1
|
Pang L, Yao D, Gao F, Bian X, Zhang Y, Zhong G. Biosyntheses of azetidine-containing natural products. Org Biomol Chem 2023; 21:7242-7254. [PMID: 37642579 DOI: 10.1039/d3ob01205k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Azetidine is a four-membered polar heterocycle including a basic secondary amine, and is characterized by its high ring-strain energy, strong molecular rigidity and satisfactory stability. As a result, azetidine exhibits great challenges in its chemical synthesis and biosynthesis, which may explain the limited number of azetidine-containing natural products uncovered to date. In particular, the biosynthetic mechanisms of naturally occurring azetidines are poorly understood. Only some of them have been intensively investigated and few reviews have been published for the summarization of azetidine biosynthesis. In this review, we provide a comprehensive description of the biosyntheses of all the azetidine-containing natural products, especially the biosyntheses of azetidine moieties. We hope that this review will draw much attention to the biosynthetic research of the largely unexplored azetidine moieties as well as the discovery of novel azetidine-containing natural products in the near future.
Collapse
Affiliation(s)
- Linlin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Daichen Yao
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Fenghui Gao
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology and Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guannan Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
2
|
Characterization of Pathway-Specific Regulator NigR for High Yield Production of Nigericin in Streptomyces malaysiensis F913. Antibiotics (Basel) 2022; 11:antibiotics11070938. [PMID: 35884192 PMCID: PMC9312159 DOI: 10.3390/antibiotics11070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Nigericin is a polyether antibiotic with potent antibacterial, antifungal, antimalarial and anticancer activity. NigR, the only regulator in the nigericin biosynthetic gene cluster in Streptomyces malaysiensis F913, was identified as a SARP family regulator. Disruption of nigR abolished nigericin biosynthesis, while complementation of nigR restored nigericin production, suggesting that NigR is an essential positive regulator for nigericin biosynthesis. Overexpression of nigR in Streptomyces malaysiensis led to significant increase in nigericin production compared to the wild-type strain. Nigericin production in the overexpression strain was found to reach 0.56 g/L, which may be the highest nigericin titer reported to date. Transcriptional analysis suggested that nigR is required for the transcription of structural genes in the nig gene cluster; quantitative RT-PCR analysis revealed that the expression of structural genes was upregulated in the nigR overexpression strain. Our study suggested that NigR acts in a positive manner to modulate nigericin production by activating transcription of structural genes and provides an effective strategy for scaling up nigericin production.
Collapse
|
3
|
Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis. Microorganisms 2021; 9:microorganisms9020374. [PMID: 33673359 PMCID: PMC7917814 DOI: 10.3390/microorganisms9020374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.
Collapse
|
4
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
5
|
Li Y, Zhang J, Zheng J, Guan H, Liu W, Tan H. Co-expression of a SARP Family Activator ChlF2 and a Type II Thioesterase ChlK Led to High Production of Chlorothricin in Streptomyces antibioticus DSM 40725. Front Bioeng Biotechnol 2020; 8:1013. [PMID: 32974326 PMCID: PMC7471628 DOI: 10.3389/fbioe.2020.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Chlorothricin (CHL), produced by Streptomyces antibioticus DSM 40725 (wild-type strain, WT), belongs to a growing family of spirotetronate antibiotics that have biological activities inhibiting pyruvate carboxylase and malate dehydrogenase. ChlF2, a cluster-situated SARP regulator, can activate the transcription of chlJ, chlC3, chlC6, chlE1, chlM, and chlL to control CHL biosynthesis. Co-expression of chlF2 and chlK encoding type II thioesterase in WT strain under the control of Pkan led to high production of chlorothricin by 840% in comparison with that of WT. Since the inhibitory activity of CHL against several Gram-positive bacteria is higher than des-CHL, combinatorial strategies were applied to promote the conversion of des-CHL to CHL. Over-expression of chlB4, encoding a halogenase, combining with the supplementation of sodium chloride led to further 41% increase of CHL production compared to that of F2OE, a chlF2 over-expression strain. These findings provide new insights into the fine-tuned regulation of spirotetronate family of antibiotics and the construction of high-yield engineered strains.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hanye Guan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li Y, Kong L, Shen J, Wang Q, Liu Q, Yang W, Deng Z, You D. Characterization of the positive SARP family regulator PieR for improving piericidin A1 production in Streptomyces piomogeues var. Hangzhouwanensis. Synth Syst Biotechnol 2018; 4:16-24. [PMID: 30560207 PMCID: PMC6290260 DOI: 10.1016/j.synbio.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023] Open
Abstract
Piericidin A1, a member of ɑ-pyridone antibiotic, exhibits various biological activities such as antimicrobial, antifungal, and antitumor properties and possesses potent respiration-inhibitory activity against insects due to its competitive binding capacity to mitochondrial complex I. The biosynthetic pathway of piericidin A1 has been reported in Streptomyces piomogeues var. Hangzhouwanensis, while the regulatory mechanism remains poorly understood. In this study, a Streptomyces antibiotic regulatory protein (SARP) family transcriptional regulator PieR was characterized. Genetic disruption and complementation manipulations revealed that PieR positively regulated the production of piericidin A1. Moreover, the overexpression of pieR contributed to the improvement of piericidin A1 productivity. The real-time quantitative PCR (RT-qPCR) was carried out and the data showed that pieR stimulated the transcription of all the biosynthesis-related genes for piericidin A1. In order to explore the regulatory mechanism, electrophoresis mobility shift assays (EMSA) and DNase I footprinting experiments have been conducted. A protected region covering 50 nucleotides within the upstream region of pieR was identified and two 5-nt direct repeat sequences (5′-CCGGA-3′) in the protected region were found. These findings, taken together, set stage for transcriptional control engineering in the view of optimizing piericidin A1 production and thus provide a viable potent route for the construction of strains with high productivity.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jufang Shen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weinan Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth Syst Biotechnol 2018; 3:229-235. [PMID: 30417136 PMCID: PMC6215055 DOI: 10.1016/j.synbio.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are the main sources of antibiotics. The onset and level of production of each antibiotic is subject to complex control by multi-level regulators. These regulators exert their functions at hierarchical levels. At the lower level, cluster-situated regulators (CSRs) directly control the transcription of neighboring genes within the gene cluster. Higher-level pleiotropic and global regulators exert their functions mainly through modulating the transcription of CSRs. Advances in understanding of the regulation of antibiotic biosynthesis in actinomycetes have inspired us to engineer these regulators for strain improvement and antibiotic discovery.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Lu W, Alanzi AR, Abugrain ME, Ito T, Mahmud T. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum. Appl Microbiol Biotechnol 2018; 102:10589-10601. [PMID: 30276712 DOI: 10.1007/s00253-018-9375-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
Pactamycin, a structurally unique aminocyclitol natural product isolated from Streptomyces pactum, has potent antibacterial, antitumor, and anti-protozoa activities. However, its production yields under currently used culture conditions are generally low. To understand how pactamycin biosynthesis is regulated and explore the possibility of improving pactamycin production in S. pactum, we investigated the transcription regulations of pactamycin biosynthesis. In vivo inactivation of two putative pathway-specific regulatory genes, ptmE and ptmF, resulted in mutant strains that are not able to produce pactamycin. Genetic complementation using a cassette containing ptmE and ptmF integrated into the S. pactum chromosome rescued the production of pactamycin. Transcriptional analysis of the ΔptmE and ΔptmF strains suggests that both genes control the expression of the whole pactamycin biosynthetic gene cluster. However, attempts to overexpress these regulatory genes by introducing a second copy of the genes in S. pactum did not improve the production yield of pactamycin. We discovered that pactamycin biosynthesis is sensitive to phosphate regulation. Concentration of inorganic phosphate higher than 2 mM abolished both the transcription of the biosynthetic genes and the production of the antibiotic. Draft genome sequencing of S. pactum and bioinformatics studies revealed the existence of global regulatory genes, e.g., genes that encode a two-component PhoR-PhoP system, which are commonly involved in secondary metabolism. Inactivation of phoP did not show any significant effect to pactamycin production. However, in the phoP::aac(3)IV mutant, pactamycin biosynthesis is not affected by external inorganic phosphate concentration.
Collapse
Affiliation(s)
- Wanli Lu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Abdullah R Alanzi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Takuya Ito
- Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nisikiorikita, Tondabayashi, Osaka, 584-8540, Japan
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA.
| |
Collapse
|
9
|
Li J, Li Y, Niu G, Guo H, Qiu Y, Lin Z, Liu W, Tan H. NosP-Regulated Nosiheptide Production Responds to Both Peptidyl and Small-Molecule Ligands Derived from the Precursor Peptide. Cell Chem Biol 2017; 25:143-153.e4. [PMID: 29198568 DOI: 10.1016/j.chembiol.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Nosiheptide, an archetypal member of thiopeptide antibiotics, arises from post-translational modifications of a ribosomally synthesized precursor peptide that contains an N-terminal leader peptide (LP) sequence and a C-terminal core peptide (CP) sequence. Despite extensive efforts concerning the biosynthesis of thiopeptide antibiotics, the regulatory mechanisms in this process remain poorly understood. Using the nosiheptide-producing Streptomyces actuosus strain as a model system, we report here that NosP, a Streptomyces antibiotic regulatory protein, serves as the only cluster-situated regulator and activates the transcription of all structural genes, which are organized into two divergently transcribed operons in the nos cluster, by binding to their intergenic region. NocP, the counterpart of NosP in Nocardia sp., regulates the production of structurally related nocathiacin I in a similar manner. NosP activity senses the nosiheptide biosynthetic process by interactions with both peptidyl and small-molecule ligands that result from the LP and CP parts of the precursor peptide, respectively.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqing Niu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Chongqing 400716, China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
10
|
Meng X, Wang W, Xie Z, Li P, Li Y, Guo Z, Lu Y, Yang J, Guan K, Lu Z, Tan H, Chen Y. Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. SCIENCE CHINA-LIFE SCIENCES 2017; 60:980-991. [DOI: 10.1007/s11427-017-9120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|
11
|
Meng L, Xiong Z, Chu J, Wang Y. Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis. Lett Appl Microbiol 2017; 63:384-390. [PMID: 27538855 DOI: 10.1111/lam.12635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 01/19/2023]
Abstract
The rpp biosynthetic gene cluster (sav7130-7131) in Streptomyces avermitilis contains a type III polyketide synthases (PKSs) and a cytochrome P450 and was reportedly involved in producing a diffusible brown pigment. Since the same precursor malonyl-CoA was used as substrate for the type I PKSs and type III PKSs, there might be a competition for precursor between rpp gene cluster and avermectin biosynthetic cluster. In this work, rpp biosynthetic gene cluster deletion mutants were constructed to improve avermectin production. In an industrial strain AV-LP, rpp deletion improved avermectin production from 1024 to 1262 mg l-1 without any effect on the cell growth. In the same way, the production of an industrial overproducer increased from 3582 to 4450 mg l-1 . Transcriptional analysis suggested that the deletion of rpp gene cluster stimulated transcription of aveR, leading to increased transcription of biosynthetic gene aveA1 and a consequent increase in avermectin production. SIGNIFICANCE AND IMPACT OF THE STUDY Because of the wide use of avermectins, many efforts have been made to improve the productivity via conventional genetic engineering technique. However, due to the lack of the molecular and genetic basis underlying such a yield enhancement after iterative rounds of mutagenesis and selection, it is often difficult to improve the titre in overproducers. Here, we report knocking out rpp biosynthetic gene cluster improved the production of an industrial overproducer by 24%. This work enriched the strategy to improve the production of antibiotics in industrial strains and may help further understanding of the interaction between type III polyketide synthases and other types.
Collapse
Affiliation(s)
- L Meng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Xiong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - J Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Y Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China. .,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Zhang Y, He H, Liu H, Wang H, Wang X, Xiang W. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microb Cell Fact 2016; 15:152. [PMID: 27604457 PMCID: PMC5015266 DOI: 10.1186/s12934-016-0552-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Milbemycins, a group of 16-membered macrolides with potent anthelminthic and insecticidal activity, are produced by several Streptomyces and used widely in agricultural, medical and veterinary fields. Milbemycin A3 and A4, the main components produced by Streptomyces bingchenggensis, have been developed as an acaricide to control mites. The subsequent structural modification of milbemycin A3/A4 led to other commercial products, such as milbemycin oxime, lepimectin and latidectin. Despite its importance, little is known about the regulation of milbemycin biosynthesis, which has hampered efforts to enhance milbemycin production via engineering regulatory genes. RESULTS milR, a regulatory gene in the milbemycin (mil) biosynthetic gene cluster of S. bingchenggensis, encodes a large ATP-binding regulator of the LuxR family (LAL family), which contains an ATPase domain at its N-terminus and a LuxR-like DNA-binding domain at the C-terminus. Gene disruption and genetic complementation revealed that milR plays an important role in the biosynthesis of milbemycin. β-glucuronidase assays and transcriptional analysis showed that MilR activates the expression of the milA4-E operon and milF directly, and activates the other mil genes indirectly. Site-directed mutagenesis confirmed that the ATPase domain is indispensable for MilR's function, and particularly mutation of the conserved amino acids K37A, D122A and D123A, led to the loss of MilR function for milbemycin biosynthesis. Overexpression of an extra copy of milR under the control of its native promoter significantly increased production of milbemycin A3/A4 in a high-producing industrial strain S. bingchenggensis BC04. CONCLUSIONS A LAL regulator, MilR, was characterized in the mil gene cluster of S. bingchenggensis BC04. MilR could activate milbemycin biosynthesis through direct interaction with the promoter of the milA4-E operon and that of milF. Overexpression of milR increased milbemycin A3/A4 production by 38 % compared with the parental strain BC04, suggesting that genetic manipulation of this activator gene could enhance the yield of antibiotics.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
13
|
Li M, Chen Y, Wu S, Tang Y, Deng Y, Yuan J, Dong J, Li H, Tang L. TmcN is involved in ATP regulation of tautomycetin biosynthesis in Streptomyces griseochromogenes. Biochem Biophys Res Commun 2016; 478:221-226. [PMID: 27444385 DOI: 10.1016/j.bbrc.2016.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
The regulatory mechanism of tautomycetin (TMC) biosynthesis remains largely unknown, although it has been of great interest to the pharmaceutical industry. Our previous study showed that intracellular adenosine triphosphate (inATP) level is negatively correlated with secondary metabolite biosynthesis in various Streptomyces spp. In this study, by exogenous treatment of ATP, we also found a negative correlation between TMC biosynthesis and inATP level in Streptomyces griseochromogenes (S. griseochromogenes). However, the underlying mechanism remains unclear. TmcN, a pathway-specific transcriptional regulator of TMC biosynthetic genes, was previously revealed as a large ATP-binding LuxR (LAL) family protein. The predicted amino acid sequence of TmcN shows highly conserved Walker A and B binding motifs, which suggest an ATPase function of TmcN. We therefore hypothesized that the ATPase domain of TmcN may play a role in sensing endogenous pool of ATP, and is thus involved in the ATP regulation of TMC biosynthesis. To test the hypothesis, we first explored the key residue that affects the ATPase activity of TmcN by amino acid sequence alignment and structural simulation. After that, we disrupted tmcN gene in S. griseochromogenes, and the tmcN or site-direct-mutated tmcN were re-introduced to get the complementary and ATPase domain disrupted strains. The transcription level of tmcN, TMC yield, and inATP, as well as the effect of ATP on TMC production of different mutants were evaluated. Deletion of tmcN or site-direct mutation of ATPase domain of TmcN in S. griseochromogenes significantly reduced the TMC production, and it was not affected by exogenous ATP treatment. In addition, a relatively high level of inATP was detected in tmcN deletion and site-direct mutation strains. Our results here suggested that TmcN, especially its ATPase domain, is involved in consuming of endogenous ATP pool and thus plays pivotal role in connecting the primary and secondary metabolite in S. griseochromogenes.
Collapse
Affiliation(s)
- Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yang Chen
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Sijin Wu
- Research Center for Molecular Medicine, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Yan Tang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ying Deng
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jianyi Dong
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Huajun Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Li Tang
- Research Center for Molecular Medicine, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
14
|
Peng Q, Liu C, Wang B, Yang M, Wu J, Zhang J, Song F. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73. Sci Rep 2016; 6:29141. [PMID: 27404799 PMCID: PMC4941409 DOI: 10.1038/srep29141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 12/04/2022] Open
Abstract
Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical −12/−24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma54 factor and is activated by the Sigma54-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma54-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxia Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences, Northeast Agriculture University, Harbin, China
| | - Min Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
The Regulation of Exosporium-Related Genes in Bacillus thuringiensis. Sci Rep 2016; 6:19005. [PMID: 26805020 PMCID: PMC4750369 DOI: 10.1038/srep19005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 11/09/2022] Open
Abstract
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Bt) are spore-forming members of the Bacillus cereus group. Spores of B. cereus group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the B. cereus group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (bclA and bclB), basal layer proteins (bxpA, bxpB, cotB, and exsY ), and inosine hydrolase (iunH). Mutation of sigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of gerE decreased the transcriptional activities of bclB, bxpB, cotB, and iunH but increased the expression of bxpA, and GerE binds to the promoters of bclB, bxpB, cotB, bxpA, and iunH. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of bclB, bxpB, cotB, and iunH and decreasing that of bxpA. These findings provide insight into the exosporium assembly process at the transcriptional level.
Collapse
|
16
|
Li Y, Li J, Tian Z, Xu Y, Zhang J, Liu W, Tan H. Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChlF1. J Biol Chem 2016; 291:5406-17. [PMID: 26750095 DOI: 10.1074/jbc.m115.695874] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Chlorothricin, isolated from Streptomyces antibioticus, is a parent member of spirotetronate family of antibiotics that have long been appreciated for their remarkable biological activities. ChlF1 plays bifunctional roles in chlorothricin biosynthesis by binding to its target genes (chlJ, chlF1, chlG, and chlK). The dissociation constants of ChlF1 to these genes are ∼ 102-140 nm. A consensus sequence, 5'-GTAANNATTTAC-3', was found in these binding sites. ChlF1 represses the transcription of chlF1, chlG, and chlK but activates chlJ, which encodes a key enzyme acyl-CoA carboxyl transferase involved in the chlorothricin biosynthesis. We demonstrate that the end product chlorothricin and likewise its biosynthetic intermediates (demethylsalicycloyl chlorothricin and deschloro-chlorothricin) can act as signaling molecules to modulate the binding of ChlF1 to its target genes. Intriguingly, a correlation between the antibacterial activity and binding ability of signaling molecules to the regulator ChlF1 is clearly observed. These features of the signaling molecules are associated with the glycosylation of spirotetronate macrolide aglycone. The findings provide new insights into the TetR family regulators responding to special structure of signaling molecules, and we reveal the regulatory mini-network mediated by ChlF1 in chlorothricin biosynthesis for the first time.
Collapse
Affiliation(s)
- Yue Li
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jingjing Li
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100101, China, and
| | - Zhenhua Tian
- the State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xu
- the State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jihui Zhang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Liu
- the State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huarong Tan
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
17
|
Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K. Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 2015; 14:46. [PMID: 25886456 PMCID: PMC4393881 DOI: 10.1186/s12934-015-0231-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Oxytetracycline (OTC) is a broad-spectrum antibiotic commercially produced by Streptomyces rimosus. Despite its importance, little is known about the regulation of OTC biosynthesis, which hampered any effort to improve OTC production via engineering regulatory genes. Results A gene encoding a Streptomyces antibiotic regulatory protein (SARP) was discovered immediately adjacent to the otrB gene of oxy cluster in S. rimosus and designated otcR. Deletion and complementation of otcR abolished or restored OTC production, respectively, indicating that otcR encodes an essential activator of OTC biosynthesis. Then, the predicted consensus SARP-binding sequences were extracted from the promoter regions of oxy cluster. Transcriptional analysis in a heterologous GFP reporter system demonstrated that OtcR directly activated the transcription of five oxy promoters in E. coli, further mutational analysis of a SARP-binding sequence of oxyI promoter proved that OtcR directly interacted with the consensus repeats. Therefore, otcR was chosen as an engineering target, OTC production was significantly increased by overexpression of otcR as tandem copies each under the control of strong SF14 promoter. Conclusions A SARP activator, OtcR, was identified in oxy cluster of S. rimosus; it was shown to directly activate five promoters from oxy cluster. Overexpression of otcR at an appropriate level dramatically increased OTC production by 6.49 times compared to the parental strain, thus demonstrating the great potential of manipulating OtcR to improve the yield of OTC production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0231-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouliang Yin
- Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd, 50 Shengxue Road, Shijiazhuang, 051430, Hebei, People's Republic of China.
| | - Yuxiu Zhang
- Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
18
|
Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015; 23:110-9. [DOI: 10.1016/j.tim.2014.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
19
|
Activation of gab cluster transcription in Bacillus thuringiensis by γ-aminobutyric acid or succinic semialdehyde is mediated by the Sigma 54-dependent transcriptional activator GabR. BMC Microbiol 2014; 14:306. [PMID: 25527261 PMCID: PMC4279683 DOI: 10.1186/s12866-014-0306-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus thuringiensis GabR is a Sigma 54-dependent transcriptional activator containing three typical domains, an N-terminal regulatory domain Per-ARNT-Sim (PAS), a central AAA+ (ATPases associated with different cellular activities) domain and a C-terminal helix-turn-helix (HTH) DNA binding domain. GabR positively regulates the expression of the gabT gene of the gab gene cluster, which is responsible for the γ-aminobutyric acid (GABA) shunt. Results Purified GabR was shown to specifically bind to a repeat region that mapped 58 bp upstream of the gabT start codon. The specific signal factors GABA and succinic semialdehyde (SSA) activated gabT expression, whereas GABA- and SSA-inducible gabT transcription was abolished in sigL and gabR mutants. GABA and SSA did not induce the expression of either SigL or GabR. Deletion of the PAS domain of GabR resulted in increased gabT transcriptional activity, both in the presence and absence of GABA. Conclusions This study identified the GabR-binding site on the gabT promoter; however, GabR does not bind to its own promoter. gabT transcription is induced by GABA and SSA, and inducible expression is dependent on SigL and activated by GabR. The PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0306-3) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
21
|
Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both σ54 and σK factors. J Bacteriol 2014; 196:2934-43. [PMID: 24914178 DOI: 10.1128/jb.01675-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysine 2,3-aminomutase (KAM; EC 5.4.3.2) catalyzes the interconversion of l-lysine and l-β-lysine. The transcription and regulation of the kam locus, including lysine-2,3-aminomutase-encoding genes, in Bacillus thuringiensis were analyzed in this study. Reverse transcription-PCR (RT-PCR) analysis revealed that this locus forms two operons: yodT (yodT-yodS-yodR-yodQ-yodP-kamR) and kamA (kamA-yokU-yozE). The transcriptional start sites (TSSs) of the kamA gene were determined using 5' rapid amplification of cDNA ends (RACE). A typical -12/-24 σ(54) binding site was identified in the promoter PkamA, which is located upstream of the kamA gene TSS. A β-galactosidase assay showed that PkamA, which directs the transcription of the kamA operon, is controlled by the σ(54) factor and is activated through the σ(54)-dependent transcriptional regulator KamR. The kamA operon is also controlled by σ(K) and regulated by the GerE protein in the late stage of sporulation. kamR and kamA mutants were prepared by homologous recombination to examine the role of the kam locus. The results showed that the sporulation rate in B. thuringiensis HD(ΔkamR) was slightly decreased compared to that in HD73, whereas that in HD(ΔkamA) was similar to that in HD73. This means that other genes regulated by KamR are important for sporulation.
Collapse
|
22
|
Zhang Y, Pan G, Zou Z, Fan K, Yang K, Tan H. JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 2013; 90:884-97. [PMID: 24112541 DOI: 10.1111/mmi.12406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 01/20/2023]
Abstract
Jadomycin production is under complex regulation in Streptomyces venezuelae. Here, another cluster-situated regulator, JadR*, was shown to negatively regulate jadomycin biosynthesis by binding to four upstream regions of jadY, jadR1, jadI and jadE in jad gene cluster respectively. The transcriptional levels of four target genes of JadR* increased significantly in ΔjadR*, confirming that these genes were directly repressed by JadR*. Jadomycin B (JdB) and its biosynthetic intermediates 2,3-dehydro-UWM6 (DHU), dehydrorabelomycin (DHR) and jadomycin A (JdA) modulated the DNA-binding activities of JadR* on the jadY promoter, with DHR giving the strongest dissociation effects. Direct interactions between JadR* and these ligands were further demonstrated by surface plasmon resonance, which showed that DHR has the highest affinity for JadR*. However, only DHU and DHR could induce the expression of jadY and jadR* in vivo. JadY is the FMN/FAD reductase supplying cofactors FMNH₂/FADH₂ for JadG, an oxygenase, that catalyses the conversion of DHR to JdA. Therefore, our results revealed that JadR* and early pathway intermediates, particularly DHR, regulate cofactor supply by a convincing case of a feed-forward mechanism. Such delicate regulation of expression of jadY could ensure a timely supply of cofactors FMNH₂/FADH₂ for jadomycin biosynthesis, and avoid unnecessary consumption of NAD(P)H.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | |
Collapse
|
23
|
A comparative metabolomics analysis of Saccharopolyspora spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield. Biosci Biotechnol Biochem 2013; 77:1661-8. [PMID: 23924726 DOI: 10.1271/bbb.130169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolomics analysis of three Saccharopolyspora spinosa strains (wild type strain WT, ultraviolet mutant strain WH124, and metabolic engineering strain LU104) with different spinosad producing levels was performed by liquid chromatograph coupled to mass spectrometry (LC-MS). The metabolite profiles were subjected to hierarchal clustering analysis (HCA) and principal component analysis (PCA). The results of HCA on a heat map revealed that the large numbers of primary metabolism detected were more abundant in WH124 and less abundant in LU104 during the early fermentation stage as compared to the WT strain. PCA separated the three strains clearly and suggested nine metabolites that contributed predominantly to the separation. These biomarkers were associated with central carbon metabolism (succinic acid, α-ketoglutarate, acetyl-CoA, and ATP), amino acid metabolism (glutamate, glutamine, and valine), and secondary metabolism (pseudoaglycone), etc. These findings provide insight into the metabolomic characteristics of the two high-yield strains and for further regulation of spinosad production.
Collapse
|
24
|
Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression. SCIENCE CHINA-LIFE SCIENCES 2013; 56:619-27. [DOI: 10.1007/s11427-013-4504-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/28/2013] [Indexed: 12/29/2022]
|
25
|
JadR and jadR2 act synergistically to repress jadomycin biosynthesis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:584-90. [PMID: 23832247 DOI: 10.1007/s11427-013-4508-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022]
Abstract
The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.
Collapse
|
26
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. AdpA, key regulator for morphological differentiation regulates bacterial chromosome replication. Open Biol 2013; 2:120097. [PMID: 22870392 PMCID: PMC3411110 DOI: 10.1098/rsob.120097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022] Open
Abstract
AdpA, one of the most pleiotropic transcription regulators in bacteria, controls expression of several dozen genes during Streptomyces differentiation. Here, we report a novel function for the AdpA protein: inhibitor of chromosome replication at the initiation stage. AdpA specifically recognizes the 5′ region of the Streptomyces coelicolor replication origin (oriC). Our in vitro results show that binding of AdpA protein decreased access of initiator protein (DnaA) to the oriC region. We also found that mutation of AdpA-binding sequences increased the accessibility of oriC to DnaA, which led to more frequent replication and acceleration of Streptomyces differentiation (at the stage of aerial hyphae formation). Moreover, we also provide evidence that AdpA and DnaA proteins compete for oriC binding in an ATP-dependent manner, with low ATP levels causing preferential binding of AdpA, and high ATP levels causing dissociation of AdpA and association of DnaA. This would be consistent with a role for ATP levels in determining when aerial hyphae emerge.
Collapse
Affiliation(s)
- Marcin Wolański
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53114 Wrocław, Poland
| | | | | |
Collapse
|
27
|
Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis. J Bacteriol 2013; 195:2887-97. [PMID: 23603740 DOI: 10.1128/jb.00112-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus thuringiensis, a novel N-acetylmuramoyl-L-alanine amidase gene (named cwlB) was detected, and the CwlB protein was purified and characterized. Reverse transcription-PCR (RT-PCR) results indicated that cwlB and an upstream gene (named cwlA) formed one transcriptional unit. 5' rapid amplification of cDNA ends (5'-RACE)-PCR and transcriptional fusions with the lacZ gene indicated that transcription of the operon was directed by a promoter, P(cwlA), which is located upstream from the cwlA gene and that the transcription start site is a single 5'-end nucleotide residue T located 25 nucleotides (bp) upstream from the cwlA translational start codon. Moreover, the activity of P(cwlA) was controlled by σ(K). Morphological analysis suggested that the mutation of cwlB could delay spore release compared to the timing of spore release in the wild-type strain. Western blot assay demonstrated that purified CwlB bound to the B. thuringiensis cell wall. Observations with laser confocal microscopy and a green fluorescent protein-based reporter system demonstrated that the CwlB protein localizes to the cell envelope. All results suggest that the CwlB protein is involved in mother cell lysis in B. thuringiensis.
Collapse
|
28
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
29
|
Li J, Li L, Feng C, Chen Y, Tan H. Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microb Cell Fact 2012; 11:135. [PMID: 23043373 PMCID: PMC3520715 DOI: 10.1186/1475-2859-11-135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/29/2012] [Indexed: 11/26/2022] Open
Abstract
Background Polyoxins are potent inhibitors of chitin synthetases in fungi and insects. The gene cluster responsible for biosynthesis of polyoxins has been cloned and sequenced from Streptomyces cacaoi and tens of polyoxin analogs have been identified already. Results The polyoxin biosynthetic gene cluster from Streptomyces cacaoi was heterologously expressed in the sanN inactivated mutant of Streptomyces ansochromogenes as a nikkomycin producer. Besides hybrid antibiotics (polynik A and polyoxin N) and some known polyoxins, two novel polyoxin analogs were accumulated. One of them is polyoxin P that has 5-aminohexuronic acid with N-glycosidically bound thymine as the nucleoside moiety and dehydroxyl-carbamoylpolyoxic acid as the peptidyl moiety. The other analog is polyoxin O that contains 5-aminohexuronic acid bound thymine as the nucleoside moiety, but recruits polyoximic acid as the sole peptidyl moiety. Bioassay against phytopathogenic fungi showed that polyoxin P displayed comparatively strong inhibitory activity, whereas the inhibitory activity of polyoxin O was weak under the same testing conditions. Conclusion Two novel polyoxin analogs (polyoxin P and O) were generated by the heterologous expression of polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Polyoxin P showed potent antifungal activity,while the activity of polyoxin O was weak. The strategy presented here may be available for other antibiotics producers.
Collapse
Affiliation(s)
- Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
30
|
Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 2012; 12:52. [PMID: 22906146 PMCID: PMC3533511 DOI: 10.1186/1472-6750-12-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022] Open
Abstract
Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC) resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC) transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC) assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877) and 1.4-fold in SR16 (P = 0.00973) duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively). Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.
Collapse
Affiliation(s)
- Lan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Santos-Aberturas J, Vicente CM, Payero TD, Martín-Sánchez L, Cañibano C, Martín JF, Aparicio JF. Hierarchical control on polyene macrolide biosynthesis: PimR modulates pimaricin production via the PAS-LuxR transcriptional activator PimM. PLoS One 2012; 7:e38536. [PMID: 22693644 PMCID: PMC3367932 DOI: 10.1371/journal.pone.0038536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimR. This regulator combines an N-terminal domain corresponding to the Streptomyces antibiotic regulatory protein (SARP) family of transcriptional activators with a C-terminal half homologous to guanylate cyclases and large ATP-binding regulators of the LuxR family. The PimR SARP domain (PimR(SARP)) was expressed in Escherichia coli as a glutathione S-transferase (GST)-fused protein. Electrophoretic mobility shift assays showed that GST-PimR(SARP) binds a single target, the intergenic region between the regulatory genes pimR and pimMs in the pimaricin cluster. The PimR(SARP)-binding site was investigated by DNaseI protection studies, revealing that it contains three heptameric direct repeats adjusting to the consensus 5'-CGGCAAG-3'. Transcription start points of pimM and pimR promoters were identified by 5'-RACE, revealing that unlike other SARPs, PimR(SARP) does not interact with the -35 region of its target promoter. Quantitative transcriptional analysis of these regulatory genes on mutants on each of them has allowed the identification of the pimM promoter as the transcriptional target for PimR. Furthermore, the constitutive expression of pimM restored pimaricin production in a pimaricin-deficient strain carrying a deletion mutant of pimR. These results reveal that PimR exerts its positive effect on pimaricin production by controlling pimM expression level, a regulator whose gene product activates transcription from eight different promoters of pimaricin structural genes directly.
Collapse
Affiliation(s)
- Javier Santos-Aberturas
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Cláudia M. Vicente
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Tamara D. Payero
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | | | - Carmen Cañibano
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Juan F. Martín
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
| | - Jesús F. Aparicio
- Area of Microbiology, Faculty of Biology, University of León, León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, León, Spain
- * E-mail:
| |
Collapse
|
32
|
Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme Microb Technol 2012; 50:318-24. [PMID: 22500899 DOI: 10.1016/j.enzmictec.2012.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
Oxytetracycline (OTC) is a widely used antibiotic, which is commercially produced by Streptomyces rimosus. The type II minimal polyketide synthases (minimal PKS) genes of the oxytetracycline biosynthesis cluster in S. rimosus, consisting of oxyA, oxyB and oxyC, are involved in catalyzing 19-C chain building by the condensation of eight malonyl-CoA groups to form the starting polyketide. This study aimed to investigate the effects of overexpression of the minimal PKS gene in a model S. rimosus strain (M4018) and in an industrial overproducer (SR16) by introduction of a second copy of the gene into the chromosome. Increased levels of oxyA, oxyB and oxyC gene transcription were monitored using reverse transcription quantitative real-time PCR. Overexpression of the minimal PKS gene elicited retardation of cell growth and a significant improvement in OTC production in corresponding mutants (approximately 51.2% and 32.9% in M4018 and SR16 mutants respectively). These data indicate that the minimal PKS plays an important role in carbon flux redirection from cell growth pathways to OTC biosynthesis pathways.
Collapse
|
33
|
Wang J, Wang W, Wang L, Zhang G, Fan K, Tan H, Yang K. A novel role of ‘pseudo’γ-butyrolactone receptors in controlling γ-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 2011; 82:236-50. [DOI: 10.1111/j.1365-2958.2011.07811.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Intracellular ATP levels affect secondary metabolite production in Streptomyces spp. Biosci Biotechnol Biochem 2011; 75:1576-81. [PMID: 21821936 DOI: 10.1271/bbb.110277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The addition of extracellular ATP (exATP) to four Streptomyces strains had similar effects: low exATP levels stimulated antibiotic production and high levels reduced it. Compared with antibiotic production, the concentrations of intracellular ATP (inATP) in the tested strains were opposite, which suggests a role of inATP in regulating secondary metabolite production. Under inactivation of the polyphosphate kinase gene (ppk) in Streptomyces lividans, we observed the same results: when the inATP level in the mutant strain was lower than in the parent strain, more antibiotic was produced. Combining all the results, a strong inverse relationship between [inATP] and the secondary metabolite production is suggested by this study.
Collapse
|
35
|
Pan Y, Wang L, He X, Tian Y, Liu G, Tan H. SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes. BMC Microbiol 2011; 11:164. [PMID: 21771341 PMCID: PMC3146816 DOI: 10.1186/1471-2180-11-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 07/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND sabR is a pleiotropic regulatory gene which has been shown to positively regulate the nikkomycin biosynthesis and negatively affect the sporulation of Streptomyces ansochromogenes. In this study, we investigate the mechanism of SabR on modulating nikkomycin production in Streptomyces ansochromogenes. RESULTS The transcription start point of sabR was determined by high-resolution S1 nuclease mapping and localized at the nucleotide T at position 37 bp upstream of the potential sabR translation start codon (GTG). Disruption of sabR enhanced its own transcription, but retarded the nikkomycin production. Over-expression of sabR enhanced nikkomycin biosynthesis in Streptomyces ansochromogenes. EMSA analysis showed that SabR bound to the upstream region of sanG, but it did not bind to the upstream region of its encoding gene (sabR), sanF and the intergenic region between sanN and sanO. DNase 1 footprinting assays showed that the SabR-binding site upstream of sanG was 5'-CTTTAAGTCACCTGGCTCATTCGCGTTCGCCCAGCT-3' which was designated as SARE. Deletion of SARE resulted in the delay of nikkomycin production that was similar to that of sabR disruption mutant. CONCLUSIONS These results indicated that SabR modulated nikkomycin biosynthesis as an enhancer via interaction with the promoter region of sanG, and expanded our understanding about regulatory cascade in nikkomycin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Pan
- The Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linqi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihong He
- The Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- The Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Li J, Li L, Tian Y, Niu G, Tan H. Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng 2011; 13:336-44. [DOI: 10.1016/j.ymben.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
37
|
Zhu T, Tian J, Zhang S, Wu N, Fan Y. Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PLoS One 2011; 6:e17367. [PMID: 21387010 PMCID: PMC3046157 DOI: 10.1371/journal.pone.0017367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/01/2011] [Indexed: 12/02/2022] Open
Abstract
The nickel resistance determinant ncrABCY was identified in Leptospirillum ferriphilum UBK03. Within this operon, ncrA and ncrC encode two membrane proteins that form an efflux system, and ncrB encodes NcrB, which belongs to an uncharacterized family (DUF156) of proteins. How this determinant is regulated remains unknown. Our data indicate that expression of the nickel resistance determinant is induced by nickel. The promoter of ncrA, designated pncrA, was cloned into the promoter probe vector pPR9TT, and co-transformed with either a wild-type or mutant nickel resistance determinant. The results revealed that ncrB encoded a transcriptional regulator that could regulate the expression of ncrA, ncrB, and ncrC. A GC-rich inverted repeat sequence was identified in the promoter pncrA. Electrophoretic mobility shift assays (EMSAs) and footprinting assays showed that purified NcrB could specifically bind to the inverted repeat sequence of pncrA in vitro; this was confirmed by bacterial one-hybrid analysis. Moreover, this binding was inhibited in the presence of nickel ions. Thus, we classified NcrB as a transcriptional regulator that recognizes the inverted repeat sequence binding motif to regulate the expression of the key nickel resistance gene, ncrA.
Collapse
Affiliation(s)
- Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangyu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|