1
|
T N, Govindarajan S, Munavar MH. trans-translation system is important for maintaining genome integrity during DNA damage in bacteria. Res Microbiol 2023; 174:104136. [PMID: 37690591 DOI: 10.1016/j.resmic.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
DNA integrity in bacteria is regulated by various factors that act on the DNA. trans-translation has previously been shown to be important for the survival of Escherichia coli cells exposed to certain DNA-damaging agents. However, the mechanisms underlying this sensitivity are poorly understood. In this study, we explored the involvement of the trans-translation system in the maintenance of genome integrity using various DNA-damaging agents and mutant backgrounds. Relative viability assays showed that SsrA-defective cells were sensitive to DNA-damaging agents, such as nalidixic acid (NA), ultraviolet radiation (UV), and methyl methanesulfonate (MMS). The viability of SsrA-defective cells was rescued by deleting sulA, although the expression of SulA was not more pronounced in SsrA-defective cells than in wild-type cells. Live cell imaging using a Gam-GFP fluorescent reporter showed increased double-strand breaks (DSBs) in SsrA-defective cells during DNA damage. We also showed that the ribosome rescue function of SsrA was sufficient for DNA damage tolerance. DNA damage sensitivity can be alleviated by partial uncoupling of transcription and translation by using sub-lethal concentrations of ribosome inhibiting antibiotic (tetracycline) or by mutating the gene coding for RNase H (rnhA). Taken together, our results highlight the importance of trans-translation system in maintaining genome integrity and bacterial survival during DNA damage.
Collapse
Affiliation(s)
- Nagarajan T
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India; Department of Biological Sciences, SRM University-AP, Amaravati, India
| | | | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
2
|
Tao H, Meng F, Zhou Y, Fan J, Liu J, Han Y, Sun BB, Wang G. Transcriptomic and Functional Approaches Unveil the Role of tmRNA in Zinc Acetate Mediated Levofloxacin Sensitivity in Helicobacter pylori. Microbiol Spectr 2022; 10:e0115222. [PMID: 36354329 PMCID: PMC9769675 DOI: 10.1128/spectrum.01152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Rapid increase in resistance of Helicobacter pylori (H. pylori) has hindered antibiotics-based eradication efforts worldwide and raises the need for additional approaches. Here, we investigate the role of zinc-based compounds in inhibiting H. pylori growth and modulating antibiotic sensitivities, interrogate their downstream transcriptomic changes, and highlight the potential mechanism driving the observed effects. We showed that zinc acetate inhibited H. pylori growth and increased H. pylori sensitivity to levofloxacin. Transcriptomic profiling showed distinct gene expression patterns between zinc acetate treated groups versus controls. In particular, we independently replicated the association between zinc acetate treatment and increased ssrA expression. Knockdown of ssrA restored levofloxacin resistance to levels of the control group. In this study, we first demonstrated the role of zinc acetate in H. pylori growth and antibiotic sensitivities. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results provide alternative and complementary strategies for H. pylori treatment and shed light on the underlying mechanisms driving these effects. IMPORTANCE Helicobacter pylori (H. pylori) eradication plays an important role in gastric cancer prevention, but the antimicrobial resistance of H. pylori is fast becoming a growing concern. In this study, we investigated the role of zinc acetate in inhibiting H. pylori growth and modulating antibiotic sensitivities in vitro. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results open up a new horizon for the treatment of antibiotic-resistant H. pylori.
Collapse
Affiliation(s)
- Hongjin Tao
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Medical School of Chinese PLA, Beijing, People’s Republic of China
| | - Fansen Meng
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yu Zhou
- Department of Laboratory Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yingjie Han
- Department of Oncology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Benjamin B. Sun
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Gangshi Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Shanmughapriya V, Richard S, Nagarajan T, Munavar MH. Ascribing a novel role for tmRNA of Escherichia coli in resistance to mitomycin C. Future Microbiol 2017; 12:1381-1395. [PMID: 29027471 DOI: 10.2217/fmb-2016-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The ssrA mutants were found to be more sensitive to mitomycin C (MMC) and our aim was to study this phenomenon in detail. MATERIALS & METHODS Strains were constructed by P1 transduction. pssrA+ plasmid was constructed by PCR-based cloning and transformation was done by CaCl2 method. Relative viability analyses were done to assess the extent of viability of strains in relevant conditions. Gram staining was used for microscopic analysis. RESULTS ssrA mutants become sensitive specifically to MMC, that too in a strain-specific manner. Precise tagging function of SsrA is necessary for conferring resistance to MMC. sulA::kan restored the viability of ssrA::cat mutants in a strain-specific manner. CONCLUSION This study for the first time implicates SsrA in progression of efficient cell division and resistance to MMC.
Collapse
Affiliation(s)
- Vinod Shanmughapriya
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional & Organismal Genomics, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Stephen Richard
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional & Organismal Genomics, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.,Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | - Tamilmaran Nagarajan
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional & Organismal Genomics, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional & Organismal Genomics, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
4
|
Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase. PLoS One 2015; 10:e0128092. [PMID: 25993347 PMCID: PMC4437897 DOI: 10.1371/journal.pone.0128092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.
Collapse
|
5
|
Krasich R, Wu SY, Kuo HK, Kreuzer KN. Functions that protect Escherichia coli from DNA-protein crosslinks. DNA Repair (Amst) 2015; 28:48-59. [PMID: 25731940 DOI: 10.1016/j.dnarep.2015.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensitivity was verified to depend on methyltransferase expression. We isolated hypersensitive mutants that were uncovered in previous studies (recA, recBC, recG, and uvrD), hypersensitive mutants that apparently activate phage Mu Gam expression, and novel hypersensitive mutants in genes involved in DNA metabolism, cell division, and tRNA modification (dinG, ftsK, xerD, dnaJ, hflC, miaA, mnmE, mnmG, and ssrA). Inactivation of SbcCD, which can cleave DNA at protein-DNA complexes, did not cause hypersensitivity. We previously showed that tmRNA pathway defects cause aza-C hypersensitivity, implying that DPCs block coupled transcription/translation complexes. Here, we show that mutants in tRNA modification functions miaA, mnmE and mnmG cause defects in aza-C-induced tmRNA tagging, explaining their hypersensitivity. In order for tmRNA to access a stalled ribosome, the mRNA must be cleaved or released from RNA polymerase. Mutational inactivation of functions involved in mRNA processing and RNA polymerase elongation/release (RNase II, RNaseD, RNase PH, RNase LS, Rep, HepA, GreA, GreB) did not cause aza-C hypersensitivity; the mechanism of tmRNA access remains unclear.
Collapse
Affiliation(s)
- Rachel Krasich
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Sunny Yang Wu
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States.
| |
Collapse
|
6
|
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:151-91. [PMID: 22243584 DOI: 10.1016/b978-0-12-386497-0.00005-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis, and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
7
|
Keiler KC, Ramadoss NS. Bifunctional transfer-messenger RNA. Biochimie 2011; 93:1993-7. [PMID: 21664408 DOI: 10.1016/j.biochi.2011.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/25/2011] [Indexed: 01/14/2023]
Abstract
Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses.
Collapse
Affiliation(s)
- Kenneth C Keiler
- Pennsylvania State University, Department of Biochemistry & Molecular Biology, 401 Althouse Lab, University Park, PA 16802, USA.
| | | |
Collapse
|