Biotechnol 2022; 7:972-981. [PMID: 35756964 PMCID: PMC9194655 DOI: 10.1016/j.synbio.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The application of the valuable natural product thaxtomin A, a potent bioherbicide from the potato scab pathogenic Streptomyces strains, has been greatly hindered by the low yields from its native producers. Here, we developed an orthogonal transcription system, leveraging extra-cytoplasmic function (ECF) sigma (σ) factor 17 (ECF17) and its cognate promoter Pecf17, to express the thaxtomin gene cluster and improve the production of thaxtomin A. The minimal Pecf17 promoter was determined, and a Pecf17 promoter library with a wide range of strengths was constructed. Furthermore, a cumate inducible system was developed for precise temporal control of the ECF17 transcription system in S. venezuelae ISP5230. Theoretically, the switchable ECF17 transcription system could reduce the unwanted influences from host and alleviate the burdens introduced by overexpression of heterologous genes. The yield of thaxtomin A was significantly improved to 202.1 ± 15.3 μ g/mL using the switchable ECF17 transcription system for heterologous expression of the thaxtomin gene cluster in S. venezuelae ISP5230. Besides, the applicability of this transcription system was also tested in Streptomyces albus J1074, and the titer of thaxtomin A was raised to as high as 239.3 ± 30.6 μg/mL. Therefore, the inducible ECF17 transcription system could serve as a complement of the generally used transcription systems based on strong native constitutive promoters and housekeeping σ factors for the heterologous expression of valuable products in diverse Streptomyces hosts.
Collapse
|
23
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
24
|
Pathak E, Dubey AP, Singh VS, Mishra R, Tripathi AK. Deciphering the role of the two conserved motifs of the
ECF41
family σ factor in the autoregulation of its own promoter in
Azospirillum brasilense
Sp245. Proteins 2022; 90:1926-1943. [DOI: 10.1002/prot.26387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ekta Pathak
- Department of Bioinformatics MMV, Institute of Science, Banaras Hindu University Varanasi India
| | | | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi India
| | - Rajeev Mishra
- Department of Bioinformatics MMV, Institute of Science, Banaras Hindu University Varanasi India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi India
| |
Collapse
|
25
|
Chen Y, Niu X, Cheng M, Wang L, Sun P, Song H, Cao Y. CRISPR/dCas9-RpoD-Mediated Simultaneous Transcriptional Activation and Repression in Shewanella oneidensis MR-1. ACS Synth Biol 2022; 11:2184-2192. [PMID: 35608070 DOI: 10.1021/acssynbio.2c00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular electron transfer (EET) of electroactive microorganisms (EAMs) is the dominating factor for versatile applications of bio-electrochemical systems. Shewanella oneidensis MR-1 is one of the model EAMs for the study of EET, which is associated with a variety of cellular activities. However, due to the lack of a transcriptional activation tool, regulation of multiple genes is labor-intensive and time-consuming, which hampers the advancement of improving the EET efficiency in S. oneidensis. In this study, we developed an easily operated and multifunctional regulatory tool, that is, a simultaneous clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation (CRISPRa) and interference (CRISPRi) system, for application in S. oneidensis. First, a large number of activators were screened, and RpoD (σ70) was determined as the optimal activator. Second, the effective activation range was identified to be 190-216 base upstream of the transcriptional start site. Third, up- and downregulation was achieved in concert by two orthogonal single guide RNAs targeting different positions. The activation of the cell division gene (minCDE) and repression of the cytotoxic gene (SO_3166) were concurrently implemented, increasing the power density by 2.5-fold and enhancing the degradation rate of azo dyes by 2.9-fold. The simultaneous CRISPRa and CRISPRi system enables simultaneous multiplex genetic regulation, offering the potential to further advance studies of the EET mechanism and application in S. oneidensis.
Collapse
Affiliation(s)
- Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaolong Niu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Panxing Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
27
|
Activation of the Extracytoplasmic Function σ Factor σ V in Clostridioides difficile Requires Regulated Intramembrane Proteolysis of the Anti-σ Factor RsiV. mSphere 2022; 7:e0009222. [PMID: 35317618 PMCID: PMC9044953 DOI: 10.1128/msphere.00092-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Clostridioides (Clostridium) difficile is one of the leading causes of nosocomial diarrhea. Lysozyme is a common host defense against many pathogenic bacteria. C. difficile exhibits high levels of lysozyme resistance, which is due in part to the extracytoplasmic functioning (ECF) σ factor, σV. It has been previously demonstrated that genes regulated by σV are responsible for peptidoglycan modifications that provide C. difficile with high lysozyme resistance. σV is not unique to C. difficile however, and its role in lysozyme resistance and its mechanism of activation has been well characterized in Bacillus subtilis where the anti-σ, RsiV, sequesters σV until lysozyme directly binds to RsiV, activating σV. However, it remains unclear if the mechanism of σV activation is similar in C. difficile. Here, we investigated how activation of σV is controlled in C. difficile by lysozyme. We found that C. difficile RsiV was degraded in the presence of lysozyme. We also found that disruption of a predicted signal peptidase cleavage site blocked RsiV degradation and σV activation, indicating that the site-1 protease is likely a signal peptidase. We also identified a conserved site-2 protease, RasP, that was required for site-2 cleavage of RsiV and σV activation in response to lysozyme. Combined with previous work showing RsiV directly binds lysozyme, these data suggested that RsiV directly binds lysozyme in C. difficile, which leads to RsiV destruction via cleavage at site-1 by signal peptidase and then at site-2 by RasP, ultimately resulting in σV activation and increased resistance to lysozyme. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. We previously showed that σV and the regulon under its control were involved in lysozyme resistance. We have also shown in B. subtilis that the anti-σ RsiV acts as a direct sensor for lysozyme. which results in the destruction of RsiV and activation of σV. Here, we described the proteases required for degradation of RsiV in C. difficile in response to lysozyme. Our data indicated that the mechanism is highly conserved between B. subtilis and C. difficile.
Collapse
|
28
|
Fan Y, Bai J, Xi D, Yang B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022; 10:microorganisms10050879. [PMID: 35630325 PMCID: PMC9147696 DOI: 10.3390/microorganisms10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors.
Collapse
Affiliation(s)
- Yu Fan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jing Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Daoyi Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
29
|
β-Lactam Resistance in Azospirillum baldaniorum Sp245 Is Mediated by Lytic Transglycosylase and β-Lactamase and Regulated by a Cascade of RpoE7→RpoH3 Sigma Factors. J Bacteriol 2022; 204:e0001022. [PMID: 35352964 DOI: 10.1128/jb.00010-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial resistance to β-lactam antibiotics is often mediated by β-lactamases and lytic transglycosylases. Azospirillum baldaniorum Sp245 is a plant-growth-promoting rhizobacterium that shows high levels of resistance to ampicillin. Investigating the molecular basis of ampicillin resistance and its regulation in A. baldaniorum Sp245, we found that a gene encoding lytic transglycosylase (Ltg1) is organized divergently from a gene encoding an extracytoplasmic function (ECF) σ factor (RpoE7) in its genome. Inactivation of rpoE7 in A. baldaniorum Sp245 led to increased ability to form cell-cell aggregates and produce exopolysaccharides and biofilm, suggesting that rpoE7 might contribute to antibiotic resistance. Inactivation of ltg1 in A. baldaniorum Sp245, however, adversely affected its growth, indicating a requirement of Ltg1 for optimal growth. The expression of rpoE7, as well that of as ltg1, was positively regulated by RpoE7, and overexpression of RpoE7 conferred ampicillin sensitivity to both the rpoE7::km mutant and its parent. In addition, RpoE7 negatively regulated the expression of a gene encoding a β-lactamase (bla1). Out of the 5 paralogs of RpoH encoded in the genome of A. baldaniorum Sp245, RpoH3 played major roles in conferring ampicillin sensitivity and in the downregulation of bla1. The expression of rpoH3 was positively regulated by RpoE7. Collectively, these observations reveal a novel regulatory cascade of RpoE7-RpoH3 σ factors that negatively regulates ampicillin resistance in A. baldaniorum Sp245 by controlling the expression of a β-lactamase and a lytic transglycosylase. In the absence of a cognate anti-sigma factor, addressing how the activity of RpoE7 is regulated by β-lactams will unravel new mechanisms of regulation of β-lactam resistance in bacteria. IMPORTANCE Antimicrobial resistance is a global health problem that requires a better understanding of the mechanisms that bacteria use to resist antibiotics. Bacteria inhabiting the plant rhizosphere are a potential source of antibiotic resistance, but their mechanisms controlling antibiotic resistance are poorly understood. A. baldaniorum Sp245 is a rhizobacterium that is known for its characteristic resistance to ampicillin. Here, we show that an AmpC-type β-lactamase and a lytic transglycosylase mediate resistance to ampicillin in A. baldaniorum Sp245. While the gene encoding lytic transglycosylase is positively regulated by an ECF σ-factor (RpoE7), a cascade of RpoE7 and RpoH3 σ factors negatively regulates the expression of β-lactamase. This is the first evidence showing involvement of a regulatory cascade of σ factors in the regulation of ampicillin resistance in a rhizobacterium.
Collapse
|
30
|
Marcos-Torres FJ, Moraleda-Muñoz A, Contreras-Moreno FJ, Muñoz-Dorado J, Pérez J. Mechanisms of Action of Non-Canonical ECF Sigma Factors. Int J Mol Sci 2022; 23:ijms23073601. [PMID: 35408957 PMCID: PMC8999054 DOI: 10.3390/ijms23073601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are subunits of the RNA polymerase specialized in activating the transcription of a subset of genes responding to a specific environmental condition. The signal-transduction pathways where they participate can be activated by diverse mechanisms. The most common mechanism involves the action of a membrane-bound anti-sigma factor, which sequesters the ECF sigma factor, and releases it after the stimulus is sensed. However, despite most of these systems following this canonical regulation, there are many ECF sigma factors exhibiting a non-canonical regulatory mechanism. In this review, we aim to provide an updated and comprehensive view of the different activation mechanisms known for non-canonical ECF sigma factors, detailing their inclusion to the different phylogenetic groups and describing the mechanisms of regulation of some of their representative members such as EcfG from Rhodobacter sphaeroides, showing a partner-switch mechanism; EcfP from Vibrio parahaemolyticus, with a phosphorylation-dependent mechanism; or CorE from Myxococcus xanthus, regulated by a metal-sensing C-terminal extension.
Collapse
Affiliation(s)
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, 18071 Granada, Spain; (F.J.C.-M.); (J.M.-D.)
- Correspondence: (A.M.-M.); (J.P.); Tel.: +34-95-824-2858 (A.M.-M.); +34-95-824-9830 (J.P.)
| | - Francisco Javier Contreras-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, 18071 Granada, Spain; (F.J.C.-M.); (J.M.-D.)
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, 18071 Granada, Spain; (F.J.C.-M.); (J.M.-D.)
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, 18071 Granada, Spain; (F.J.C.-M.); (J.M.-D.)
- Correspondence: (A.M.-M.); (J.P.); Tel.: +34-95-824-2858 (A.M.-M.); +34-95-824-9830 (J.P.)
| |
Collapse
|
31
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
32
|
Grove A. Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species. Front Microbiol 2022; 13:851011. [PMID: 35283809 PMCID: PMC8908255 DOI: 10.3389/fmicb.2022.851011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia, which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
33
|
Cai Z, Yang F, Shao X, Yue Z, Li Z, Song Y, Pan X, Jin Y, Cheng Z, Ha UH, Feng J, Yang L, Deng X, Wu W, Bai F. ECF Sigma Factor HxuI Is Critical for In Vivo Fitness of Pseudomonas aeruginosa during Infection. Microbiol Spectr 2022; 10:e0162021. [PMID: 35044199 PMCID: PMC8768829 DOI: 10.1128/spectrum.01620-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.
Collapse
Affiliation(s)
- Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenpeng Li
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTec), Shenzhen, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|
35
|
Patiño LF, Aguirre-Hoyos V, Pinilla LI, Toro LF, Ríos-Estepa R. Environmental Factors Modulate the Role of orf21 Sigma Factor in Clavulanic Acid Production in Streptomyces Clavuligerus ATCC27064. Bioengineering (Basel) 2022; 9:bioengineering9020078. [PMID: 35200432 PMCID: PMC8869649 DOI: 10.3390/bioengineering9020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Sigma factors and sigma factor-related mechanisms control antibiotic production in Streptomyces. In this contribution, the orf21 gene was overexpressed in the wild-type strain of Streptomyces clavuligerus ATCC2764, yielding S. clavuligerus/pIORF21, to further evaluate its regulatory effect on clavulanic acid (CA) biosynthesis under different culture medium conditions. The orf21 overexpression, regulated under the constitutive promoter ermE*, led to 2.6-fold increase in CA production in GSPG medium, and a 1.8-fold decrease using ISP medium. As for GYM and MYM media, S. clavuligerus/pIORF21 strain showed higher aerial mycelium production compared to control. Glycerol uptake rate profile was affected by orf21 overexpression. Furthermore, in GSPG, S. clavuligerus/pIORF21 slightly increased the expression of adpA and gcas genes, whilst, in ISP, the claR gene expression was drastically reduced, which is consistent with a decreased CA production, observed in this medium. These findings suggest the protein encoded by the orf21 gene plays a role in the regulation of CA biosynthesis as a response to the nutritional composition of the medium.
Collapse
|
36
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme in Clostridioides difficile. Curr Opin Microbiol 2022; 65:162-166. [PMID: 34894542 PMCID: PMC8792214 DOI: 10.1016/j.mib.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile is naturally resistant to high levels of lysozyme an important component of the innate immune defense system. C. difficile encodes both constitutive as well as inducible lysozyme resistance genes. The inducible lysozyme resistance genes are controlled by an alternative σ factor σV that belongs to the Extracytoplasmic function σ factor family. In the absence of lysozyme, the activity of σV is inhibited by the anti-σ factor RsiV. In the presence of lysozyme RsiV is destroyed via a proteolytic cascade that leads to σV activation and increased lysozyme resistance. This review highlights how activity of σV is controlled.
Collapse
Affiliation(s)
- Theresa D. Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA 52242,Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: , 319-384-4565
| |
Collapse
|
38
|
Identification of the Extracytoplasmic Function σ Factor σ P Regulon in Bacillus thuringiensis. mSphere 2022; 7:e0096721. [PMID: 35080471 PMCID: PMC8791391 DOI: 10.1128/msphere.00967-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many β-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σP. We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σP. We compared the protein profiles of strains which either lacked σP or overexpressed σP. We identified 8 members of the σP regulon which included four β-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by β-lactams in a σP-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of β-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of β-lactamases and PBPs are involved in resistance to different β-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. β-Lactams remain an important treatment option for many diseases. However, the spread of β-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding β-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σP, in B. thuringiensis controls expression of multiple genes involved in resistance to β-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σP results in increased resistance to a wider range of β-lactam classes than any single gene could provide.
Collapse
|
39
|
Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information. BMC Genomics 2022; 23:68. [PMID: 35062881 PMCID: PMC8780764 DOI: 10.1186/s12864-022-08314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The gram-positive bacterium, Streptomyces avermitilis, holds industrial importance as the producer of avermectin, a widely used anthelmintic agent, and a heterologous expression host of secondary metabolite-biosynthetic gene clusters. Despite its industrial importance, S. avermitilis’ genome organization and regulation of gene expression remain poorly understood. In this study, four different types of Next-Generation Sequencing techniques, including dRNA-Seq, Term-Seq, RNA-Seq and ribosome profiling, were applied to S. avermitilis to determine transcription units of S. avermitilis at a genome-wide level and elucidate regulatory elements for transcriptional and translational control of individual transcription units.
Result
By applying dRNA-Seq and Term-Seq to S. avermitilis MA-4680, a total of 2361 transcription start sites and 2017 transcript 3′-end positions were identified, respectively, leading to determination of 1601 transcription units encoded in S. avermitilis’ genome. Cataloguing the transcription units and integrated analysis of multiple high-throughput data types revealed the presence of diverse regulatory elements for gene expression, such as promoters, 5′-UTRs, terminators, 3′-UTRs and riboswitches. The conserved promoter motifs were identified from 2361 transcription start sites as 5′-TANNNT and 5′-BTGACN for the − 10 and − 35 elements, respectively. The − 35 element and spacer lengths between − 10 and − 35 elements were critical for transcriptional regulation of functionally distinct genes, suggesting the involvement of unique sigma factors. In addition, regulatory sequences recognized by antibiotic regulatory proteins were identified from the transcription start site information. Analysis of the 3′-end of RNA transcript revealed that stem structure formation is a major determinant for transcription termination of most transcription units.
Conclusions
The transcription unit architecture elucidated from the transcripts’ boundary information provides insights for unique genetic regulatory mechanisms of S. avermitilis. Our findings will elevate S. avermitilis’ potential as a production host for a diverse set of secondary metabolites.
Collapse
|
40
|
de Dios R, Santero E, Reyes-Ramírez F. The functional differences between paralogous regulators define the control of the General Stress Response in Sphingopyxis granuli TFA. Environ Microbiol 2022; 24:1918-1931. [PMID: 35049124 PMCID: PMC9303464 DOI: 10.1111/1462-2920.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Sphingopyxis granuli TFA is a contaminant degrading alphaproteobacterium that responds to adverse conditions by inducing the general stress response (GSR), an adaptive response that controls the transcription of a variety of genes to overcome adverse conditions. The core GSR regulators (the response regulator PhyR, the anti‐σ factor NepR and the σ factor EcfG) are duplicated in TFA, being PhyR1 and PhyR2, NepR1 and NepR2 and EcfG1 and EcfG2. Based on multiple genetic, phenotypical and biochemical evidences including in vitro transcription assays, we have assigned distinct functional features to each paralogue and assessed their contribution to the GSR regulation, dictating its timing and the intensity. We show that different stress signals are differentially integrated into the GSR by PhyR1 and PhyR2, therefore producing different levels of GSR activation. We demonstrate in vitro that both NepR1 and NepR2 bind EcfG1 and EcfG2, although NepR1 produces a more stable interaction than NepR2. Conversely, NepR2 interacts with phosphorylated PhyR1 and PhyR2 more efficiently than NepR1. We propose an integrative model where NepR2 would play a dual negative role: it would directly inhibit the σ factors upon activation of the GSR and it would modulate the GSR activity indirectly by titrating the PhyR regulators.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| |
Collapse
|
41
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6528914. [DOI: 10.1093/femsle/fnac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
|
42
|
Butt AT, Banyard CD, Haldipurkar SS, Agnoli K, Mohsin M, Vitovski S, Paleja A, Tang Y, Lomax R, Ye F, Green J, Thomas M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3709-3726. [PMID: 35234897 PMCID: PMC9023288 DOI: 10.1093/nar/gkac137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that causes severe infections of the cystic fibrosis (CF) lung. To acquire iron, B. cenocepacia secretes the Fe(III)-binding compound, ornibactin. Genes for synthesis and utilisation of ornibactin are served by the iron starvation (IS) extracytoplasmic function (ECF) σ factor, OrbS. Transcription of orbS is regulated in response to the prevailing iron concentration by the ferric uptake regulator (Fur), such that orbS expression is repressed under iron-sufficient conditions. Here we show that, in addition to Fur-mediated regulation of orbS, the OrbS protein itself responds to intracellular iron availability. Substitution of cysteine residues in the C-terminal region of OrbS diminished the ability to respond to Fe(II) in vivo. Accordingly, whilst Fe(II) impaired transcription from and recognition of OrbS-dependent promoters in vitro by inhibiting the binding of OrbS to core RNA polymerase (RNAP), the cysteine-substituted OrbS variant was less responsive to Fe(II). Thus, the cysteine residues within the C-terminal region of OrbS contribute to an iron-sensing motif that serves as an on-board ‘anti-σ factor’ in the presence of Fe(II). A model to account for the presence two regulators (Fur and OrbS) that respond to the same intracellular Fe(II) signal to control ornibactin synthesis and utilisation is discussed.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher D Banyard
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Sayali S Haldipurkar
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Muslim I Mohsin
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Srdjan Vitovski
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Ameya Paleja
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Yingzhi Tang
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Rebecca Lomax
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Fuzhou Ye
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Jeffrey Green
- Correspondence may also be addressed to Jeffrey Green. Tel: +44 114 222 4403; Fax: +44 114 222 2800;
| | - Mark S Thomas
- To whom correspondence should be addressed. Tel: +44 114 215 9557; Fax: +44 114 271 1863;
| |
Collapse
|
43
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Oh GS, Yoo JS, Park JH, Roe JH. Activity modulation of anti-sigma factor via cysteine alkylation in Actinobacteria. Mol Microbiol 2021; 117:539-550. [PMID: 34927290 DOI: 10.1111/mmi.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
σR (SigR) is an alternative sigma factor that enables gene expression in Streptomyces coelicolor to cope with thiol oxidation and antibiotic stresses. Its activity is repressed by a zinc-containing anti-sigma (ZAS) factor RsrA that senses thiol oxidants and electrophiles. Inactivation of RsrA by disulfide formation has been well studied. Here we investigated another pathway of RsrA inactivation by electrophiles. Mass spectrometry revealed alkylation of RsrA in vivo by N-ethylmaleimide (NEM) at C61 and C62 located in the C-terminal loop. Substitution mutation (C61S/C62S) in RsrA decreased the induction of σR target genes by electrophiles and made cells more sensitive to electrophiles. In contrast to stable protein of oxidized RsrA, alkylated RsrA is subjected to degradation partly mediated by ClpP proteases. RsrA2, a redox-sensitive homolog of RsrA in S. coelicolor lacking cysteine in the terminal loop, did not respond to electrophiles. However, redox-sensitive RsrA homologs in other Actinobacteria also harboring terminal loop cysteines all responded to electrophiles. These results indicate that the activity of RsrA can be modulated via cysteine alkylation, apart from disulfide formation of zinc-coordinating cysteines. This pathway expands the spectrum of signals that the σR -RsrA system can sense and reveals another intricate regulatory layer for optimal survival of Actinobacteria.
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Ji-Sun Yoo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Jung-Hye Roe
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
46
|
Cometabolism of Ethanol in Azospirillum brasilense Sp7 Is Mediated by Fructose and Glycerol and Regulated Negatively by an Alternative Sigma Factor RpoH2. J Bacteriol 2021; 203:e0026921. [PMID: 34570625 DOI: 10.1128/jb.00269-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Azospirillum brasilense is a plant growth-promoting rhizobacterium that is not known to utilize ethanol as a sole source of carbon for growth. This study shows that A. brasilense can cometabolize ethanol in medium containing fructose or glycerol as a carbon source and contribute to its growth. In minimal medium containing fructose or glycerol as a carbon source, supplementation of ethanol caused enhanced production of an alcohol dehydrogenase (ExaA) and an aldehyde dehydrogenase (AldA) in A. brasilense. However, this was not the case when malate was used as a carbon source. Inactivation of aldA in A. brasilense resulted in the loss of the AldA protein and its ethanol utilizing ability in fructose- or glycerol-supplemented medium. Furthermore, ethanol inhibited the growth of the aldA::Km mutant. The exaA::Km mutant also lost its ability to utilize ethanol in fructose-supplemented medium. However, in glycerol-supplemented medium, A. brasilense utilized ethanol due to the synthesis of a new paralog of alcohol dehydrogenase (ExaA1). The expression of exaA1 was induced by glycerol but not by fructose. Unlike exaA, expression of aldA and exaA1 were not dependent on σ54. Instead, they were negatively regulated by the RpoH2 sigma factor. Inactivation of rpoH2 in A. brasilense conferred the ability to use ethanol as a carbon source without or with malate, overcoming catabolite repression caused by malate. This is the first study showing the role of glycerol and fructose in facilitating cometabolism of ethanol by inducing the expression of ethanol-oxidizing enzymes and the role of RpoH2 in repressing them. IMPORTANCE This study unraveled a hidden ability of Azospirillum brasilense to utilize ethanol as a secondary source of carbon when fructose or glycerol were used as a primary growth substrate. It opens the possibility of studying the regulation of expression of the ethanol oxidation pathway for generating high yielding strains that can efficiently utilize ethanol. Such strains would be useful for economical production of secondary metabolites by A. brasilense in fermenters. The ability of A. brasilense to utilize ethanol might be beneficial to the host plant under the submerged growth conditions.
Collapse
|
47
|
Marcos-Torres FJ, Maurer D, Juniar L, Griese JJ. The bacterial iron sensor IdeR recognizes its DNA targets by indirect readout. Nucleic Acids Res 2021; 49:10120-10135. [PMID: 34417623 PMCID: PMC8464063 DOI: 10.1093/nar/gkab711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
The iron-dependent regulator IdeR is the main transcriptional regulator controlling iron homeostasis genes in Actinobacteria, including species from the Corynebacterium, Mycobacterium and Streptomyces genera, as well as the erythromycin-producing bacterium Saccharopolyspora erythraea. Despite being a well-studied transcription factor since the identification of the Diphtheria toxin repressor DtxR three decades ago, the details of how IdeR proteins recognize their highly conserved 19-bp DNA target remain to be elucidated. IdeR makes few direct contacts with DNA bases in its target sequence, and we show here that these contacts are not required for target recognition. The results of our structural and mutational studies support a model wherein IdeR mainly uses an indirect readout mechanism, identifying its targets via the sequence-dependent DNA backbone structure rather than through specific contacts with the DNA bases. Furthermore, we show that IdeR efficiently recognizes a shorter palindromic sequence corresponding to a half binding site as compared to the full 19-bp target previously reported, expanding the number of potential target genes controlled by IdeR proteins.
Collapse
Affiliation(s)
| | - Dirk Maurer
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
48
|
Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Res Microbiol 2021; 172:103875. [PMID: 34461275 DOI: 10.1016/j.resmic.2021.103875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Fasciclin domain proteins (FDP) are found in all domains of life, but their biological role and regulation are not clearly understood. While studying the proteome of a mutant (Car1) of Azospirillum brasilense Sp7 with a Tn5 insertion in the gene encoding an anti-sigma factor (ChrR1), we found that FDP was maximally expressed. To study the biological role of this FDP, we inactivated fdp in A. brasilense Sp7 and in its Car1 mutant, which rendered them sensitive to methylene blue (MB) and toluidine blue (TB) in the presence of light. The transcription of fdp was also strongly upregulated by an ECF sigma factor (RpoE1) and photooxidative stress. The fdp null mutants of A. brasilense Sp7 and its Car1 mutant produced relatively fewer carotenoids and showed reduced flocculation. The reduced ability of fdp null mutants to flocculate was partly due to their reduced ability to produce carotenoids as inhibition of carotenoid synthesis by diphenylamine reduced their flocculation ability by 15-20%. Hence, FDP plays an important role in protecting A. brasilense Sp7 against photo-oxidative stress by supporting carotenoid accumulation and cell aggregation.
Collapse
|
49
|
Guérin C, Lee BH, Fradet B, van Dijk E, Mirauta B, Thermes C, Bernardet JF, Repoila F, Duchaud E, Nicolas P, Rochat T. Transcriptome architecture and regulation at environmental transitions in flavobacteria: the case of an important fish pathogen. ISME COMMUNICATIONS 2021; 1:33. [PMID: 36739365 PMCID: PMC9723704 DOI: 10.1038/s43705-021-00029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The family Flavobacteriaceae (phylum Bacteroidetes) is a major component of soil, marine and freshwater ecosystems. In this understudied family, Flavobacterium psychrophilum is a freshwater pathogen that infects salmonid fish worldwide, with critical environmental and economic impact. Here, we report an extensive transcriptome analysis that established the genome map of transcription start sites and transcribed regions, predicted alternative sigma factor regulons and regulatory RNAs, and documented gene expression profiles across 32 biological conditions mimicking the pathogen life cycle. The results link genes to environmental conditions and phenotypic traits and provide insights into gene regulation, highlighting similarities with better known bacteria and original characteristics linked to the phylogenetic position and the ecological niche of the bacterium. In particular, osmolarity appears as a signal for transition between free-living and within-host programs and expression patterns of secreted proteins shed light on probable virulence factors. Further investigations showed that a newly discovered sRNA widely conserved in the genus, Rfp18, is required for precise expression of proteases. By pointing proteins and regulatory elements probably involved in host-pathogen interactions, metabolic pathways, and molecular machineries, the results suggest many directions for future research; a website is made available to facilitate their use to fill knowledge gaps on flavobacteria.
Collapse
Affiliation(s)
- Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Benjamin Fradet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Bogdan Mirauta
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005, Paris, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Francis Repoila
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eric Duchaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Tatiana Rochat
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
50
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|