1
|
Corver J, Claushuis B, Shamorkina TM, de Ru AH, van Leeuwen MM, Hensbergen PJ, Smits WK. Proteolytic activity of surface-exposed HtrA determines its expression level and is needed to survive acidic conditions in Clostridioides difficile. Mol Microbiol 2024; 122:413-428. [PMID: 39081042 DOI: 10.1111/mmi.15300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 10/17/2024]
Abstract
To survive in the host, pathogenic bacteria need to be able to react to the unfavorable conditions that they encounter, like low pH, elevated temperatures, antimicrobial peptides and many more. These conditions may lead to unfolding of envelope proteins and this may be lethal. One of the mechanisms through which bacteria are able to survive these conditions is through the protease/foldase activity of the high temperature requirement A (HtrA) protein. The gut pathogen Clostridioides difficile encodes one HtrA homolog that is predicted to contain a membrane anchor and a single PDZ domain. The function of HtrA in C. difficile is hitherto unknown but previous work has shown that an insertional mutant of htrA displayed elevated toxin levels, less sporulation and decreased binding to target cells. Here, we show that HtrA is membrane associated and localized on the surface of C. difficile and characterize the requirements for proteolytic activity of recombinant soluble HtrA. In addition, we show that the level of HtrA in the bacteria heavily depends on its proteolytic activity. Finally, we show that proteolytic activity of HtrA is required for survival under acidic conditions.
Collapse
Affiliation(s)
- Jeroen Corver
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Claushuis
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Tatiana M Shamorkina
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Merle M van Leeuwen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Bloch S, Hager-Mair FF, Bacher J, Tomek MB, Janesch B, Andrukhov O, Schäffer C. Investigating the role of a Tannerella forsythia HtrA protease in host protein degradation and inflammatory response. FRONTIERS IN ORAL HEALTH 2024; 5:1425937. [PMID: 39035711 PMCID: PMC11257890 DOI: 10.3389/froh.2024.1425937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Degradation of host proteins by bacterial proteases leads to the subversion of the host response and disruption of oral epithelial integrity, which is considered an essential factor in the progression of periodontitis. High-temperature requirement A (HtrA) protease, which is critical for bacterial survival and environmental adaptation, is found in several oral bacteria, including the periodontal pathogen Tannerella forsythia. This study investigated the proteolytic activity of HtrA from T. forsythia and its ability to modulate the host response. Methods HtrA of T. forsythia was identified bioinformatically and produced as a recombinant protein. T. forsythia mutants with depleted and restored HtrA production were constructed. The effect of T. forsythia wild-type, mutants and recombinant HtrA on the degradation of casein and E-cadherin was tested in vitro. Additionally, the responses of human gingival fibroblasts and U937 macrophages to the different HtrA-stimuli were investigated and compared to those triggered by the HtrA-deficient mutant. Results T. forsythia wild-type producing HtrA as well as the recombinant enzyme exhibited proteolytic activity towards casein and E-cadherin. No cytotoxic effect of either the wild-type, T. forsythia mutants or rHtrA on the viability of host cells was found. In hGFB and U937 macrophages, both T. forsythia species induced an inflammatory response of similar magnitude, as indicated by gene and protein expression of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α and monocyte chemoattractant protein (MCP)-1. Recombinant HtrA had no significant effect on the inflammatory response in hGFBs, whereas in U937 macrophages, it induced a transient inflammatory response at the early stage of infection. Conclusion HtrA of T. forsythia exhibit proteolytic activity towards the host adhesion molecule E-cadherin and has the potential to influence the host response. Its role in the progression of periodontitis needs further clarification.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Johanna Bacher
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B. Tomek
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Bettina Janesch
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
3
|
Lo HH, Chang HC, Wu YJ, Liao CT, Hsiao YM. Functional characterization and transcriptional analysis of degQ of Xanthomonas campestris pathovar campestris. J Basic Microbiol 2024; 64:e2300441. [PMID: 38470163 DOI: 10.1002/jobm.202300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 03/13/2024]
Abstract
High-temperature-requirement protein A (HtrA) family proteins play important roles in controlling protein quality and are recognized as virulence factors in numerous animal and human bacterial pathogens. The role of HtrA family proteins in plant pathogens remains largely unexplored. Here, we investigated the HtrA family protein, DegQ, in the crucifer black rot pathogen Xanthomonas campestris pathovar campestris (Xcc). DegQ is essential for bacterial attachment and full virulence of Xcc. Moreover, the degQ mutant strain showed increased sensitivity to heat treatment and sodium dodecyl sulfate. Expressing the intact degQ gene in trans in the degQ mutant could reverse the observed phenotypic changes. In addition, we demonstrated that the DegQ protein exhibited chaperone-like activity. Transcriptional analysis displayed that degQ expression was induced under heat treatment. Our results contribute to understanding the function and expression of DegQ of Xcc for the first time and provide a novel perspective about HtrA family proteins in plant pathogen.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Jyun Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
4
|
Luo H, Qu X, Deng X, He L, Wu Y, Liu Y, He D, Yin J, Wang B, Gan F, Tang B, Tang XF. HtrAs are essential for the survival of the haloarchaeon Natrinema gari J7-2 in response to heat, high salinity, and toxic substances. Appl Environ Microbiol 2024; 90:e0204823. [PMID: 38289131 PMCID: PMC10880668 DOI: 10.1128/aem.02048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.
Collapse
Affiliation(s)
- Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liping He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingxue Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Prinčič L, Burtscher J, Sacken P, Krajnc T, Domig KJ. Clostridium strain FAM25158, a unique endospore-forming bacterium related to Clostridium tyrobutyricum and isolated from Emmental cheese shows low tolerance to salt. Front Microbiol 2024; 15:1353321. [PMID: 38414773 PMCID: PMC10897056 DOI: 10.3389/fmicb.2024.1353321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
The genus Clostridium is a large and diverse group of species that can cause food spoilage, including late blowing defect (LBD) in cheese. In this study, we investigated the taxonomic status of strain FAM25158 isolated from Emmental cheese with LBD using a polyphasic taxonomic and comparative genomic approach. A 16S rRNA gene sequence phylogeny suggested affiliation to the Clostridium sensu stricto cluster, with Clostridium tyrobutyricum DSM 2637T being the closest related type strain (99.16% sequence similarity). Average Nucleotide Identity (ANI) analysis revealed that strain FAM25158 is at the species threshold with C. tyrobutyricum, with ANI values ranging from 94.70 to 95.26%, while the digital DNA-DNA hybridization values were below the recommended threshold, suggesting that FAM25158 is significantly different from C. tyrobutyricum at the genomic level. Moreover, comparative genomic analysis between FAM25158 and its four closest C. tyrobutyricum relatives revealed a diversity of metabolic pathways, with FAM25158 differing from other C. tyrobutyricum strains by the presence of genes such as scrA, srcB, and scrK, responsible for sucrose utilization, and the absence of many important functional genes associated with cold and osmolality adaptation, which was further supported by phenotypic analyses. Surprisingly, strain FAM25158 exhibited unique physiologic traits, such as an optimal growth temperature of 30°C, in contrast to its closest relatives, C. tyrobutyricum species with an optimal growth temperature of 37°C. Additionally, the growth of FAM25158 was inhibited at NaCl concentrations higher than 0.5%, a remarkable observation considering its origin from cheese. While the results of this study provide novel information on the genetic content of strain FAM25158, the relationship between its genetic content and the observed phenotype remains a topic requiring further investigation.
Collapse
Affiliation(s)
- Lucija Prinčič
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Paul Sacken
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Tina Krajnc
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zhang B, Jiang C, Cao H, Zeng W, Ren J, Hu Y, Li W, He Q. Transcriptome analysis of heat resistance regulated by quorum sensing system in Glaesserella parasuis. Front Microbiol 2022; 13:968460. [PMID: 36033895 PMCID: PMC9403865 DOI: 10.3389/fmicb.2022.968460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of bacteria to resist heat shock allows them to adapt to different environments. In addition, heat shock resistance is known for their virulence. Our previous study showed that the AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Glaesserella parasuis. The resistance of quorum sensing system deficient G. parasuis to heat shock was obviously weaker than that of wild type strain. However, the regulatory mechanism of this phenotype remains unclear. To illustrate the regulatory mechanism by which the quorum sensing system provides resistance to heat shock, the transcriptomes of wild type (GPS2), ΔluxS, and luxS complemented (C-luxS) strains were analyzed. Four hundred forty-four differentially expressed genes were identified in quorum sensing system deficient G. parasuis, which participated in multiple regulatory pathways. Furthermore, we found that G. parasuis regulates the expression of rseA, rpoE, rseB, degS, clpP, and htrA genes to resist heat shock via the quorum sensing system. We further confirmed that rseA and rpoE genes exerted an opposite regulatory effect on heat shock resistance. In conclusion, the findings of this study provide a novel insight into how the quorum sensing system affects the transcriptome of G. parasuis and regulates its heat shock resistance property.
Collapse
Affiliation(s)
- Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qigai He,
| |
Collapse
|
7
|
Zhang L, Zhao F, Xu H, Chen Y, Qi C, Liu J. HtrA of Actinobacillus pleuropneumoniae is a virulence factor that confers resistance to heat shock and oxidative stress. Gene 2022; 841:146771. [PMID: 35905850 DOI: 10.1016/j.gene.2022.146771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, which is a severe and often fatal disease that results in significant economic loss. The means by which A. pleuropneumoniae survives within the host are not clear. High temperature requirement A (HtrA) proteases have been shown to affect cell viability during stressful conditions and are virulence factors in many bacterial species. In this study, we examined the biological role of HtrA during A. pleuropneumoniae infection by analyzing the impact of htrA mutation on virulence-associated phenotypes. We found that htrA mutation had a dramatic impact on stress tolerance. The htrA mutant (ΔhtrA) displayed a lethal phenotype at elevated temperature (42°C). Further, ΔhtrA exhibited increased susceptibility to H2O2-induced oxidative stress when compared to the parental strain (SLW01) and a complementation strain (ΔhtrA-Compl). Animal infection assays demonstrated that absence of HtrA led to decreased in vivo colonization ability, and ΔhtrA is less virulent in pigs relative to SLW01. Furthermore, pig competitive infection assays demonstrated fewer blood associated CFUs with ΔhtrA infection than with SLW01. These results demonstrate HtrA plays a significant role in the survival and growth of A. pleuropneumoniae during stressful conditions, and that immune escape and invasiveness are important to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Fan Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Huan Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yubing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
8
|
Song Y, Ke Y, Kang M, Bao R. Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Comput Struct Biotechnol J 2022; 20:40-49. [PMID: 34976310 PMCID: PMC8671199 DOI: 10.1016/j.csbj.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Members of the high temperature requirement A (HtrA) protein family are widely distributed amongst prokaryotic and eukaryotic species. HtrA proteins have ATP-independent dual chaperone-protease activity and mediate protein quality control. Emerging evidence indicates that HtrA family members are vital for establishing infections and bacterial survival under stress conditions. Bacterial HtrA proteins are increasingly thought of as important new targets for antibacterial drug development. Recent literature suggests that HtrA protein AlgW from Pseudomonas aeruginosa has distinct structural, functional, and regulatory characteristics. The novel dual-signal activation mechanism seen in AlgW is required to modulate stress and drug responses in bacteria, prompting us to review our understanding of the many HtrA proteins found in microorganisms. Here, we describe the distribution of HtrA gene orthologues in pathogenic bacteria, discuss their structure–function relationships, outline the molecular mechanisms exhibited by different bacterial HtrA proteins in bacteria under selective pressure, and review the significance of recently developed small molecule inhibitors targeting HtrA in pathogenic bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yitao Ke
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Corresponding authors.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Corresponding authors.
| |
Collapse
|
9
|
Paudel A, Furuta Y, Higashi H. Silkworm model for Bacillus anthracis infection and virulence determination. Virulence 2021; 12:2285-2295. [PMID: 34490836 PMCID: PMC8425766 DOI: 10.1080/21505594.2021.1965830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/07/2022] Open
Abstract
Bacillus anthracis is an obligate pathogen and a causative agent of anthrax. Its major virulence factors are plasmid-coded; however, recent studies have revealed chromosome-encoded virulence factors, indicating that the current understanding of its virulence mechanism is elusive and needs further investigation. In this study, we established a silkworm (Bombyx mori) infection model of B. anthracis. We showed that silkworms were killed by B. anthracis Sterne and cured of the infection when administered with antibiotics. We quantitatively determined the lethal dose of the bacteria that kills 50% larvae and effective doses of antibiotics that cure 50% infected larvae. Furthermore, we demonstrated that B. anthracis mutants with disruption in virulence genes such as pagA, lef, and atxA had attenuated silkworm-killing ability and reduced colonization in silkworm hemolymph. The silkworm infection model established in this study can be utilized in large-scale infection experiments to identify novel virulence determinants and develop novel therapeutic options against B. anthracis infections.
Collapse
Affiliation(s)
- Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use. Clin Microbiol Infect 2021; 27:559-564. [DOI: 10.1016/j.cmi.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
|
11
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
12
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
13
|
Transcriptome Sequencing Data of Bacillus anthracis Vollum Δ htrA and Its Parental Strain, Isolated under Oxidative Stress. Microbiol Resour Announc 2020; 9:9/35/e00618-20. [PMID: 32855245 PMCID: PMC7453281 DOI: 10.1128/mra.00618-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress. The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress.
Collapse
|
14
|
Malmquist JA, Rogan MR, McGillivray SM. Galleria mellonella as an Infection Model for Bacillus anthracis Sterne. Front Cell Infect Microbiol 2019; 9:360. [PMID: 31681636 PMCID: PMC6813211 DOI: 10.3389/fcimb.2019.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Understanding bacterial virulence provides insight into the molecular basis behind infection and could identify new drug targets. However, assessing potential virulence determinants relies on testing in an animal model. The mouse is a well-validated model but it is constrained by the ethical and logistical challenges of using vertebrate animals. Recently the larva of the greater wax moth Galleria mellonella has been explored as a possible infection model for a number of pathogens. In this study, we developed G. mellonella as an infection model for Bacillus anthracis Sterne. We first validated two different infection assays, a survival assay and a competition assay, using mutants containing disruptions in known B. anthracis virulence genes. We next tested the utility of G. mellonella to assess the virulence of transposon mutants with unknown mutations that had increased susceptibility to hydrogen peroxide in in vitro assays. One of these transposon mutants also displayed significantly decreased virulence in G. mellonella. Further investigation revealed that this mutant had a disruption in the petrobactin biosynthesis operon (asbABCDEF), which has been previously implicated in both virulence and defense against oxidative stress. We conclude that G. mellonella can detect attenuated virulence of B. anthracis Sterne in a manner consistent with that of mammalian infection models. Therefore, G. mellonella could serve as a useful alternative to vertebrate testing, especially for early assessments of potential virulence genes when use of a mammalian model may not be ethical or practical.
Collapse
Affiliation(s)
- Jacob A Malmquist
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Madison R Rogan
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Shauna M McGillivray
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
15
|
Zhang Z, Wu T, Li Y, Bai X, Yan X, Gao Y, Shi Q, Zhu G. Contribution of the serine protease HtrA in Escherichia coli to infection in foxes. Microb Pathog 2019; 135:103570. [PMID: 31158492 DOI: 10.1016/j.micpath.2019.103570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 11/25/2022]
Abstract
Escherichia coli can cause severe, acute hemorrhagic pneumonia and systemic infection in farmed foxes, raccoon dogs and minks, leading to considerable economic losses to the farmers. It is well established that the htrA-encoded serine protease HtrA is critical for bacterial growth and survival under stress, and HtrA has been determined to be a potential vaccine target. However, the roles of HtrA in E. coli pathogenesis remain unknown. In this study, we generated an htrA-deletion mutant of the E. coli protype strain HBCLE-12 that causes pneumonia in silver foxes and then evaluated the changes in bacterial physiological characteristics in the absence of HtrA. The data show that knockout of the htrA gene did not affect growth and biochemical characteristics but led to impaired virulence of the strain. Increased susceptibility to environmental stresses, impaired survival in serum, and reduced biofilm formation may contribute to the virulence attenuation of the mutant. Furthermore, the HtrA-deficient mutant was subjected to RNA-seq analysis, and 16 differentially expressed genes were determined. This study provided insight that HtrA plays a definitive role in E. coli-induced infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China
| | - Yonghui Li
- The Second Hospital of Qinhuangdao, Changli, Hebei, 066600, China
| | - Xue Bai
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xijun Yan
- Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agriculture University, China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science &Technology, Changli, Hebei, 066600, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Schmidt AM, Escher U, Mousavi S, Boehm M, Backert S, Bereswill S, Heimesaat MM. Protease Activity of Campylobacter jejuni HtrA Modulates Distinct Intestinal and Systemic Immune Responses in Infected Secondary Abiotic IL-10 Deficient Mice. Front Cell Infect Microbiol 2019; 9:79. [PMID: 30984628 PMCID: PMC6449876 DOI: 10.3389/fcimb.2019.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
Even though human Campylobacter jejuni infections are progressively increasing worldwide, the underlying molecular mechanisms of pathogen-host-interactions are still not fully understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transepithelial migration in vitro, and is involved in the onset of intestinal pathology in murine infection models in vivo. In the present study, we investigated whether the protease activity of HtrA had an impact in C. jejuni induced acute enterocolitis. For this purpose, we perorally infected secondary abiotic IL-10-/- mice with wildtype C. jejuni strain NCTC11168 (11168WT) or isogenic bacteria carrying protease-inactive HtrA with a single point mutation at S197A in the active center (11168HtrA-S197A). Irrespective of the applied pathogenic strain, mice harbored similar C. jejuni loads in their feces and exhibited comparably severe macroscopic signs of acute enterocolitis at day 6 postinfection (p.i.). Interestingly, the 11168HtrA-S197A infected mice displayed less pronounced colonic apoptosis and immune cell responses, but enhanced epithelial proliferation as compared to the 11168WT strain infected controls. Furthermore, less distinct microscopic sequelae in 11168HtrA-S197A as compared to parental strain infected mice were accompanied by less distinct colonic secretion of pro-inflammatory cytokines such as MCP-1, IL-6, TNF, and IFN-γ in the former as compared to the latter. Strikingly, the S197A point mutation was additionally associated with less pronounced systemic pro-inflammatory immune responses as assessed in serum samples. In conclusion, HtrA is a remarkable novel virulence determinant of C. jejuni, whose protease activity is not required for intestinal colonization and establishment of disease, but aggravates campylobacteriosis by triggering apoptosis and pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Manja Boehm
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
18
|
Singh KH, Yadav S, Kumar D, Biswal BK. The crystal structure of an essential high-temperature requirement protein HtrA1 (Rv1223) from Mycobacterium tuberculosis reveals its unique features. Acta Crystallogr D Struct Biol 2018; 74:906-921. [PMID: 30198900 DOI: 10.1107/s205979831800952x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/03/2018] [Indexed: 11/11/2022] Open
Abstract
High-temperature requirement A (HtrA) proteins, which are members of the heat-shock-induced serine protease family, are involved in extracytoplasmic protein quality control and bacterial survival strategies under stress conditions, and are associated with the virulence of several pathogens; they are therefore major drug targets. Mycobacterium tuberculosis possesses three putative HtrAs: HtrA1 (Rv1223), HtrA2 (Rv0983) and HtrA3 (Rv0125). Each has a cytoplasmic region, a transmembrane helix and a periplasmic region. Here, the crystal structure of the periplasmic region consisting of a protease domain (PD) and a PDZ domain from an M. tuberculosis HtrA1 mutant (mHtrA1S387A) is reported at 2.7 Å resolution. Although the mHtrA1S387A PD shows structural features similar to those of other HtrAs, its loops, particularly L3 and LA, display different conformations. Loop L3 communicates between the PDs of the trimer and the PDZ domains and undergoes a transition from an active to an inactive conformation, as reported for an equivalent HtrA (DegS). Loop LA, which is responsible for higher oligomer formation owing to its length (50 amino acids) in DegP, is very short in mHtrA1S387A (five amino acids), as in mHtrA2 (also five amino acids), and therefore lacks essential interactions for the formation of higher oligomers. Notably, a well ordered loop known as the insertion clamp in the PDZ domain interacts with the protease domain of the adjacent molecule, which possibly aids in the stabilization of a trimeric functional unit of this enzyme. The three-dimensional structure of mHtrA1S387A presented here will be useful in the design of enzyme-specific antituberculosis inhibitors.
Collapse
Affiliation(s)
- Khundrakpam Herojit Singh
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Savita Yadav
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Deepak Kumar
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Bichitra Kumar Biswal
- Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
19
|
Fu X, Wang Y, Shao H, Ma J, Song X, Zhang M, Chang Z. DegP functions as a critical protease for bacterial acid resistance. FEBS J 2018; 285:3525-3538. [DOI: 10.1111/febs.14627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 06/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
- Engineering Research Center of Industrial Microbiology of Ministry of Education College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
- Engineering Research Center of Industrial Microbiology of Ministry of Education College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Heqi Shao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation College of Life Sciences Fujian Normal University Fuzhou City Fujian Province China
| | - Jing Ma
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Xinwen Song
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Meng Zhang
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China
| |
Collapse
|
20
|
Backert S, Bernegger S, Skórko-Glonek J, Wessler S. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis. Cell Microbiol 2018; 20:e12845. [PMID: 29582532 DOI: 10.1111/cmi.12845] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Bernegger
- Department of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Joanna Skórko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 2017; 35:6030-6040. [DOI: 10.1016/j.vaccine.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
22
|
Genome engineering in Bacillus anthracis using tyrosine site-specific recombinases. PLoS One 2017; 12:e0183346. [PMID: 28829806 PMCID: PMC5567495 DOI: 10.1371/journal.pone.0183346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Tyrosine site-specific recombinases (T-SSR) are polynucleotidyltransferases that catalyze cutting and joining reactions between short specific DNA sequences. We developed three systems for performing genetic modifications in Bacillus anthracis that use T-SSR and their cognate target sequences, namely Escherichia coli bacteriophage P1 Cre-loxP, Saccharomyces cerevisiae Flp-FRT, and a newly discovered IntXO-PSL system from B. anthracis plasmid pXO1. All three tyrosine recombinase systems were used for creation of a B. anthracis sporulation-deficient, plasmid-free strain deleted for ten proteases which had been identified by proteomic analysis as being present in the B. anthracis secretome. This strain was used successfully for production of various recombinant proteins, including several that are candidates for inclusion in improved anthrax vaccines. These genetic tools developed for DNA manipulation in B. anthracis were also used for construction of strains having chromosomal insertions of 1, 2, or 3 adjacent atxA genes. AtxA is a B. anthracis global transcriptional regulator required for the response of B. anthracis virulence factor genes to bicarbonate. We found a positive correlation between the atxA copy number and the expression level of the pagA gene encoding B. anthracis protective antigen, when strains were grown in a carbon dioxide atmosphere. These results demonstrate that the three T-SSR systems described here provide effective tools for B. anthracis genome editing. These T-SSR systems may also be applicable to other prokaryotes and to eukaryotes.
Collapse
|
23
|
Marsh JW, Ong VA, Lott WB, Timms P, Tyndall JDA, Huston WM. CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target. Future Microbiol 2017; 12:817-829. [PMID: 28593794 DOI: 10.2217/fmb-2017-0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection worldwide and the leading cause of preventable blindness. Reports have emerged of treatment failure, suggesting a need to develop new antibiotics to battle Chlamydia infection. One possible candidate for a new treatment is the protease inhibitor JO146, which is an effective anti-Chlamydia agent that targets the CtHtrA protein. CtHtrA is a lynchpin on the chlamydial cell surface due to its essential and multifunctional roles in the bacteria's stress response, replicative phase of development, virulence and outer-membrane protein assembly. This review summarizes the current understanding of CtHtrA function and presents a mechanistic model that highlights CtHtrA as an effective target for anti-Chlamydia drug development.
Collapse
Affiliation(s)
- James W Marsh
- The ithree institute, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Vanissa A Ong
- Institute of Health & Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, 4059, QLD, Australia
| | - William B Lott
- Institute of Health & Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, 4059, QLD, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, 4558, QLD, Australia
| | - Joel DA Tyndall
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| |
Collapse
|
24
|
Zhu F, Yang X, Wu Y, Wang Y, Tang XF, Tang B. Release of an HtrA-Like Protease from the Cell Surface of Thermophilic Brevibacillus sp. WF146 via Substrate-Induced Autoprocessing of the N-terminal Membrane Anchor. Front Microbiol 2017; 8:481. [PMID: 28377763 PMCID: PMC5359297 DOI: 10.3389/fmicb.2017.00481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
High-temperature requirement A (HtrA)-like proteases participate in protein quality control in prokaryotes and eukaryotes by degrading damaged proteins; however, little is known about HtrAs produced by thermophiles. HtrAw is an HtrA-like protease of thermophilic Brevibacillus sp. WF146. The intact form of HtrAw (iHtrAw) consisting of a transmembrane segment-containing N-terminal domain, a trypsin-like protease domain, and a C-terminal PDZ domain was produced in Escherichia coli. Purified iHtrAw itself is unable to cleave the N-terminal domain, but requires protein substrates to autoprocess the N-terminal domain intermolecularly, yielding a short form (sHtrAw). Mutation at the substrate-binding site in the PDZ domain affects the conversion of iHtrAw to sHtrAw. Deletion analysis revealed that the N-terminal domain is not necessary for enzyme folding, activity, and thermostability. Compared with other known HtrAs, HtrAw contains an additional Ca2+-binding Dx[DN]xDG motif important for enzyme stability and/or activity. When produced in an htrA/htrB double deletion mutant of Bacillus subtilis, iHtrAw localized predominantly to the cell pellet, and the amount of sHtrAw in the culture supernatant increased at elevated temperatures. Moreover, HtrAw increased the heat resistance of the B. subtilis mutant. In strain WF146, HtrAw exists in both a cell-associated intact form and a cell-free short form; an increase in growth temperature enhanced HtrAw production and the amount of cell-free short form. Release of the short form of HtrAw from the membrane may have the advantage of allowing the enzyme to freely access and degrade damaged proteins surrounding the bacterium living at high temperatures.
Collapse
Affiliation(s)
- Fengtao Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Xing Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Yan Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Yasi Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University Wuhan, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan UniversityWuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan UniversityWuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhan, China
| |
Collapse
|
25
|
Israeli M, Rotem S, Elia U, Bar-Haim E, Cohen O, Chitlaru T. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity. Toxins (Basel) 2016; 8:E243. [PMID: 27548219 PMCID: PMC4999859 DOI: 10.3390/toxins8080243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 01/27/2023] Open
Abstract
Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| |
Collapse
|
26
|
HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis. Infect Immun 2016; 84:2209-2219. [PMID: 27217419 PMCID: PMC4962635 DOI: 10.1128/iai.00147-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis.
Collapse
|
27
|
HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts. Infect Immun 2016; 84:2372-2381. [PMID: 27271745 DOI: 10.1128/iai.00360-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/04/2023] Open
Abstract
High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity.
Collapse
|
28
|
Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain. Sci Rep 2016; 6:18908. [PMID: 26732659 PMCID: PMC4702213 DOI: 10.1038/srep18908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.
Collapse
|
29
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
30
|
Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, Chevret D, Varela PF, Velours C, Poquet I. Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact 2015; 14:104. [PMID: 26178240 PMCID: PMC4502909 DOI: 10.1186/s12934-015-0271-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background Lactococcus lactis, a lactic acid bacterium traditionally used to ferment milk and manufacture cheeses, is also, in the biotechnology field, an interesting host to produce proteins of medical interest, as it is “Generally Recognized As Safe”. Furthermore, as L. lactis naturally secretes only one major endogenous protein (Usp45), the secretion of heterologous proteins in this species facilitates their purification from a protein-poor culture medium. Here, we developed and optimized protein production and secretion in L. lactis to obtain proteins of high quality, both correctly folded and pure to a high extent. As proteins to be produced, we chose the two transmembrane members of the HtrA protease family in Staphylococcus aureus, an important extra-cellular pathogen, as these putative surface-exposed antigens could constitute good targets for vaccine development. Results A recombinant ORF encoding a C-terminal, soluble, proteolytically inactive and tagged form of each staphylococcal HtrA protein was cloned into a lactococcal expression-secretion vector. After growth and induction of recombinant gene expression, L. lactis was able to produce and secrete each recombinant rHtrA protein as a stable form that accumulated in the culture medium in similar amounts as the naturally secreted endogenous protein, Usp45. L. lactis growth in fermenters, in particular in a rich optimized medium, led to higher yields for each rHtrA protein. Protein purification from the lactococcal culture medium was easily achieved in one step and allowed recovery of highly pure and stable proteins whose identity was confirmed by mass spectrometry. Although rHtrA proteins were monomeric, they displayed the same secondary structure content, thermal stability and chaperone activity as many other HtrA family members, indicating that they were correctly folded. rHtrA protein immunogenicity was established in mice. The raised polyclonal antibodies allowed studying the expression and subcellular localization of wild type proteins in S. aureus: although both proteins were expressed, only HtrA1 was found to be, as predicted, exposed at the staphylococcal cell surface suggesting that it could be a better candidate for vaccine development. Conclusions In this study, an efficient process was developed to produce and secrete putative staphylococcal surface antigens in L. lactis and to purify them to homogeneity in one step from the culture supernatant. This allowed recovering fully folded, stable and pure proteins which constitute promising vaccine candidates to be tested for protection against staphylococcal infection. L. lactis thus proved to be an efficient and competitive cell factory to produce proteins of high quality for medical applications. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Samazan
- INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France. .,Institut Curie/CNRS, UMR3244, 25 rue d'Ulm, 75248, Paris Cedex 05, France.
| | - Bachra Rokbi
- Sanofi Pasteur, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy L'Etoile, France.
| | - Delphine Seguin
- Sanofi Pasteur, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy L'Etoile, France.
| | - Fabienne Telles
- Sanofi Pasteur, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy L'Etoile, France.
| | - Valérie Gautier
- Stress molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013, Paris, France.
| | - Gilbert Richarme
- Stress molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013, Paris, France.
| | - Didier Chevret
- INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France.
| | | | | | - Isabelle Poquet
- INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France. .,LPBA, Institut Pasteur, Bât. Calmette, 75015, Paris, France.
| |
Collapse
|
31
|
Cerletti M, Paggi RA, Guevara CR, Poetsch A, De Castro RE. Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii. J Proteomics 2015; 121:1-14. [PMID: 25829260 DOI: 10.1016/j.jprot.2015.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The membrane-associated LonB protease is essential for viability in Haloferax volcanii, however, the cellular processes affected by this protease in archaea are unknown. In this study, the impact of a lon conditional mutation (down-regulation) on H. volcanii physiology was examined by comparing proteomes of parental and mutant cells using shotgun proteomics. A total of 1778 proteins were identified (44% of H. volcanii predicted proteome) and 142 changed significantly in amount (≥2 fold). Of these, 66 were augmented in response to Lon deficiency suggesting they could be Lon substrates. The "Lon subproteome" included soluble and predicted membrane proteins expected to participate in diverse cellular processes. The dramatic stabilization of phytoene synthase (57 fold) in concert with overpigmentation of lon mutant cells suggests that Lon controls carotenogenesis in H. volcanii. Several hypothetical proteins, which may reveal novel functions and/or be involved in adaptation to extreme environments, were notably increased (300 fold). This study, which represents the first proteome examination of a Lon deficient archaeal cell, shows that Lon has a strong impact on H. volcanii physiology evidencing the cellular processes controlled by this protease in Archaea. Additionally, this work provides a platform for the discovery of novel targets of Lon proteases. BIOLOGICAL SIGNIFICANCE The proteome of a Lon-deficient archaeal cell was examined for the first time showing that Lon has a strong impact on H. volcanii physiology and evidencing the proteins and cellular processes controlled by this protease in Archaea. This work will facilitate future investigations aiming to address Lon function in archaea and provides a platform for the discovery of endogenous targets of the archaeal-type Lon as well as novel targets/processes regulated by Lon proteases. This knowledge will advance the understanding on archaeal physiology and the biological function of membrane proteases in microorganisms.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina.
| |
Collapse
|
32
|
Bakker D, Buckley AM, de Jong A, van Winden VJC, Verhoeks JPA, Kuipers OP, Douce GR, Kuijper EJ, Smits WK, Corver J. The HtrA-like protease CD3284 modulates virulence of Clostridium difficile. Infect Immun 2014; 82:4222-32. [PMID: 25047848 PMCID: PMC4187886 DOI: 10.1128/iai.02336-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that the C. difficile 630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its role in vivo and in vitro through the creation of an isogenic ClosTron-based htrA mutant of C. difficile strain 630Δerm (wild type). In contrast to the attenuated phenotype seen with htrA deletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acute C. difficile infection. Microarray data analysis showed a pleiotropic effect of htrA on the transcriptome of C. difficile, including upregulation of the toxin A gene. In addition, the htrA mutant showed reduced spore formation and adherence to colonic cells. Together, our data show that htrA can modulate virulence in C. difficile.
Collapse
Affiliation(s)
- Dennis Bakker
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anthony M Buckley
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Vincent J C van Winden
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost P A Verhoeks
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ed J Kuijper
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Pegos VR, Nascimento JF, Sobreira TJP, Pauletti BA, Paes-Leme A, Balan A. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. J Proteomics 2014; 108:78-88. [PMID: 24846853 DOI: 10.1016/j.jprot.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Collapse
Affiliation(s)
- Vanessa Rodrigues Pegos
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil; Universidade Estadual de Campinas - UNICAMP, Instituto de Biologia, Campinas, SP, Brazil
| | - Jéssica Faria Nascimento
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Tiago José Paschoal Sobreira
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Adriana Paes-Leme
- Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Andrea Balan
- Universidade de São Paulo - USP, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, - São Paulo - SP, Brazil; Laboratório Nacional de Biociências - LNBio, Centro de Pesquisas em Energia e Materiais - CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
34
|
Deng CY, Deng AH, Sun ST, Wang L, Wu J, Wu Y, Chen XY, Fang RX, Wen TY, Qian W. The periplasmic PDZ domain-containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:101-112. [PMID: 24200074 DOI: 10.1094/mpmi-08-13-0234-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PDZ domain-containing proteases, also known as HtrA family proteases, play important roles in bacterial cells by modulating disease pathogenesis and cell-envelope stress responses. These proteases have diverse functions through proteolysis- and nonproteolysis-dependent modes. Here, we report that the genome of the causative agent of rice bacterial blight, Xanthomonas oryzae pv. oryzae, encodes seven PDZ domain-containing proteins. Systematic inactivation of their encoding genes revealed that PXO_01122 and PXO_04290 (prc) are involved in virulence. prc encodes a putative HtrA family protease that localizes in the bacterial periplasm. Mutation of prc also resulted in susceptibility to multiple environmental stresses, including H2O2, sodium dodecylsulfate, and osmolarity stresses. Comparative subproteomic analyses showed that the amounts of 34 periplasmic proteins were lower in the prc mutant than in wild-type. These proteins were associated with proteolysis, biosynthesis of macromolecules, carbohydrate or energy metabolism, signal transduction, and protein translocation or folding. We provide in vivo and in vitro evidence demonstrating that Prc stabilizes and directly binds to one of these proteins, DppP, a dipeptidyl peptidase contributing to full virulence. Taken together, our results suggest that Prc contributes to bacterial virulence by acting as a periplasmic modulator of cell-envelope stress responses.
Collapse
|
35
|
Dhiman A, Bhatnagar S, Kulshreshtha P, Bhatnagar R. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis. FEBS Open Bio 2014; 4:65-76. [PMID: 24490131 PMCID: PMC3907690 DOI: 10.1016/j.fob.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK. WalRK forms a functional TCS in B. anthracis, expressed throughout the growth phase. WalK variants exhibit autophosphorylation and phosphotransfer to WalR. WalKc variants also show phosphatase activity towards phosphorylated WalR. A potential WalR regulon in B. anthracis was predicted in silico. DNA binding ability was demonstrated for WalR.
Collapse
Affiliation(s)
- Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author. Tel.: +91 1126704079/1126742040; fax: +91 1126742040.
| |
Collapse
|
36
|
Novel role for the yceGH tellurite resistance genes in the pathogenesis of Bacillus anthracis. Infect Immun 2013; 82:1132-40. [PMID: 24366250 DOI: 10.1128/iai.01614-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, relies on multiple virulence factors to subvert the host immune defense. Using Caenorhabditis elegans as an infection model, we screened approximately 5,000 transposon mutants of B. anthracis Sterne for decreased virulence. One of the attenuated mutants resulted in loss of expression of yceG and yceH, the last two genes in a six-gene cluster of tellurite resistance genes. We generated an analogous insertional mutant to confirm the phenotype and characterize the role of yceGH in resistance to host defenses. Loss of yceGH rendered the mutants more sensitive to tellurite toxicity as well as to host defenses such as reactive oxygen species and the cathelicidin family of antimicrobial peptides. Additionally, we see decreased survival in mammalian models of infection, including human whole blood and in mice. We identify a novel role for the yceGH genes in B. anthracis Sterne virulence and suggest that C. elegans is a useful infection model to study anthrax pathogenesis.
Collapse
|
37
|
Gherardini FC. Borrelia burgdorferi HtrA may promote dissemination and irritation. Mol Microbiol 2013; 90:209-13. [PMID: 23998919 PMCID: PMC4260139 DOI: 10.1111/mmi.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Frank C Gherardini
- Laboratory of Zoonotic Pathogens, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA; National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| |
Collapse
|
38
|
Gloeckl S, Ong VA, Patel P, Tyndall JDA, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB, Merdanovic M, Ehrmann M, Powers JC, Oleksyszyn J, Verdoes M, Bogyo M, Huston WM. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol 2013; 89:676-89. [PMID: 23796320 DOI: 10.1111/mmi.12306] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human Chlamydia trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targeted for antimicrobial therapy for intracellular pathogens.
Collapse
Affiliation(s)
- Sarina Gloeckl
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hansen G, Hilgenfeld R. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 2013; 70:761-75. [PMID: 22806565 PMCID: PMC11113883 DOI: 10.1007/s00018-012-1076-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/24/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany.
| | | |
Collapse
|
40
|
Abstract
Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg, C 1870, Denmark
| | | | | |
Collapse
|
41
|
Differential contribution of Bacillus anthracis toxins to pathogenicity in two animal models. Infect Immun 2012; 80:2623-31. [PMID: 22585968 DOI: 10.1128/iai.00244-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The virulence of Bacillus anthracis, the causative agent of anthrax, stems from its antiphagocytic capsule, encoded by pXO2, and the tripartite toxins encoded by pXO1. The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play major roles in pathogenicity. We tested this assumption by a systematic study of mutants with combined deletions of the pag, lef, and cya genes, encoding protective antigen (PA), lethal factor (LF), and edema factor (EF), respectively. The resulting seven mutants (single, double, and triple) were evaluated following subcutaneous (s.c.) and intranasal (i.n.) inoculation in rabbits and guinea pigs. In the rabbit model, virulence is completely dependent on the presence of PA. Any mutant bearing a pag deletion behaved like a pXO1-cured mutant, exhibiting complete loss of virulence with attenuation indices of over 2,500,000 or 1,250 in the s.c. or i.n. route of infection, respectively. In marked contrast, in guinea pigs, deletion of pag or even of all three toxin components resulted in relatively moderate attenuation, whereas the pXO1-cured bacteria showed complete attenuation. The results indicate that a pXO1-encoded factor(s), other than the toxins, has a major contribution to the virulence mechanism of B. anthracis in the guinea pig model. These unexpected toxin-dependent and toxin-independent manifestations of pathogenicity in different animal models emphasize the importance and need for a comprehensive evaluation of B. anthracis virulence in general and in particular for the design of relevant next-generation anthrax vaccines.
Collapse
|
42
|
Stent A, Every AL, Sutton P. Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 2012; 302:G579-87. [PMID: 22194421 DOI: 10.1152/ajpgi.00495.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a microaerophilic, gram-negative pathogen of the human stomach. Despite the chronic active gastritis that develops following colonization, H. pylori is able to persist unharmed in the stomach for decades. Much of the damage caused by gastric inflammation results from the accumulation of reactive oxygen/nitrogen species within the stomach environment, which can induce oxidative damage in a wide range of biological molecules. Without appropriate defenses, this oxidative damage would be able to rapidly kill nearby H. pylori, but the organism employs a range of measures, including antioxidant enzymes, biological repair systems, and inhibitors of oxidant generation, to counter the attack. Despite the variety of measures employed to defend against oxidative injury, these processes are intimately interdependent, and any deficiency within the antioxidant system is generally sufficient to cause substantial impairment of H. pylori viability and persistence. This review provides an overview of the development of oxidative stress during H. pylori gastritis and examines the methods the organism uses to survive the resultant damage.
Collapse
Affiliation(s)
- Andrew Stent
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
43
|
Gloeckl S, Tyndall JD, Stansfield SH, Timms P, Huston WM. The Active Site Residue V266 of Chlamydial HtrA Is Critical for Substrate Binding during both in vitro and in vivo Conditions. J Mol Microbiol Biotechnol 2012; 22:10-6. [DOI: 10.1159/000336312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|