1
|
Neale HC, Jackson RW, Preston GM, Arnold DL. Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Mol Microbiol 2018; 110:444-454. [PMID: 30152900 PMCID: PMC6220960 DOI: 10.1111/mmi.14111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
The plant pathogen Pseudomonas syringae pv. phaseolicola, which causes halo blight disease of beans, contains a 106 kb genomic island PPHGI‐1. PPHGI‐1 carries a gene, avrPphB, which encodes an effector protein that triggers a resistance response in certain bean cultivars. Previous studies have shown that when PPHGI‐1 is excised from the bacterial chromosome, avrPphB is downregulated and therefore the pathogen avoids triggering the host’s defence mechanism. Here, we investigate whether the downregulation of avrPphB is caused by the supercoiling of PPHGI‐1. We also investigate the effect of a PPHGI‐1‐encoded type 1A topoisomerase, TopB3, on island stability and bacterial pathogenicity in the plant. Supercoiling inhibitors significantly increased the expression of avrPphB but did not affect the excision of PPHGI‐1. An insertional mutant of topB3 displayed an increase in avrPphB expression and an increase in PPHGI‐1 excision as well as reduced population growth in resistant and susceptible cultivars of bean. These results suggest an important role for topoisomerases in the maintenance and stability of a bacterial‐encoded genomic island and demonstrate that supercoiling is involved in the downregulation of an effector gene once the island has been excised, allowing the pathogen to prevent further activation of the host defence response.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
2
|
Piña-Iturbe A, Ulloa-Allendes D, Pardo-Roa C, Coronado-Arrázola I, Salazar-Echegarai FJ, Sclavi B, González PA, Bueno SM. Comparative and phylogenetic analysis of a novel family of Enterobacteriaceae-associated genomic islands that share a conserved excision/integration module. Sci Rep 2018; 8:10292. [PMID: 29980701 PMCID: PMC6035254 DOI: 10.1038/s41598-018-28537-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Genomic Islands (GIs) are DNA regions acquired through horizontal gene transfer that encode advantageous traits for bacteria. Many GIs harbor genes that encode the molecular machinery required for their excision from the bacterial chromosome. Notably, the excision/integration dynamics of GIs may modulate the virulence of some pathogens. Here, we report a novel family of GIs found in plant and animal Enterobacteriaceae pathogens that share genes with those found in ROD21, a pathogenicity island whose excision is involved in the virulence of Salmonella enterica serovar Enteritidis. In these GIs we identified a conserved set of genes that includes an excision/integration module, suggesting that they are excisable. Indeed, we found that GIs within carbapenem-resistant Klebsiella pneumoniae ST258 KP35 and enteropathogenic Escherichia coli O127:H6 E2348/69 are excised from the bacterial genome. In addition to putative virulence factors, these GIs encode conjugative transfer-related proteins and short and full-length homologues of the global transcriptional regulator H-NS. Phylogenetic analyses suggest that the identified GIs likely originated in phytopathogenic bacteria. Taken together, our findings indicate that these GIs are excisable and may play a role in bacterial interactions with their hosts.
Collapse
Affiliation(s)
- Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Ulloa-Allendes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bianca Sclavi
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR 8113, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
4
|
Watson BNJ, Staals RHJ, Fineran PC. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. mBio 2018; 9:e02406-17. [PMID: 29440578 PMCID: PMC5821089 DOI: 10.1128/mbio.02406-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution.
Collapse
Affiliation(s)
- Bridget N J Watson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Raymond H J Staals
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Bignell DRD, Cheng Z, Bown L. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities. Antonie van Leeuwenhoek 2018; 111:649-666. [PMID: 29307013 DOI: 10.1007/s10482-017-1009-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.
Collapse
Affiliation(s)
- Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
6
|
Panda P, Vanga BR, Lu A, Fiers M, Fineran PC, Butler R, Armstrong K, Ronson CW, Pitman AR. Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol 2016; 7:397. [PMID: 27065965 PMCID: PMC4814525 DOI: 10.3389/fmicb.2016.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Integrative and conjugative elements (ICEs) play a central role in the evolution of bacterial virulence, their transmission between bacteria often leading to the acquisition of virulence factors that alter host range or aggressiveness. Much is known about the functions of the virulence determinants that ICEs harbor, but little is understood about the cryptic effects of ICEs on their host cell. In this study, the importance of horizontally acquired island 2 (HAI2), an ICE in the genome of Pectobacterium atrosepticum SCRI1043, was studied using a strain in which the entire ICE had been removed by CRISPR-Cas-mediated genome editing. HAI2 encodes coronafacic acid, a virulence factor that enhances blackleg disease of potato stems caused by P. atrosepticum SCRI1043. As expected, deletion of HAI2 resulted in reduced blackleg symptoms in potato stems. A subsequent screen for HAI2-related ICEs in other strains of the Pectobacterium genus revealed their ubiquitous nature in P. atrosepticum. Yet, HAI2-related ICEs were only detected in the genomes of a few P. carotovorum strains. These strains were notable as blackleg causing strains belonging to two different subspecies of P. carotovorum. Sequence analysis of the ICEs in different strains of both P. atrosepticum and P. carotovorum confirmed that they were diverse and were present in different locations on the genomes of their bacterial host, suggesting that the cfa cluster was probably acquired independently on a number of occasions via chromosomal insertion of related ICEs. Excision assays also demonstrated that the ICEs in both P. atrosepticum and P. carotovorum are mobilized from the host chromosome. Thus, the future spread of these ICEs via lateral gene transfer might contribute to an increase in the prevalence of blackleg-causing strains of P. carotovorum.
Collapse
Affiliation(s)
- Preetinanda Panda
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Bhanupratap R. Vanga
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ashley Lu
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Mark Fiers
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Peter C. Fineran
- The Bio-Protection Research CentreLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ruth Butler
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Andrew R. Pitman
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| |
Collapse
|
7
|
Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2016; 7:459-71. [PMID: 25875873 DOI: 10.4155/fmc.14.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacterial pathogens to current antibiotics has grown to be an urgent crisis. Approaches to overcome this challenge include identification of novel targets for discovery of new antibiotics. Bacterial topoisomerase I is present in all bacterial pathogens as a potential target for bactericidal topoisomerase poison inhibitors. Recent efforts have identified inhibitors of bacterial topoisomerase I with antibacterial activity. Additional research on the mode of action and binding site of these inhibitors would provide further validation of the target and establish that bacterial topoisomerase I is druggable. Bacterial topoisomerase I is a potentially high value target for discovery of new antibiotics. Demonstration of topoisomerase I as the cellular target of an antibacterial compound would provide proof-of-concept validation.
Collapse
|
8
|
Vanga BR, Ramakrishnan P, Butler RC, Toth IK, Ronson CW, Jacobs JME, Pitman AR. Mobilization of horizontally acquired island 2 is induced in planta in the phytopathogen Pectobacterium atrosepticum SCRI1043 and involves the putative relaxase ECA0613 and quorum sensing. Environ Microbiol 2015; 17:4730-44. [PMID: 26271942 DOI: 10.1111/1462-2920.13024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
Abstract
Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.
Collapse
Affiliation(s)
- Bhanupratap R Vanga
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Pavithra Ramakrishnan
- Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Ian K Toth
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Andrew R Pitman
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| |
Collapse
|
9
|
Dy RL, Pitman AR, Fineran PC. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. Mob Genet Elements 2013; 3:e26831. [PMID: 24251073 PMCID: PMC3827097 DOI: 10.4161/mge.26831] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution.
Collapse
Affiliation(s)
- Ron L Dy
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| | - Andrew R Pitman
- The New Zealand Institute for Plant & Food Research Limited; Christchurch, New Zealand
- Bio-Protection Research Centre; Lincoln University; Canterbury, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| |
Collapse
|
10
|
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 2013; 9:e1003454. [PMID: 23637624 PMCID: PMC3630108 DOI: 10.1371/journal.pgen.1003454] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/02/2013] [Indexed: 12/26/2022] Open
Abstract
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Collapse
Affiliation(s)
- Reuben B. Vercoe
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James T. Chang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tamzin Gristwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James S. Clulow
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rita Przybilski
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew R. Pitman
- New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|