1
|
Liu HW, Roisné-Hamelin F, Gruber S. SMC-based immunity against extrachromosomal DNA elements. Biochem Soc Trans 2023; 51:1571-1583. [PMID: 37584323 PMCID: PMC10586767 DOI: 10.1042/bst20221395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
SMC and SMC-like complexes promote chromosome folding and genome maintenance in all domains of life. Recently, they were also recognized as factors in cellular immunity against foreign DNA. In bacteria and archaea, Wadjet and Lamassu are anti-plasmid/phage defence systems, while Smc5/6 and Rad50 complexes play a role in anti-viral immunity in humans. This raises an intriguing paradox - how can the same, or closely related, complexes on one hand secure the integrity and maintenance of chromosomal DNA, while on the other recognize and restrict extrachromosomal DNA? In this minireview, we will briefly describe the latest understanding of each of these complexes in immunity including speculations on how principles of SMC(-like) function may explain how the systems recognize linear or circular forms of invading DNA.
Collapse
Affiliation(s)
- Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol Cell 2022; 82:4727-4740.e6. [PMID: 36525956 DOI: 10.1016/j.molcel.2022.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.
Collapse
|
3
|
Zhou M. DNA sliding and loop formation by E. coli SMC complex: MukBEF. Biochem Biophys Rep 2022; 31:101297. [PMID: 35770038 PMCID: PMC9234588 DOI: 10.1016/j.bbrep.2022.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes share conserved architectures and function in chromosome maintenance via an unknown mechanism. Here we have used single-molecule techniques to study MukBEF, the SMC complex in Escherichia coli. Real-time movies show MukB alone can compact DNA and ATP inhibits DNA compaction by MukB. We observed that DNA unidirectionally slides through MukB, potentially by a ratchet mechanism, and the sliding speed depends on the elastic energy stored in the DNA. MukE, MukF and ATP binding stabilize MukB and DNA interaction, and ATP hydrolysis regulates the loading/unloading of MukBEF from DNA. Our data suggests a new model for how MukBEF organizes the bacterial chromosome in vivo; and this model will be relevant for other SMC proteins.
Collapse
Affiliation(s)
- Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
4
|
Pradhan S, K S, Kumari P, Kumar R. Biochemical and functional characterization of the SMC holocomplex from Mycobacterium smegmatis. MICROBIOLOGY-SGM 2020; 167. [PMID: 33350902 DOI: 10.1099/mic.0.001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multi-subunit SMC complexes are required to perform essential functions, such as chromosome compaction, segregation and DNA repair, from bacteria to humans. Prokaryotic SMC proteins form complexes with two non-SMC subunits, ScpA and ScpB, to condense the chromosome. The mutants of both scpa and scpb genes in Bacillus subtilis have been shown to display characteristic phenotypes such as growth defects and increased frequency of anucleate cells. Here, we studied the function of the Smc-ScpAB complex from Mycobacterium smegmatis. We observed no significant growth difference between the scpb null mutant and wild-type M. smegmatis under both standard and stress conditions. Furthermore, we characterized the Smc-ScpAB holocomplex from M. smegmatis. The MsSMC consists of the dimerization hinge and ATPase head domains connected by long coiled-coils. The MsSMC interacts with two non-SMC proteins, ScpA and ScpB, and the resulting holocomplex binds to different DNA substrates independent of ATP. The Smc-ScpAB complex showed DNA-stimulated ATPase activity in the presence of ssDNA. A cytological profiling assay revealed that upon overexpression the Smc-ScpAB ternary complex compacts the decondensed nucleoid of rifampicin-treated wild-type and null mukb mutant of Escherichia coli in vivo. Together, our study suggests that M. smegmatis has a functional Smc-ScpAB complex capable of DNA binding and condensation. Based on our observations, we speculate that the presence of alternative SMCs such as MksB or other SMC homologues might have rescued the scpb mutant phenotype in M. smegmatis.
Collapse
Affiliation(s)
- Suchitra Pradhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Shwetha K
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Pratibha Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Anand D, Schumacher D, Søgaard-Andersen L. SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus. Mol Microbiol 2020; 114:839-856. [PMID: 32738827 DOI: 10.1111/mmi.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
6
|
Abstract
Protein complexes built of structural maintenance of chromosomes (SMC) and kleisin subunits, including cohesin, condensin and the Smc5/6 complex, are master organizers of genome architecture in all kingdoms of life. How these large ring-shaped molecular machines use the energy of ATP hydrolysis to change the topology of chromatin fibers has remained a central unresolved question of chromosome biology. A currently emerging concept suggests that the common principle that underlies the essential functions of SMC protein complexes in the control of gene expression, chromosome segregation or DNA damage repair is their ability to expand DNA into large loop structures. Here, we review the current knowledge about the biochemical and structural properties of SMC protein complexes that might enable them to extrude DNA loops and compare their action to other motor proteins and nucleic acid translocases. We evaluate the currently predominant models of active loop extrusion and propose a detailed version of a 'scrunching' model, which reconciles much of the available mechanistic data and provides an elegant explanation for how SMC protein complexes fulfill an array of seemingly diverse tasks during the organization of genomes.
Collapse
|
7
|
Vazquez Nunez R, Ruiz Avila LB, Gruber S. Transient DNA Occupancy of the SMC Interarm Space in Prokaryotic Condensin. Mol Cell 2019; 75:209-223.e6. [PMID: 31201090 PMCID: PMC6934413 DOI: 10.1016/j.molcel.2019.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/17/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Multi-subunit SMC ATPases control chromosome superstructure and DNA topology, presumably by DNA translocation and loop extrusion. Chromosomal DNA is entrapped within the tripartite SMCkleisin ring. Juxtaposed SMC heads ("J heads") or engaged SMC heads ("E heads") split the SMCkleisin ring into "S" and "K" sub-compartments. Here, we map a DNA-binding interface to the S compartment of E heads SmcScpAB and show that head-DNA association is essential for efficient DNA translocation and for traversing highly transcribed genes in Bacillus subtilis. We demonstrate that in J heads, SmcScpAB chromosomal DNA resides in the K compartment but is absent from the S compartment. Our results imply that the DNA occupancy of the S compartment changes during the ATP hydrolysis cycle. We propose that DNA translocation involves DNA entry into and exit out of the S compartment, possibly by DNA transfer between compartments and DNA segment capture.
Collapse
Affiliation(s)
- Roberto Vazquez Nunez
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland
| | - Laura B Ruiz Avila
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland; Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
8
|
Evolution of the methyl directed mismatch repair system in Escherichia coli. DNA Repair (Amst) 2015; 38:32-41. [PMID: 26698649 DOI: 10.1016/j.dnarep.2015.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.
Collapse
|
9
|
Wilhelm L, Bürmann F, Minnen A, Shin HC, Toseland CP, Oh BH, Gruber S. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 2015; 4. [PMID: 25951515 PMCID: PMC4442127 DOI: 10.7554/elife.06659] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Smc–ScpAB forms elongated, annular structures that promote chromosome segregation, presumably by compacting and resolving sister DNA molecules. The mechanistic basis for its action, however, is only poorly understood. Here, we have established a physical assay to determine whether the binding of condensin to native chromosomes in Bacillus subtilis involves entrapment of DNA by the Smc–ScpAB ring. To do so, we have chemically cross-linked the three ring interfaces in Smc–ScpAB and thereafter isolated intact chromosomes under protein denaturing conditions. Exclusively species of Smc–ScpA, which were previously cross-linked into covalent rings, remained associated with chromosomal DNA. DNA entrapment is abolished by mutations that interfere with the Smc ATPase cycle and strongly reduced when the recruitment factor ParB is deleted, implying that most Smc–ScpAB is loaded onto the chromosome at parS sites near the replication origin. We furthermore report a physical interaction between native Smc–ScpAB and chromosomal DNA fragments. DOI:http://dx.doi.org/10.7554/eLife.06659.001 The genome of any living organism holds all the genetic information that the organism needs to live and grow. This information is written in the sequence of the organism's DNA, and is often divided into sub-structures called chromosomes. Different species have different sized genomes, but even bacteria with some of the smallest genomes still contain DNA molecules that are thousand times longer than the length of their cells. DNA molecules must thus be highly compacted in order to fit inside the cells. DNA compaction is particularly important during cell division, when the DNA is being equally distributed to the newly formed cells. In plants, animals and all other eukaryotes, large protein complexes known as condensin and cohesin play a major role in compacting, and then separating, the cell's chromosomes. Many bacteria also have condensin-like complexes. At the core of all these complexes are pairs of so-called SMC proteins. However, it is not clear how these SMC proteins direct chromosomes to become highly compacted when cells are dividing. Wilhelm et al. have now developed two new approaches to investigate how SMC proteins associate with bacterial DNA. These approaches were then used to study how SMC proteins coordinate the compaction of chromosomes in a bacterium called Bacillus subtilis. The experiments revealed that SMC proteins are in direct physical contact with the bacterial chromosome, and that bacterial DNA fibers are physically captured within a ring structure formed by the SMC proteins. Wilhelm et al. suggest that these new findings, and recent technological advances, have now set the stage for future studies to gain mechanistic insight into these protein complexes that organize and segregate chromosomes. DOI:http://dx.doi.org/10.7554/eLife.06659.002
Collapse
Affiliation(s)
- Larissa Wilhelm
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Bürmann
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anita Minnen
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Christopher P Toseland
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
10
|
Rybenkov VV, Herrera V, Petrushenko ZM, Zhao H. MukBEF, a chromosomal organizer. J Mol Microbiol Biotechnol 2015; 24:371-83. [PMID: 25732339 DOI: 10.1159/000369099] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Global folding of bacterial chromosome requires the activity of condensins. These highly conserved proteins are involved in various aspects of higher-order chromatin dynamics in a diverse range of organisms. Two distinct superfamilies of condensins have been identified in bacteria. The SMC-ScpAB proteins bear significant homology to eukaryotic condensins and cohesins and are found in most of the presently sequenced bacteria. This review focuses on the MukBEF/MksBEF superfamily, which is broadly distributed across diverse bacteria and is characterized by low sequence conservation. The prototypical member of this superfamily, the Escherichia coli condensin MukBEF, continues to provide critical insights into the mechanism of the proteins. MukBEF acts as a complex molecular machine that assists in chromosome segregation and global organization. The review focuses on the mechanistic analysis of DNA organization by MukBEF with emphasis on its involvement in the formation of chromatin scaffold and plausible other roles in chromosome segregation.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Okla., USA
| | | | | | | |
Collapse
|
11
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
12
|
The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. mBio 2014; 5:e01001-13. [PMID: 24520061 PMCID: PMC3950513 DOI: 10.1128/mbio.01001-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli structural maintenance of chromosome (SMC) complex, MukBEF, and topoisomerase IV (TopoIV) interact in vitro through a direct contact between the MukB dimerization hinge and the C-terminal domain of ParC, the catalytic subunit of TopoIV. The interaction stimulates catalysis by TopoIV in vitro. Using live-cell quantitative imaging, we show that MukBEF directs TopoIV to ori, with fluorescent fusions of ParC and ParE both forming cellular foci that colocalize with those formed by MukBEF throughout the cell cycle and in cells unable to initiate DNA replication. Removal of MukBEF leads to loss of fluorescent ParC/ParE foci. In the absence of functional TopoIV, MukBEF forms multiple foci that are distributed uniformly throughout the nucleoid, whereas multiple catenated oris cluster at midcell. Once functional TopoIV is restored, the decatenated oris segregate to positions that are largely coincident with the MukBEF foci, thereby providing support for a mechanism by which MukBEF acts in chromosome segregation by positioning newly replicated and decatenated oris. Additional evidence for such a mechanism comes from the observation that in TopoIV-positive (TopoIV(+)) cells, newly replicated oris segregate rapidly to the positions of MukBEF foci. Taken together, the data implicate MukBEF as a key component of the DNA segregation process by acting in concert with TopoIV to promote decatenation and positioning of newly replicated oris. IMPORTANCE Mechanistic understanding of how newly replicated bacterial chromosomes are segregated prior to cell division is incomplete. In this work, we provide in vivo experimental support for the view that topoisomerase IV (TopoIV), which decatenates newly replicated sister duplexes as a prelude to successful segregation, is directed to the replication origin region of the Escherichia coli chromosome by the SMC (structural maintenance of chromosome) complex, MukBEF. We provide in vivo data that support the demonstration in vitro that the MukB interaction with TopoIV stimulates catalysis by TopoIV. Finally, we show that MukBEF directs the normal positioning of sister origins after their replication and during their segregation. Overall, the data support models in which the coordinate and sequential action of TopoIV and MukBEF plays an important role during bacterial chromosome segregation.
Collapse
|
13
|
Halverson JD, Smrek J, Kremer K, Grosberg AY. From a melt of rings to chromosome territories: the role of topological constraints in genome folding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:022601. [PMID: 24472896 DOI: 10.1088/0034-4885/77/2/022601] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We review pro and contra of the hypothesis that generic polymer properties of topological constraints are behind many aspects of chromatin folding in eukaryotic cells. For that purpose, we review, first, recent theoretical and computational findings in polymer physics related to concentrated, topologically simple (unknotted and unlinked) chains or a system of chains. Second, we review recent experimental discoveries related to genome folding. Understanding in these fields is far from complete, but we show how looking at them in parallel sheds new light on both.
Collapse
Affiliation(s)
- Jonathan D Halverson
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | |
Collapse
|
14
|
An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat Struct Mol Biol 2013; 20:371-9. [PMID: 23353789 DOI: 10.1038/nsmb.2488] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/07/2012] [Indexed: 11/08/2022]
Abstract
Eukaryotic structural maintenance of chromosomes (SMC)-kleisin complexes form large, ring-shaped assemblies that promote accurate chromosome segregation. Their asymmetric structural core comprises SMC heterodimers that associate with both ends of a kleisin subunit. However, prokaryotic condensin Smc-ScpAB is composed of symmetric Smc homodimers associated with the kleisin ScpA in a postulated symmetrical manner. Here, we demonstrate that Smc molecules have two distinct binding sites for ScpA. The N terminus of ScpA binds the Smc coiled coil, whereas the C terminus binds the Smc ATPase domain. We show that in Bacillus subtilis cells, an Smc dimer is bridged by a single ScpAB to generate asymmetric tripartite rings analogous to eukaryotic SMC complexes. We define a molecular mechanism that ensures asymmetric assembly, and we conclude that the basic architecture of SMC-kleisin rings evolved before the emergence of eukaryotes.
Collapse
|
15
|
She W, Mordukhova E, Zhao H, Petrushenko ZM, Rybenkov VV. Mutational analysis of MukE reveals its role in focal subcellular localization of MukBEF. Mol Microbiol 2012; 87:539-52. [PMID: 23171168 DOI: 10.1111/mmi.12112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 11/26/2022]
Abstract
Bacterial condensin MukBEF is essential for global folding of the Escherichia coli chromosome. MukB, a SMC (structural maintenance of chromosome) protein, comprises the core of this complex and is responsible for its ATP-modulated DNA binding and reshaping activities. MukF serves as a kleisin that modulates MukB-DNA interactions and links MukBs into macromolecular assemblies. Little is known about the function of MukE. Using random mutagenesis, we generated six loss-of-function point mutations in MukE. The surface mutations clustered in two places. One of them was at or close to the interface with MukF while the other was away from the known interactions of the protein. All loss-of-function mutations affected focal localization of MukBEF in live cells. In vitro, however, only some of them interfered with the assembly of MukBEF into a complex or the ability of MukEF to disrupt MukB-DNA interactions. Moreover, some MukE mutants were able to join intracellular foci formed by endogenous MukBEF and most of the mutants were efficiently incorporated into MukBEF even in the presence of endogenous MukE. These data reveal that focal localization of MukBEF involves other activities besides DNA binding and that MukE plays a central role in them.
Collapse
Affiliation(s)
- Weifeng She
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | |
Collapse
|
16
|
Badrinarayanan A, Reyes-Lamothe R, Uphoff S, Leake MC, Sherratt DJ. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 2012; 338:528-31. [PMID: 23112333 PMCID: PMC3807729 DOI: 10.1126/science.1227126] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SMC (structural maintenance of chromosome) proteins act ubiquitously in chromosome processing. In Escherichia coli, the SMC complex MukBEF plays roles in chromosome segregation and organization. We used single-molecule millisecond multicolor fluorescence microscopy of live bacteria to reveal that a dimer of dimeric fluorescent MukBEF molecules acts as the minimal functional unit. On average, 8 to 10 of these complexes accumulated as "spots" in one to three discrete chromosome-associated regions of the cell, where they formed higher-order structures. Functional MukBEF within spots exchanged with freely diffusing complexes at a rate of one complex about every 50 seconds in reactions requiring adenosine triphosphate (ATP) hydrolysis. Thus, by functioning in pairs, MukBEF complexes may undergo multiple cycles of ATP hydrolysis without being released from DNA, analogous to the behavior of well-characterized molecular motors.
Collapse
|
17
|
The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 2012; 194:4669-76. [PMID: 22753058 DOI: 10.1128/jb.00957-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes function ubiquitously in organizing and maintaining chromosomes. Functional fluorescent derivatives of the Escherichia coli SMC complex, MukBEF, form foci that associate with the replication origin region (ori). MukBEF impairment results in mispositioning of ori and other loci in steady-state cells. These observations led to an earlier proposal that MukBEF positions new replicated sister oris. We show here that MukBEF generates and maintains the cellular positioning of chromosome loci independently of DNA replication. Rapid impairment of MukBEF function by depleting a Muk component in the absence of DNA replication leads to loss of MukBEF foci as well as mispositioning of ori and other loci, while rapid Muk synthesis leads to rapid MukBEF focus formation but slow restoration of normal chromosomal locus positioning.
Collapse
|
18
|
Böhm A, Papenfort K, Lopez D, Vogel J. Microbes at their best: first Mol Micro Meeting Würzburg. Mol Microbiol 2011; 82:797-806. [DOI: 10.1111/j.1365-2958.2011.07852.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|