1
|
Sayed FAZ, Eissa NG, Shen Y, Hunstad DA, Wooley KL, Elsabahy M. Morphologic design of nanostructures for enhanced antimicrobial activity. J Nanobiotechnology 2022; 20:536. [PMID: 36539809 PMCID: PMC9768920 DOI: 10.1186/s12951-022-01733-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in synthetic polymer chemistry and in control over tuning the structures and morphologies of nanoparticles, studies on morphologic design of nanomaterials for the purpose of optimizing antimicrobial activity have yielded mixed results. When designing antimicrobial materials, it is important to consider two distinctly different modes and mechanisms of activity-those that involve direct interactions with bacterial cells, and those that promote the entry of nanomaterials into infected host cells to gain access to intracellular pathogens. Antibacterial activity of nanoparticles may involve direct interactions with organisms and/or release of antibacterial cargo, and these activities depend on attractive interactions and contact areas between particles and bacterial or host cell surfaces, local curvature and dynamics of the particles, all of which are functions of nanoparticle shape. Bacteria may exist as spheres, rods, helices, or even in uncommon shapes (e.g., box- and star-shaped) and, furthermore, may transform into other morphologies along their lifespan. For bacteria that invade host cells, multivalent interactions are involved and are dependent upon bacterial size and shape. Therefore, mimicking bacterial shapes has been hypothesized to impact intracellular delivery of antimicrobial nanostructures. Indeed, designing complementarities between the shapes of microorganisms with nanoparticle platforms that are designed for antimicrobial delivery offers interesting new perspectives toward future nanomedicines. Some studies have reported improved antimicrobial activities with spherical shapes compared to non-spherical constructs, whereas other studies have reported higher activity for non-spherical structures (e.g., rod, discoid, cylinder, etc.). The shapes of nano- and microparticles have also been shown to impact their rates and extents of uptake by mammalian cells (macrophages, epithelial cells, and others). However, in most of these studies, nanoparticle morphology was not intentionally designed to mimic specific bacterial shape. Herein, the morphologic designs of nanoparticles that possess antimicrobial activities per se and those designed to deliver antimicrobial agent cargoes are reviewed. Furthermore, hypotheses beyond shape dependence and additional factors that help to explain apparent discrepancies among studies are highlighted.
Collapse
Affiliation(s)
- Fatma Al-Zahraa Sayed
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt
| | - Noura G. Eissa
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt ,grid.31451.320000 0001 2158 2757Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Yidan Shen
- grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA
| | - David A. Hunstad
- grid.4367.60000 0001 2355 7002Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Karen L. Wooley
- grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA
| | - Mahmoud Elsabahy
- grid.507995.70000 0004 6073 8904School of Biotechnology, Science Academy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt ,grid.264756.40000 0004 4687 2082Departments of Chemistry, Materials Science and Engineering, and Chemical Engineering, Texas A&M University, College Station, TX 77842 USA ,grid.440875.a0000 0004 1765 2064Misr University for Science and Technology, 6th of October City, Cairo, 12566 Egypt
| |
Collapse
|
2
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
3
|
D’Angiolella G, Tozzo P, Gino S, Caenazzo L. Trick or Treating in Forensics-The Challenge of the Saliva Microbiome: A Narrative Review. Microorganisms 2020; 8:E1501. [PMID: 33003446 PMCID: PMC7599466 DOI: 10.3390/microorganisms8101501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The oral microbiome harbours microbial community signatures that differ among individuals, highlighting that it could be highly individualizing and potentially unique to each individual. Therefore, the oral microbial traces collected in crime scenes could produce investigative leads. This narrative review will describe the current state-of-the-art of how the salivary microbiome could be exploited as a genetic signature to make inferences in the forensic field. This review has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. Even if further studies are needed to relate the variation in the oral microbiome to specific factors, in order to understand how the salivary microbiome is influenced by an individual's lifestyle, by reviewing the studies published so far, it is clear that the oral microbial analysis could become a useful forensic tool. Even if promising, caution is required in interpreting the results and an effort to direct research towards studies that fill the current knowledge gaps is certainly useful.
Collapse
Affiliation(s)
- Gabriella D’Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy;
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| | - Sarah Gino
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| |
Collapse
|
4
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria. Nat Ecol Evol 2016; 1:9. [PMID: 28812570 DOI: 10.1038/s41559-016-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022]
Abstract
Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across 325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might allow a greater evolutionary flexibility.
Collapse
|
6
|
Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, DiRita VJ, Vollmer W, Clarke AJ, Gaynor EC. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. J Biol Chem 2016; 291:22686-22702. [PMID: 27474744 PMCID: PMC5077204 DOI: 10.1074/jbc.m116.746404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.
Collapse
Affiliation(s)
- Reuben Ha
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Sychantha
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Biboy
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Michael E Taveirne
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeremiah G Johnson
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor J DiRita
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Waldemar Vollmer
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Anthony J Clarke
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
7
|
Deforet M, van Ditmarsch D, Xavier JB. Cell-Size Homeostasis and the Incremental Rule in a Bacterial Pathogen. Biophys J 2016; 109:521-8. [PMID: 26244734 DOI: 10.1016/j.bpj.2015.07.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/04/2023] Open
Abstract
How populations of growing cells achieve cell-size homeostasis remains a major question in cell biology. Recent studies in rod-shaped bacteria support the "incremental rule" where each cell adds a constant length before dividing. Although this rule explains narrow cell-size distributions, its mechanism is still unknown. We show that the opportunistic pathogen Pseudomonas aeruginosa obeys the incremental rule to achieve cell-length homeostasis during exponential growth but shortens its cells when entering the stationary phase. We identify a mutant, called frik, which has increased antibiotic sensitivity, cells that are on average longer, and a fraction of filamentous cells longer than 10 μm. When growth slows due to entry in stationary phase, the distribution of frik cell sizes decreases and approaches wild-type length distribution. The rare filamentous cells have abnormally large nucleoids, suggesting that a deficiency in DNA segregation prevents cell division without slowing the exponential elongation rate.
Collapse
Affiliation(s)
- Maxime Deforet
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Dave van Ditmarsch
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - João B Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Faghri J, Poursina F, Moghim S, Zarkesh Esfahani H, Nasr Esfahani B, Fazeli H, Mirzaei N, Jamshidian A, Ghasemian Safaei H. Morphological and Bactericidal Effects of Different Antibiotics on Helicobacter pylori. Jundishapur J Microbiol 2014; 7:e8704. [PMID: 25147656 PMCID: PMC4138673 DOI: 10.5812/jjm.8704] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/26/2012] [Accepted: 01/27/2013] [Indexed: 12/11/2022] Open
Abstract
Background: Helicobacter pylori (H. pylori) is a spiral Gram negative bacteria that can transform to the coccoid form in adverse conditions. Objectives: The aim of this study was to determine the in vitro morphological and bactericidal effects of metronidazole, amoxicillin and clarithromycin on H. pylori. Materials and Methods: The standard strain 26695 of H. pylori was cultured on Brucella agar (BA) and the minimum inhibitory concentrations (MICs) of three antibiotics were determined by E-test method. The bacteria were exposed to antibiotics at 1/2 MIC, MIC and 2X MIC concentrations in Brucella broth (BB). Induced coccoid forms were confirmed by Gram staining and light microscopy. The viability of cells as well as the susceptibility of viable coccoids to antibiotics were examined using the flow cytometry method. Results: All of the three antibiotics at sub-MIC induced coccoid forms. The highest rates of coccoids (> 90%) were induced at 0.008 μg/mL concentration (1/2 MIC) of amoxicillin, 72 hours postexposure. Metronidazole and clarithromycin with 1/2 MIC (0.5 and 0.125 µg/mL respectively) induced lower rates of coccoid forms (60% and 40% respectively). Potent bactericidal effects on coccoids were observed with Metronidazole at 2X MIC and clarithromycin at MIC (0.25 µg/mL) (80 - 90%). Amoxicillin with MIC and 2X MIC had no bactericidal effect on coccoid forms. Conclusions: Despite the good in vitro bactericidal effect of amoxicillin on spiral forms of H. pylori, this antibiotic has little effect on induced coccoids that may develop after the inappropriate in vivo antibacterial treatment. Hence, for successful therapy, it is essential not only to eradicate the spiral forms, but to eliminate the viable coccoids.
Collapse
Affiliation(s)
- Jamshid Faghri
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Farkhondeh Poursina
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Sharareh Moghim
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hamid Zarkesh Esfahani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hossein Fazeli
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Nasrin Mirzaei
- Department of Biology, Islamic Azad University, Tonekabon branch, Tonekabon, IR Iran
| | - Azam Jamshidian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Hajieh Ghasemian Safaei
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Corresponding author: Hajieh Ghasemian Safaei, Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran. Tel: +98-3117922469, Fax: +98-3116688597, E-mail:
| |
Collapse
|