1
|
Woo JKK, Zimnicka AM, Federle MJ, Freitag NE. Novel motif associated with carbon catabolite repression in two major Gram-positive pathogen virulence regulatory proteins. Microbiol Spectr 2024:e0048524. [PMID: 39387597 DOI: 10.1128/spectrum.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
Carbon catabolite repression (CCR) is a widely conserved regulatory process that ensures enzymes and transporters of less-preferred carbohydrates are transcriptionally repressed in the presence of a preferred carbohydrate. This phenomenon can be regulated via a CcpA-dependent or CcpA-independent mechanism. The CcpA-independent mechanism typically requires a transcriptional regulator harboring a phosphotransferase regulatory domain (PRD) that interacts with phosphotransferase system (PTS) components. PRDs contain a conserved histidine residue that is phosphorylated by the PTS-associated HPr-His15~P protein. PRD-containing regulators often harbor additional domains that resemble PTS-associated EIIB protein domains with a conserved cysteine residue that can be phosphorylated by cognate PTS components. We noted that Mga, the PRD-containing central virulence regulator of Streptococcus pyogenes, has an EIIBGat domain containing a cysteine that, based on the presence of a similar motif in glycerol kinase, could be a target for phosphorylation. Using site-directed mutagenesis, we constructed phospho-ablative and phospho-mimetic substitutions of this cysteine and found that these substitutions modify the CCR of the Rgg2/3 quorum-sensing system. Moreover, we provide genetic evidence that the phospho-donor of this cysteine residue is likely to be ManL, the EIIA/B subunit of the mannose PTS system. Interestingly, a structurally distinct virulence gene regulator, PrfA of Listeria monocytogenes, harbors a similar cysteine-containing motif, and phospho-ablative and phospho-mimetic substitutions of the cysteine-altered CCR of PrfA-dependent virulence gene expression. Collectively, our data suggest that phosphorylation of a cysteine within the shared novel motif in Mga and PrfA may be a heretofore missing link between cellular metabolism and virulence.IMPORTANCEIn this study, we identified a novel cysteine-containing motif within the amino acid sequence of two structurally distinct transcriptional regulators of virulence in two Gram-positive pathogens that appears to link carbon metabolism with virulence gene expression. The results also highlight the potential post-translational modification of cysteine in bacterial species, a rare and understudied modification.
Collapse
Affiliation(s)
- Jerry K K Woo
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Adriana M Zimnicka
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J Federle
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E Freitag
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Xiao F, Zhang Y, Zhang L, Wang Y, Li C, Li S, Lu J, Chen W, Shi G, Li Y. Systematic review on marine carbon source-mannitol: Applications in synthetic biology. Microbiol Res 2024; 289:127881. [PMID: 39241502 DOI: 10.1016/j.micres.2024.127881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. AIM OF REVIEW: The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. EXPECTED CONTRIBUTIONS OF REVIEW: Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Lihuan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Chenxing Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China.
| |
Collapse
|
3
|
Xiao F, Zhang Y, Zhang L, Ding Z, Shi G, Li Y. Construction of the genetic switches in response to mannitol based on artificial MtlR box. BIORESOUR BIOPROCESS 2023; 10:9. [PMID: 38647829 PMCID: PMC10992428 DOI: 10.1186/s40643-023-00634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Synthetic biology has rapidly advanced from the setup of native genetic devices to the design of artificial elements able to provide organisms with highly controllable functions. In particular, genetic switches are crucial for deploying new layers of regulation into the engineered organisms. While the assembly and mutagenesis of native elements have been extensively studied, limited progress has been made in rational design of genetic switches due to a lack of understanding of the molecular mechanism by which a specific transcription factor interacts with its target gene. Here, a reliable workflow is presented for designing two categories of genetic elements, one is the switch element-MtlR box and the other is the transcriptional regulatory element- catabolite control protein A (CcpA) box. The MtlR box was designed for ON/OFF-state selection and is controlled by mannitol. The rational design of MtlR box-based molecular structures can flexibly tuned the selection of both ON and OFF states with different output switchability in response to varied kind effectors. Different types of CcpA boxes made the switches with more markedly inducer sensitivities. Ultimately, the OFF-state value was reduced by 90.69%, and the maximum change range in the presence of two boxes was 15.31-fold. This study presents a specific design of the switch, in a plug-and-play manner, which has great potential for controlling the flow of the metabolic pathway in synthetic biology.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Regulation of Mannitol Metabolism in Enterococcus faecalis and Association with parEF0409 Toxin-Antitoxin Locus Function. J Bacteriol 2022; 204:e0004722. [PMID: 35404112 DOI: 10.1128/jb.00047-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parEF0409 type I toxin-antitoxin locus is situated between genes for two paralogous mannitol family phosphoenolpyruvate phosphotransferase systems (PTSs). In order to address the possibility that parEF0409 function was associated with sugar metabolism, genetic and phenotypic analyses were performed on the flanking genes. It was found that the genes were transcribed as two operons: the downstream operon essential for mannitol transport and metabolism and the upstream operon performing a regulatory function. In addition to genes for the PTS components, the upstream operon harbors a gene similar to mtlR, the key regulator of mannitol metabolism in other Gram-positive bacteria. We confirmed that this gene is essential for the regulation of the downstream operon and identified putative phosphorylation sites required for carbon catabolite repression and mannitol-specific regulation. Genomic comparisons revealed that this dual-operon organization of mannitol utilization genes is uncommon in enterococci and that the association with a toxin-antitoxin system is unique to Enterococcus faecalis. Finally, we consider possible links between parEF0409 function and mannitol utilization. IMPORTANCE Enterococcus faecalis is both a common member of the human gut microbiota and an opportunistic pathogen. Its evolutionary success is partially due to its metabolic flexibility, in particular its ability to import and metabolize a wide variety of sugars. While a large number of phosphoenolpyruvate phosphotransferase sugar transport systems have been identified in the E. faecalis genome bioinformatically, the specificity and regulation of most of these systems remain undetermined. Here, we characterize a complex system of two operons flanking a type I toxin-antitoxin system required for the transport and metabolism of the common dietary sugar mannitol. We also determine the phylogenetic distribution of mannitol utilization genes in the enterococcal genus and discuss the significance of the association with toxin-antitoxin systems.
Collapse
|
5
|
Woo JKK, McIver KS, Federle MJ. Carbon catabolite repression on the Rgg2/3 quorum sensing system in Streptococcus pyogenes is mediated by PTS Man and Mga. Mol Microbiol 2022; 117:525-538. [PMID: 34923680 PMCID: PMC8844239 DOI: 10.1111/mmi.14866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Streptococcus pyogenes, also known as group A Streptococcus or GAS, is a human-restricted pathogen causing a diverse array of infections. The ability to adapt to different niches requires GAS to adjust gene expression in response to environmental cues. We previously identified the abundance of biometals and carbohydrates led to natural induction of the Rgg2/3 cell-cell communication system (quorum sensing, QS). Here we determined the mechanism by which the Rgg2/3 QS system is stimulated exclusively by mannose and repressed by glucose, a phenomenon known as carbon catabolite repression (CCR). Instead of carbon catabolite protein A, the primary mediator of CCR in Gram-positive bacteria; CCR of Rgg2/3 requires the PTS regulatory domain (PRD)-containing transcriptional regulator Mga. Deletion of Mga led to carbohydrate-independent activation of Rgg2/3 by down-regulating rgg3, the QS repressor. Through phosphoablative and phosphomimetic substitutions within Mga PRDs, we demonstrated that selective phosphorylation of PRD1 conferred repression of the Rgg2/3 system. Moreover, given the carbohydrate specificity mediating Mga-dependent governance over Rgg2/3, we tested mannose-specific PTS components and found the EIIA/B subunit ManL was required for Mga-dependent repression. These findings provide newfound connections between PTSMan , Mga, and QS, and further demonstrate that Mga is a central regulatory nexus for integrating nutritional status and virulence.
Collapse
Affiliation(s)
- Jerry K. K. Woo
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Michael J. Federle
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA,For correspondence. ; Tel. 312-413-0213; Fax. 312-413-9303
| |
Collapse
|
6
|
Rom JS, Hart MT, McIver KS. PRD-Containing Virulence Regulators (PCVRs) in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:772874. [PMID: 34737980 PMCID: PMC8560693 DOI: 10.3389/fcimb.2021.772874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.
Collapse
Affiliation(s)
- Joseph S Rom
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Meaghan T Hart
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Kevin S McIver
- Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
7
|
Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0077921. [PMID: 34105983 DOI: 10.1128/aem.00779-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis has great potential for high-yield production of mannitol, which has not yet been fully realized. In this study, we characterize how the mannitol genes in L. lactis are organized and regulated and use this information to establish efficient mannitol production. Although the organization of the mannitol genes in L. lactis was similar to that in other Gram-positive bacteria, mtlF and mtlD, encoding the enzyme IIA component (EIIAmtl) of the mannitol phosphotransferase system (PTS) and the mannitol-1-phosphate dehydrogenase, respectively, were separated by a transcriptional terminator, and the mannitol genes were found to be organized in two transcriptional units: an operon comprising mtlA, encoding the enzyme IIBC component (EIIBCmtl) of the mannitol PTS, mtlR, encoding a transcriptional activator, and mtlF, as well as a separately expressed mtlD gene. The promoters driving expression of the two transcriptional units were somewhat similar, and both contained predicted catabolite responsive element (cre) genes. The presence of carbon catabolite repression was demonstrated and was shown to be relieved in stationary-phase cells. The transcriptional activator MtlR (mtlR), in some Gram-positive bacteria, is repressed by phosphorylation by EIIAmtl, and when we knocked out mtlF, we indeed observed enhanced expression from the two promoters, which indicated that this mechanism was in place. Finally, by overexpressing the mtlD gene and using stationary-phase cells as biocatalysts, we attained 10.1 g/liter mannitol with a 55% yield, which, to the best of our knowledge, is the highest titer ever reported for L. lactis. Summing up, the results of our study should be useful for improving the mannitol-producing capacity of this important industrial organism. IMPORTANCE Lactococcus lactis is the most studied species of the lactic acid bacteria, and it is widely used in various food fermentations. To date, there have been several attempts to persuade L. lactis to produce mannitol, a sugar alcohol with important therapeutic and food applications. Until now, to achieve mannitol production in L. lactis with significant titer and yield, it has been necessary to introduce and express foreign genes, which precludes the use of such strains in foods, due to their recombinant status. In this study, we systematically characterize how the mannitol genes in L. lactis are regulated and demonstrate how this impacts mannitol production capability. We harnessed this information and managed to establish efficient mannitol production without introducing foreign genes.
Collapse
|
8
|
Bier N, Hammerstrom TG, Koehler TM. Influence of the phosphoenolpyruvate:carbohydrate phosphotransferase system on toxin gene expression and virulence in Bacillus anthracis. Mol Microbiol 2019; 113:237-252. [PMID: 31667937 DOI: 10.1111/mmi.14413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
AtxA, the master virulence gene regulator of Bacillus anthracis, is a PRD-Containing Virulence Regulator (PCVR) as indicated by the crystal structure, post-translational modifications and activity of the protein. PCVRs are transcriptional regulators, named for PTS Regulatory Domains (PRDs) subject to phosphorylation by the phosphoenolpyruvate phosphotransferase system (PEP-PTS) and for their impact on virulence gene expression. Here we present data from experiments employing physiological, genetic and biochemical approaches that support a model in which the PTS proteins HPr and Enzyme I (EI) are required for transcription of the atxA gene, rather than phosphorylation of AtxA. We show that atxA transcription is reduced 2.5-fold in a mutant lacking HPr and EI, and that this change is sufficient to affect anthrax toxin production. Mutants harboring HPr proteins altered for phosphotransfer activity were unable to restore atxA transcription to parent levels, suggesting that phosphotransfer activity of HPr and EI is important for regulation of atxA. In a mouse model for anthrax, a HPr- EI- mutant was attenuated for virulence. Virulence was restored by expressing atxA from an alternative, PTS-independent, promoter. Our data support a model in which HPr transfers a phosphate to an unidentified downstream transcriptional regulator to influence atxA gene transcription.
Collapse
Affiliation(s)
- Naomi Bier
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, UTHealth M.D. Anderson Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
9
|
Comparative Genome Assessment of the Two Novel Poly-γ-Glutamic Acid Producing Bacillus Strains. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Raynor MJ, Roh JH, Widen SG, Wood TG, Koehler TM. Regulons and protein-protein interactions of PRD-containing Bacillus anthracis virulence regulators reveal overlapping but distinct functions. Mol Microbiol 2018; 109:10.1111/mmi.13961. [PMID: 29603836 PMCID: PMC6167206 DOI: 10.1111/mmi.13961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 01/19/2023]
Abstract
Bacillus anthracis produces three regulators, AtxA, AcpA and AcpB, which control virulence gene transcription and belong to an emerging class of regulators termed 'PCVRs' (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA, named for its control of toxin gene expression, is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. Reports of PCVR activity suggest overlapping function. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA level or activity result in capBCADE transcription in strains lacking acpA and acpB. We used RNA-Seq to assess the regulons of the paralogous regulators in strains constructed to express individual PCVRs at native levels. Plasmid and chromosome-borne genes were PCVR controlled, with AtxA, AcpA and AcpB having a ≥ 4-fold effect on transcript levels of 145, 130 and 49 genes respectively. Several genes were coregulated by two or three PCVRs. We determined that AcpA and AcpB form homomultimers, as shown previously for AtxA, and we detected AtxA-AcpA heteromultimers. In co-expression experiments, AcpA activity was reduced by increased levels of AtxA. Our data show that the PCVRs have specific and overlapping activity and that PCVR stoichiometry and potential heteromultimerization can influence target gene expression.
Collapse
Affiliation(s)
- Malik J. Raynor
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jung-Hyeob Roh
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
| | - Stephen G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G. Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Theresa M. Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School of the University of Texas - Houston Health Science Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
11
|
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities. Appl Environ Microbiol 2017; 83:AEM.00038-17. [PMID: 28455338 DOI: 10.1128/aem.00038-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023] Open
Abstract
Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose.IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis.
Collapse
|
12
|
Li L, Mu L, Wang X, Yu J, Hu R, Li Z. A novel expression vector for the secretion of abaecin in Bacillus subtilis. Braz J Microbiol 2017; 48:809-814. [PMID: 28651889 PMCID: PMC5628310 DOI: 10.1016/j.bjm.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 11/03/2022] Open
Abstract
This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5μM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5μM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics.
Collapse
Affiliation(s)
- Li Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Lan Mu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojuan Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jingfeng Yu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ruiping Hu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Zhen Li
- College of Horticulture, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
13
|
Galinier A, Deutscher J. Sophisticated Regulation of Transcriptional Factors by the Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. J Mol Biol 2017; 429:773-789. [PMID: 28202392 DOI: 10.1016/j.jmb.2017.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a carbohydrate transport and phosphorylation system present in bacteria of all different phyla and in archaea. It is usually composed of three proteins or protein complexes, enzyme I, HPr, and enzyme II, which are phosphorylated at histidine or cysteine residues. However, in many bacteria, HPr can also be phosphorylated at a serine residue. The PTS not only functions as a carbohydrate transporter but also regulates numerous cellular processes either by phosphorylating its target proteins or by interacting with them in a phosphorylation-dependent manner. The target proteins can be catabolic enzymes, transporters, and signal transduction proteins but are most frequently transcriptional regulators. In this review, we will describe how PTS components interact with or phosphorylate proteins to regulate directly or indirectly the activity of transcriptional repressors, activators, or antiterminators. We will briefly summarize the well-studied mechanism of carbon catabolite repression in firmicutes, where the transcriptional regulator catabolite control protein A needs to interact with seryl-phosphorylated HPr in order to be functional. We will present new results related to transcriptional activators and antiterminators containing specific PTS regulation domains, which are the phosphorylation targets for three different types of PTS components. Moreover, we will discuss how the phosphorylation level of the PTS components precisely regulates the activity of target transcriptional regulators or antiterminators, with or without PTS regulation domain, and how the availability of PTS substrates and thus the metabolic status of the cell are connected with various cellular processes, such as biofilm formation or virulence of certain pathogens.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UPR 9043, CNRS, Aix Marseille Université, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Centre National de la Recherche Scientifique, UMR8261 (affiliated with the Univ. Paris Diderot, Sorbonne, Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
14
|
Patron K, Gilot P, Rong V, Hiron A, Mereghetti L, Camiade E. Inductors and regulatory properties of the genomic island-associatedfru2metabolic operon ofStreptococcus agalactiae. Mol Microbiol 2016; 103:678-697. [DOI: 10.1111/mmi.13581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kévin Patron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Philippe Gilot
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Vanessa Rong
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Aurélia Hiron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Laurent Mereghetti
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
- Service de Bactériologie-Virologie-Hygiène; Centre Hospitalier Universitaire de Tours; Tours F-37044 France
| | - Emilie Camiade
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| |
Collapse
|
15
|
Kentache T, Milohanic E, Cao TN, Mokhtari A, Aké FM, Ma Pham QM, Joyet P, Deutscher J. Transport and Catabolism of Pentitols by Listeria monocytogenes. J Mol Microbiol Biotechnol 2016; 26:369-380. [PMID: 27553222 DOI: 10.1159/000447774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Transposon insertion into Listeria monocytogenes lmo2665, which encodes an EIIC of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), was found to prevent D-arabitol utilization. We confirm this result with a deletion mutant and show that Lmo2665 is also required for D-xylitol utilization. We therefore called this protein EIICAxl. Both pentitols are probably catabolized via the pentose phosphate pathway (PPP) because lmo2665 belongs to an operon, which encodes the three PTSAxl components, two sugar-P dehydrogenases, and most PPP enzymes. The two dehydrogenases oxidize the pentitol-phosphates produced during PTS-catalyzed transport to the PPP intermediate xylulose-5-P. L. monocytogenes contains another PTS, which exhibits significant sequence identity to PTSAxl. Its genes are also part of an operon encoding PPP enzymes. Deletion of the EIIC-encoding gene (lmo0508) affected neither D-arabitol nor D-xylitol utilization, although D-arabitol induces the expression of this operon. Both operons are controlled by MtlR/LicR-type transcription activators (Lmo2668 and Lmo0501, respectively). Phosphorylation of Lmo0501 by the soluble PTSAxl components probably explains why D-arabitol also induces the second pentitol operon. Listerial virulence genes are submitted to strong repression by PTS sugars, such as glucose. However, D-arabitol inhibited virulence gene expression only at high concentrations, probably owing to its less efficient utilization compared to glucose.
Collapse
Affiliation(s)
- Takfarinas Kentache
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Derkaoui M, Antunes A, Nait Abdallah J, Poncet S, Mazé A, Ma Pham QM, Mokhtari A, Deghmane AE, Joyet P, Taha MK, Deutscher J. Transport and Catabolism of Carbohydrates by Neisseria meningitidis. J Mol Microbiol Biotechnol 2016; 26:320-32. [DOI: 10.1159/000447093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
We identified the genes encoding the proteins for the transport of glucose and maltose in <i>Neisseria meningitidis</i> strain 2C4-3. A mutant deleted for <i>NMV_1892</i><i>(glcP)</i> no longer grew on glucose and deletion of <i>NMV_0424</i><i>(malY)</i> prevented the utilization of maltose. We also purified and characterized glucokinase and α-phosphoglucomutase, which catalyze early catabolic steps of the two carbohydrates. <i>N. meningitidis</i> catabolizes the two carbohydrates either via the Entner-Doudoroff (ED) pathway or the pentose phosphate pathway, thereby forming glyceraldehyde-3-P and either pyruvate or fructose-6-P, respectively. We purified and characterized several key enzymes of the two pathways. The genes required for the transformation of glucose into gluconate-6-P and its further catabolism via the ED pathway are organized in two adjacent operons. <i>N. meningitidis</i> also contains genes encoding proteins which exhibit similarity to the gluconate transporter <i>(NMV_2230)</i> and gluconate kinase <i>(NMV_2231)</i> of Enterobacteriaceae and Firmicutes. However, gluconate might not be the real substrate of <i>NMV_2230</i> because <i>N. meningitidi</i>s was not able to grow on gluconate as the sole carbon source. Surprisingly, deletion of <i>NMV_2230</i> stimulated growth in minimal medium in the presence and absence of glucose and drastically slowed the clearance of <i>N. meningitidis</i> cells from transgenic mice after intraperitoneal challenge.
Collapse
|
17
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
18
|
Nie X, Yang B, Zhang L, Gu Y, Yang S, Jiang W, Yang C. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ54control cellobiose utilization inClostridium acetobutylicum. Mol Microbiol 2016; 100:289-302. [DOI: 10.1111/mmi.13316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoqun Nie
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Bin Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yang Gu
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Chen Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
19
|
Joyet P, Derkaoui M, Bouraoui H, Deutscher J. PTS-Mediated Regulation of the Transcription Activator MtlR from Different Species: Surprising Differences despite Strong Sequence Conservation. J Mol Microbiol Biotechnol 2015; 25:94-105. [PMID: 26159071 DOI: 10.1159/000369619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hexitol D-mannitol is transported by many bacteria via a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). In most Firmicutes, the transcription activator MtlR controls the expression of the genes encoding the D-mannitol-specific PTS components and D-mannitol-1-P dehydrogenase. MtlR contains an N-terminal helix-turn-helix motif followed by an Mga-like domain, two PTS regulation domains (PRDs), an EIIB(Gat)- and an EIIA(Mtl)-like domain. The four regulatory domains are the target of phosphorylation by PTS components. Despite strong sequence conservation, the mechanisms controlling the activity of MtlR from Lactobacillus casei, Bacillus subtilis and Geobacillus stearothermophilus are quite different. Owing to the presence of a tyrosine in place of the second conserved histidine (His) in PRD2, L. casei MtlR is not phosphorylated by Enzyme I (EI) and HPr. When the corresponding His in PRD2 of MtlR from B. subtilis and G. stearothermophilus was replaced with alanine, the transcription regulator was no longer phosphorylated and remained inactive. Surprisingly, L. casei MtlR functions without phosphorylation in PRD2 because in a ptsI (EI) mutant MtlR is constitutively active. EI inactivation prevents not only phosphorylation of HPr, but also of the PTS(Mtl) components, which inactivate MtlR by phosphorylating its EIIB(Gat)- or EIIA(Mtl)-like domain. This explains the constitutive phenotype of the ptsI mutant. The absence of EIIB(Mtl)-mediated phosphorylation leads to induction of the L. caseimtl operon. This mechanism resembles mtlARFD induction in G. stearothermophilus, but differs from EIIA(Mtl)-mediated induction in B. subtilis. In contrast to B. subtilis MtlR, L. casei MtlR activation does not require sequestration to the membrane via the unphosphorylated EIIB(Mtl) domain.
Collapse
Affiliation(s)
- Philippe Joyet
- INRA, Microbiologie de l'alimentation au service de la santé humaine (MICALIS), UMR1319, Jouy en Josas, France
| | | | | | | |
Collapse
|
20
|
Murayama S, Ishikawa S, Chumsakul O, Ogasawara N, Oshima T. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells. PLoS One 2015; 10:e0131588. [PMID: 26154296 PMCID: PMC4495994 DOI: 10.1371/journal.pone.0131588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The amino acid sequence of the RNA polymerase (RNAP) α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD) is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.
Collapse
Affiliation(s)
- Satohiko Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
21
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
22
|
Phosphorylation events in the multiple gene regulator of group A Streptococcus significantly influence global gene expression and virulence. Infect Immun 2015; 83:2382-95. [PMID: 25824840 DOI: 10.1128/iai.03023-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/21/2015] [Indexed: 01/03/2023] Open
Abstract
Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis.
Collapse
|
23
|
Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes. J Bacteriol 2015; 197:1559-72. [PMID: 25691525 DOI: 10.1128/jb.02522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Listeriae take up glucose and mannose predominantly through a mannose class phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS(Man)), whose three components are encoded by the manLMN genes. The expression of these genes is controlled by ManR, a LevR-type transcription activator containing two PTS regulation domains (PRDs) and two PTS-like domains (enzyme IIA(Man) [EIIA(Man)]- and EIIB(Gat)-like). We demonstrate here that in Listeria monocytogenes, ManR is activated via the phosphorylation of His585 in the EIIA(Man)-like domain by the general PTS components enzyme I and HPr. We also show that ManR is regulated by the PTS(Mpo) and that EIIB(Mpo) plays a dual role in ManR regulation. First, yeast two-hybrid experiments revealed that unphosphorylated EIIB(Mpo) interacts with the two C-terminal domains of ManR (EIIB(Gat)-like and PRD2) and that this interaction is required for ManR activity. Second, in the absence of glucose/mannose, phosphorylated EIIB(Mpo) (P∼EIIB(Mpo)) inhibits ManR activity by phosphorylating His871 in PRD2. The presence of glucose/mannose causes the dephosphorylation of P∼EIIB(Mpo) and P∼PRD2 of ManR, which together lead to the induction of the manLMN operon. Complementation of a ΔmanR mutant with various manR alleles confirmed the antagonistic effects of PTS-catalyzed phosphorylation at the two different histidine residues of ManR. Deletion of manR prevented not only the expression of the manLMN operon but also glucose-mediated repression of virulence gene expression; however, repression by other carbohydrates was unaffected. Interestingly, the expression of manLMN in Listeria innocua was reported to require not only ManR but also the Crp-like transcription activator Lin0142. Unlike Lin0142, the L. monocytogenes homologue, Lmo0095, is not required for manLMN expression; its absence rather stimulates man expression. IMPORTANCE Listeria monocytogenes is a human pathogen causing the foodborne disease listeriosis. The expression of most virulence genes is controlled by the transcription activator PrfA. Its activity is strongly repressed by carbohydrates, including glucose, which is transported into L. monocytogenes mainly via a mannose/glucose-specific phosphotransferase system (PTS(Man)). Expression of the man operon is regulated by the transcription activator ManR, the activity of which is controlled by a second, low-efficiency PTS of the mannose family, which functions as glucose sensor. Here we demonstrate that the EIIB(Mpo) component plays a dual role in ManR regulation: it inactivates ManR by phosphorylating its His871 residue and stimulates ManR by interacting with its two C-terminal domains.
Collapse
|
24
|
Hammerstrom TG, Horton LB, Swick MC, Joachimiak A, Osipiuk J, Koehler TM. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity. Mol Microbiol 2014; 95:426-41. [PMID: 25402841 DOI: 10.1111/mmi.12867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.
Collapse
Affiliation(s)
- Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
25
|
Afzal M, Shafeeq S, Henriques-Normark B, Kuipers OP. UlaR activates expression of the ula operon in Streptococcus pneumoniae in the presence of ascorbic acid. MICROBIOLOGY-SGM 2014; 161:41-49. [PMID: 25355938 DOI: 10.1099/mic.0.083899-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the regulatory mechanism of the ula (utilization of l-ascorbic acid) operon, putatively responsible for transport and utilization of ascorbic acid in Streptococcus pneumoniae strain D39, is studied. β-Galactosidase assay data demonstrate that expression of the ula operon is increased in the presence of ascorbic acid as compared with the effects of other sugar sources including glucose. The ula operon consists of nine genes, including a transcriptional regulator UlaR, and is transcribed as a single transcriptional unit. We demonstrate the role of the transcriptional regulator UlaR as a transcriptional activator of the ula operon in the presence of ascorbic acid and show that activation of the ula operon genes by UlaR is CcpA-independent. Furthermore, we predict a 16 bp regulatory site (5'-AACAGTCCGCTGTGTA-3') for UlaR in the promoter region of ulaA. Deletion of the half or full UlaR regulatory site in PulaA confirmed that the UlaR regulatory site present in PulaA is functional.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
26
|
Heravi KM, Altenbuchner J. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. MICROBIOLOGY-SGM 2013; 160:91-101. [PMID: 24196428 DOI: 10.1099/mic.0.071233-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of mannitol utilization genes in Bacillus subtilis is directed by PmtlA, the promoter of the mtlAFD operon, and PmtlR, the promoter of the MtlR activator. MtlR contains phosphoenolpyruvate-dependent phosphotransferase system (PTS) regulation domains, called PRDs. The activity of PRD-containing MtlR is mainly regulated by the phosphorylation/dephosphorylation of its PRDII and EIIB(Gat)-like domains. Replacing histidine 342 and cysteine 419 residues, which are the targets of phosphorylation in these two domains, by aspartate and alanine provided MtlR-H342D C419A, which permanently activates PmtlA in vivo. In the mtlR-H342D C419A mutant, PmtlA was active, even when the mtlAFD operon was deleted from the genome. The mtlR-H342D C419A allele was expressed in an Escherichia coli strain lacking enzyme I of the PTS. Electrophoretic mobility shift assays using purified MtlR-H342D C419A showed an interaction between the MtlR double-mutant and the Cy5-labelled PmtlA and PmtlR DNA fragments. These investigations indicate that the activated MtlR functions regardless of the presence of the mannitol-specific transporter (MtlA). This is in contrast to the proposed model in which the sequestration of MtlR by the MtlA transporter is necessary for the activity of MtlR. Additionally, DNase I footprinting, construction of PmtlA-PlicB hybrid promoters, as well as increasing the distance between the MtlR operator and the -35 box of PmtlA revealed that the activated MtlR molecules and RNA polymerase holoenzyme likely form a class II type activation complex at PmtlA and PmtlR during transcription initiation.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 2013; 8:15. [PMID: 23768067 PMCID: PMC3710099 DOI: 10.1186/1745-6150-8-15] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Background The major role of enzymatic toxins that target nucleic acids in biological conflicts at all levels has become increasingly apparent thanks in large part to the advances of comparative genomics. Typically, toxins evolve rapidly hampering the identification of these proteins by sequence analysis. Here we analyze an unexpectedly widespread superfamily of toxin domains most of which possess RNase activity. Results The HEPN superfamily is comprised of all α-helical domains that were first identified as being associated with DNA polymerase β-type nucleotidyltransferases in prokaryotes and animal Sacsin proteins. Using sensitive sequence and structure comparison methods, we vastly extend the HEPN superfamily by identifying numerous novel families and by detecting diverged HEPN domains in several known protein families. The new HEPN families include the RNase LS and LsoA catalytic domains, KEN domains (e.g. RNaseL and Ire1) and the RNase domains of RloC and PrrC. The majority of HEPN domains contain conserved motifs that constitute a metal-independent endoRNase active site. Some HEPN domains lacking this motif probably function as non-catalytic RNA-binding domains, such as in the case of the mannitol repressor MtlR. Our analysis shows that HEPN domains function as toxins that are shared by numerous systems implicated in intra-genomic, inter-genomic and intra-organismal conflicts across the three domains of cellular life. In prokaryotes HEPN domains are essential components of numerous toxin-antitoxin (TA) and abortive infection (Abi) systems and in addition are tightly associated with many restriction-modification (R-M) and CRISPR-Cas systems, and occasionally with other defense systems such as Pgl and Ter. We present evidence of multiple modes of action of HEPN domains in these systems, which include direct attack on viral RNAs (e.g. LsoA and RNase LS) in conjunction with other RNase domains (e.g. a novel RNase H fold domain, NamA), suicidal or dormancy-inducing attack on self RNAs (RM systems and possibly CRISPR-Cas systems), and suicidal attack coupled with direct interaction with phage components (Abi systems). These findings are compatible with the hypothesis on coupling of pathogen-targeting (immunity) and self-directed (programmed cell death and dormancy induction) responses in the evolution of robust antiviral strategies. We propose that altruistic cell suicide mediated by HEPN domains and other functionally similar RNases was essential for the evolution of kin and group selection and cell cooperation. HEPN domains were repeatedly acquired by eukaryotes and incorporated into several core functions such as endonucleolytic processing of the 5.8S-25S/28S rRNA precursor (Las1), a novel ER membrane-associated RNA degradation system (C6orf70), sensing of unprocessed transcripts at the nuclear periphery (Swt1). Multiple lines of evidence suggest that, similar to prokaryotes, HEPN proteins were recruited to antiviral, antitransposon, apoptotic systems or RNA-level response to unfolded proteins (Sacsin and KEN domains) in several groups of eukaryotes. Conclusions Extensive sequence and structure comparisons reveal unexpectedly broad presence of the HEPN domain in an enormous variety of defense and stress response systems across the tree of life. In addition, HEPN domains have been recruited to perform essential functions, in particular in eukaryotic rRNA processing. These findings are expected to stimulate experiments that could shed light on diverse cellular processes across the three domains of life. Reviewers This article was reviewed by Martijn Huynen, Igor Zhulin and Nick Grishin
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
28
|
Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation. Appl Environ Microbiol 2013; 79:4675-83. [PMID: 23728818 DOI: 10.1128/aem.01184-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae is a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera. V. cholerae use a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport by V. cholerae requires the mannitol-specific EII (EII(Mtl)), which is expressed only in the presence of mannitol. Here we show that mannitol activates V. cholerae biofilm formation and transcription of the vps biofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EII(Mtl) is sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability of V. cholerae to respond to environmental mannitol by forming a biofilm may play an important role in habitat selection.
Collapse
|
29
|
Hondorp ER, Hou SC, Hause LL, Gera K, Lee CE, McIver KS. PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol Microbiol 2013; 88:1176-93. [PMID: 23651410 DOI: 10.1111/mmi.12250] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The ability of a bacterial pathogen to monitor available carbon sources in host tissues provides a clear fitness advantage. In the group A streptococcus (GAS), the virulence regulator Mga contains homology to phosphotransferase system (PTS) regulatory domains (PRDs) found in sugar operon regulators. Here we show that Mga was phosphorylated in vitro by the PTS components EI/HPr at conserved PRD histidines. A ΔptsI (EI-deficient) GAS mutant exhibited decreased Mga activity. However, PTS-mediated phosphorylation inhibited Mga-dependent transcription of emm in vitro. Using alanine (unphosphorylated) and aspartate (phosphomimetic) mutations of PRD histidines, we establish that a doubly phosphorylated PRD1 phosphomimetic (D/DMga4) is completely inactive in vivo, shutting down expression of the Mga regulon. Although D/DMga4 is still able to bind DNA in vitro, homo-multimerization of Mga is disrupted and the protein is unable to activate transcription. PTS-mediated regulation of Mga activity appears to be important for pathogenesis, as bacteria expressing either non-phosphorylated (A/A) or phosphomimetic (D/D) PRD1 Mga mutants were attenuated in a model of GAS invasive skin disease. Thus, PTS-mediated phosphorylation of Mga may allow the bacteria to modulate virulence gene expression in response to carbohydrate status. Furthermore, PRD-containing virulence regulators (PCVRs) appear to be widespread in Gram-positive pathogens.
Collapse
Affiliation(s)
- Elise R Hondorp
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wenzel M, Altenbuchner J. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP. Mol Microbiol 2013; 88:562-76. [PMID: 23551403 DOI: 10.1111/mmi.12209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Abstract
The transcriptional activator ManR of the Bacillus subtilis mannose utilization operon is composed of an N-terminal DNA-binding domain, two phosphotransferase system (PTS) regulation domains (PRDs), an EIIB(Bgl) - and an EIIA(Fru) -like domain. Site-specific mutagenesis of ManR revealed the role of conserved amino acids representing potential phosphorylation sites. This was investigated by β-galactosidase activity tests and by mobility shift assays after incubation with the PTS components HPr and EI. In analogy to other PRD-containing regulators we propose stimulation of ManR activity by phosphorylation. Mutations in PRD1 lowered ManR activity, whereas mutations in PRD2 abolished ManR activity completely. The Cys415Ala (EIIB(Bgl)) and the His570Ala mutations (EIIA(Fru)) provoked constitutive activities to different degrees, whereas the latter had the greater influence. Addition of EIIBA(Man) reduced the binding capability significantly in a wild-type and a Cys415Ala background, but had no effect on a His570Ala mutant. The different expression levels originating from the two promoters PmanR and PmanP could be ascribed to different 5'-untranslated mRNA regions. Sequences of 44 bp were identified and confirmed as the ManR binding sites by DNase I footprinting. The binding properties of ManR, in particular the equilibrium dissociation constant KD and the dissociation rate kdiss, were determined for both promoter regions.
Collapse
Affiliation(s)
- Marian Wenzel
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
31
|
Joyet P, Bouraoui H, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Ventroux M, Nessler S, Noirot-Gros MF, Deutscher J, Milohanic E. Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1415-24. [PMID: 23318733 DOI: 10.1016/j.bbapap.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022]
Abstract
Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components EI and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components EIIA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtlR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Philippe Joyet
- Institut National de la Recherche Agronomique, UMR1319 Microbiologie de l'alimentation au service de la santé humaine Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bouraoui H, Ventroux M, Noirot-Gros MF, Deutscher J, Joyet P. Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol 2013; 87:789-801. [PMID: 23279188 DOI: 10.1111/mmi.12131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Abstract
In most firmicutes expression of the mannitol operon is regulated by MtlR. This transcription activator is controlled via phosphorylation of its regulatory domains by components of the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS). We found that activation of Bacillus subtilis MtlR also requires an interaction with the EIIB(Mtl) domain of the mannitol permease MtlA (EIICB(Mtl) ). The constitutive expression of the mtlAFD operon in an mtlF mutant was prevented when entire mtlA or only its 3' part (EIIB(Mtl) ) were deleted. Yeast two-hybrid experiments revealed a direct interaction of the EIIB(Mtl) domain with the two C-terminal domains of MtlR. Complementation of the Δ3'-mtlA ΔmtlF or ΔmtlAFD mutants with mtlA restored constitutive MtlR activity, whereas complementation with only 3'-mtlA had no effect. Moreover, synthesis of EIIB(Mtl) in strains producing constitutively active MtlR caused MtlR inactivation. Interestingly, EIIB(Mtl) fused to the trans-membrane protein YwqC restored constitutive MtlR activity in the above mutants. Replacing the phosphorylatable Cys with Asp in MtlA or soluble EIIB(Mtl) lowered MtlR activation, indicating that MtlR does not interact with phosphorylatyed EIIB(Mtl) . Induction of the B. subtilis mtl operon therefore follows a novel regulation mechanism where the transcription activator needs to be sequestered to the membrane by unphosphorylated EIICB(Mtl) in order to be functional.
Collapse
Affiliation(s)
- Houda Bouraoui
- Institut de la Recherche Agronomique, UMR1319 Microbiologie de l'alimentation au service de la santé humaine Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
33
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Boianelli A, Bidossi A, Gualdi L, Mulas L, Mocenni C, Pozzi G, Vicino A, Oggioni MR. A non-linear deterministic model for regulation of diauxic lag on cellobiose by the pneumococcal multidomain transcriptional regulator CelR. PLoS One 2012; 7:e47393. [PMID: 23110070 PMCID: PMC3478281 DOI: 10.1371/journal.pone.0047393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/12/2012] [Indexed: 01/02/2023] Open
Abstract
When grown on glucose and beta-glucosides, S. pneumoniae shows sequential use of sugars resulting in diauxic growth with variable time extent of the lag phase separating the biphasic growth curve. The pneumococcal beta-glucoside uptake locus containing the PTS transporter spr0276-82, is regulated by a multi-domain transcriptional regulator CelR. In this work, we address the contribution of phosphorylation of the phosphorylable cysteine in the EIIB domain of CelR to diauxic lag. Utilising site-directed mutagenesis of the phosphorylable amino acids in the EIIB and EIIA domains of CelR, we show that the EIIB domain activation is linked to the duration of the lag phase. Analysis of mutants for other PTS systems indicates that a second beta-glucoside PTS (spr0505), not able to support growth on cellobiose, is responsible for the lag during diauxic growth. A mathematical model of the process is devised together with a nonlinear identification procedure which provides model parameter estimates characterizing the single phases of bacterial growth. Parameter identification performed on data recorded in appropriate experiments on mutants allows for establishing a relationship between a specific model parameter, the EIIB domain and the time extent of the diauxic lag. The experimental results and the related insights provided by the mathematical model provide evidence that the conflicting activation of the CelR regulator is at the origin of the lag phase during sequential growth on glucose and cellobiose. This data is the first description of diauxic lag regulation involving two PTS and a multidomain regulator and could serve as a promising approach for studying the S. pneumoniae growth process on complex carbon sources as possibly encountered in the human host.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Center for Complex Systems Studies (CSC), Department of Information Engineering, University of Siena, Siena, Italy
| | | | - Luciana Gualdi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Laura Mulas
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Chiara Mocenni
- Center for Complex Systems Studies (CSC), Department of Information Engineering, University of Siena, Siena, Italy
| | - Gianni Pozzi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Antonio Vicino
- Center for Complex Systems Studies (CSC), Department of Information Engineering, University of Siena, Siena, Italy
| | - Marco R. Oggioni
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
35
|
Hondorp ER, Hou SC, Hempstead AD, Hause LL, Beckett DM, McIver KS. Characterization of the Group A Streptococcus Mga virulence regulator reveals a role for the C-terminal region in oligomerization and transcriptional activation. Mol Microbiol 2012; 83:953-67. [PMID: 22468267 DOI: 10.1111/j.1365-2958.2012.07980.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Group A Streptococcus (GAS) is a strict human pathogen that causes a broad spectrum of illnesses. One of the key regulators of virulence in GAS is the transcriptional activator Mga, which co-ordinates the early stages of infection. Although the targets of Mga have been well characterized, basic biochemical analyses have been limited due to difficulties in obtaining purified protein. In this study, high-level purification of soluble Mga was achieved, enabling the first detailed characterization of the protein. Fluorescence titrations coupled with filter-binding assays indicate that Mga binds cognate DNA with nanomolar affinity. Gel filtration analyses, analytical ultracentrifugation and co-immunoprecipitation experiments demonstrate that Mga forms oligomers in solution.Moreover, the ability of the protein to oligomerize in solution was found to correlate with transcriptional activation; DNA binding appears to be necessary but insufficient for full activity. Truncation analyses reveal that the uncharacterized C-terminal region of Mga, possessing similarity to phosphotransferase system EIIB proteins, plays a critical role in oligomerization and in vivo activity. Mga from a divergent serotype was found to behave similarly, suggesting that this study describes a general mechanism for Mga regulation of target virulence genes within GAS and provides insight into related regulators in other Gram-positive pathogens.
Collapse
Affiliation(s)
- Elise R Hondorp
- Department of Cell Biology & Molecular Genetics andMaryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012; 7:e33320. [PMID: 22428019 PMCID: PMC3302838 DOI: 10.1371/journal.pone.0033320] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/10/2012] [Indexed: 01/02/2023] Open
Abstract
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium:solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.
Collapse
Affiliation(s)
- Alessandro Bidossi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Laura Mulas
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Francesca Decorosi
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Leonarda Colomba
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Susanna Ricci
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Viti
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Marco Rinaldo Oggioni
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
37
|
Heravi KM, Wenzel M, Altenbuchner J. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact 2011; 10:83. [PMID: 22014119 PMCID: PMC3217849 DOI: 10.1186/1475-2859-10-83] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
Background Several vector systems have been developed to express any gene desired to be studied in Bacillus subtilis. Among them, the transcriptionally regulated promoters involved in carbohydrate utilization are a research priority. Expression systems based on Bacillus promoters for xylose, maltose, and mannose utilization, as well as on the heterologous E. coli lactose promoter, have been successfully constructed. The promoter of the mtlAFD operon for utilization of mannitol is another promising candidate for its use in expression vectors. In this study, we investigated the regulation of the mtl genes in order to identify the elements needed to construct a strong mannitol inducible expression system in B. subtilis. Results Regulation of the promoters of mtlAFD operon (PmtlA) and mtlR (PmtlR) encoding the activator were investigated by fusion to lacZ. Identification of the PmtlA and PmtlR transcription start sites revealed the σA like promoter structures. Also, the operator of PmtlA was determined by shortening, nucleotide exchange, and alignment of PmtlA and PmtlR operator regions. Deletion of the mannitol-specific PTS genes (mtlAF) resulted in PmtlA constitutive expression demonstrating the inhibitory effect of EIICBMtl and EIIAMtl on MtlR in the absence of mannitol. Disruption of mtlD made the cells sensitive to mannitol and glucitol. Both PmtlA and PmtlR were influenced by carbon catabolite repression (CCR). However, a CcpA deficient mutant showed only a slight reduction in PmtlR catabolite repression. Similarly, using PgroE as a constitutive promoter, putative cre sites of PmtlA and PmtlR slightly reduced the promoter activity in the presence of glucose. In contrast, glucose repression of PmtlA and PmtlR was completely abolished in a ΔptsG mutant and significantly reduced in a MtlR (H342D) mutant. Conclusions The mtl operon promoter (PmtlA) is a strong promoter that reached a maximum of 13,000 Miller units with lacZ as a reporter on low copy plasmids. It is tightly regulated by just one copy of the mtlR gene on the chromosome and subject to CCR. CCR can be switched off by mutations in MtlR and the glucose transporter. These properties and the low costs of the inducers, i.e. mannitol and glucitol, make the promoter ideal for designing regulated expression systems.
Collapse
|
38
|
Hammerstrom TG, Roh JH, Nikonowicz EP, Koehler TM. Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO(2) -signalling. Mol Microbiol 2011; 82:634-47. [PMID: 21923765 DOI: 10.1111/j.1365-2958.2011.07843.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AtxA, a unique regulatory protein of unknown molecular function, positively controls expression of the major virulence genes of Bacillus anthracis. The 475 amino acid sequence of AtxA reveals DNA binding motifs and regions similar to proteins associated with the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). We used strains producing native and functional epitope-tagged AtxA proteins to examine protein-protein interactions in cell lysates and in solutions of purified protein. Co-affinity purification, non-denaturing polyacrylamide gel electrophoresis and bis(maleimido)hexane (BMH) cross-linking experiments revealed AtxA homo-multimers. Dimers were the most abundant species. BMH cross-links available cysteines within 13 Å. To localize interaction sites, six AtxA mutants containing distinct Cys→Ser substitutions were tested for multimerization and cross-linking. All mutants multimerized, but one mutation, C402S, prevented cross-linking. Thus, BMH uses C402 to make the inter-molecular bond between AtxA proteins, but C402 is not required for protein-protein interaction. C402 is in a region bearing amino acid similarity to Enzyme IIB proteins of the PTS. The AtxA EIIB motif may function in protein oligomerization. Finally, cultures grown with elevated CO(2) /bicarbonate exhibited increased AtxA dimer/monomer ratios and increased AtxA activity, relative to cultures grown without added CO(2) /bicarbonate, suggesting that this host-associated signal enhances AtxA function by shifting the dimer/monomer equilibrium towards the dimeric state.
Collapse
Affiliation(s)
- Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, The University of Texas - Houston Health Science Center, Medical School, Houston, TX, USA
| | | | | | | |
Collapse
|
39
|
Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 2011; 77:6419-25. [PMID: 21803899 DOI: 10.1128/aem.05219-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
Collapse
|
40
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|