1
|
Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1694. [PMID: 34553495 DOI: 10.1002/wrna.1694] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas are adaptable natural prokaryotic defense systems that act against invading viruses and plasmids. Among the six currently known major CRISPR-Cas types, the type VI CRISPR-Cas13 is the only one known to exclusively bind and cleave foreign RNA. Within the last couple of years, this system has been adapted to serve numerous, and sometimes not obvious, applications, including some that might be developed as effective molecular therapies. Indeed, Cas13 has been adapted to kill antibiotic-resistant bacteria. In a cell-free environment, Cas13 has been used in the development of highly specific, sensitive, multiplexing-capable, and field-adaptable detection tools. Importantly, Cas13 can be reprogrammed and applied to eukaryotes to either combat pathogenic RNA viruses or in the regulation of gene expression, facilitating the knockdown of mRNA, circular RNA, and noncoding RNA. Furthermore, Cas13 has been harnessed for in vivo RNA modifications including programmable regulation of alternative splicing, A-to-I and C to U editing, and m6A modifications. Finally, approaches allowing for the detection and characterization of RNA-interacting proteins have also been demonstrated. Here, we provide a comprehensive overview of the applications utilizing CRISPR-Cas13 that illustrate its versatility. We also discuss the most important limitations of the CRISPR-Cas13-based technologies, and controversies regarding them. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
2
|
Investigating the use of bacteriophages as a new decolonization strategy for intestinal carriage of CTX-M-15-producing ST131 Escherichia coli: An in vitro continuous culture system model. J Glob Antimicrob Resist 2020; 22:664-671. [PMID: 32590187 DOI: 10.1016/j.jgar.2020.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES We investigated the use of bacteriophages as a strategy to decolonize intestinal carriers of multidrug-resistant Escherichia coli. METHODS A fermentor was used as a continuous culture system for 48h. Two different pools of faeces (studies I and II) obtained from volunteers were spiked with a CTX-M-15-producing ST131 E. coli (strain 4901.28) susceptible to bacteriophages and challenged with three doses of INTESTI Bacteriophage cocktail administered at 2, 6 and 10h after the inoculum. Bacterial typing was performed by implementing microdilution panels, spot test, rep-PCR and whole-genome sequencing (including cgMLST and single-nucleotide variant analysis) obtained using Nanopore and Illumina platforms. RESULTS In study I, bacteriophages decreased the numbers of 4901.28 dramatically (≤101CFU/mL after 6h). In contrast, during study II, a phage-resistant mutant of 4901.28 persisted in the continuous culture (104CFU/mL at 48h). Whole-genome sequencing revealed the presence of two additional plasmids in the mutant as well as 11 single-nucleotide variants, including one chromosomal in a glycosyltransferase family 2 protein that is responsible for the transfer of sugars to polysaccharides and lipids. In both studies, the commensal E. coli population remained unchanged by the phage treatment maintaining itself at 108CFU/mL. CONCLUSIONS Our data indicates that bacteriophage cocktails may be implemented to decolonize some intestinal carriers. However, the individual microbiota composition may have an impact on the development of phage resistance. Mechanisms underlying this phenomenon are likely to be various and complex. Further in vivo studies and protein expression experiments are needed to confirm our observations and hypotheses.
Collapse
|
3
|
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR “dark matter.” We performed a comprehensive analysis of the spacers from all CRISPR-cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers match any sequences in the current databases, and of these, only a minority correspond to known parasitic elements. We show that nearly all spacers with matches originate from viral or plasmid genomes that are either free or have been integrated into the host genome. We further demonstrate that spacers with no matches have the same properties as those of identifiable origins, strongly suggesting that all spacers originate from mobile elements.
Collapse
|
4
|
Bengelsdorf FR, Poehlein A, Flitsch SK, Linder S, Schiel-Bengelsdorf B, Stegmann BA, Krabben P, Green E, Zhang Y, Minton N, Dürre P. Host Organisms: Clostridium acetobutylicum/ Clostridium beijerinckiiand Related Organisms. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Frank R. Bengelsdorf
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Anja Poehlein
- Georg-August University; Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Göttingen, Grisebachstr. 8 37077 Göttingen Germany
| | - Stefanie K. Flitsch
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sonja Linder
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Bettina Schiel-Bengelsdorf
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Benjamin A. Stegmann
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Preben Krabben
- Green Biologics Limited; 45A Western Avenue, Milton Park Abingdon Oxfordshire OX14 4RU UK
| | - Edward Green
- CHAIN Biotechnology Limited; Imperial College Incubator, Imperial College London; Level 1 Bessemer Building London SW7 2AZ UK
| | - Ying Zhang
- University of Nottingham; BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences; University Park Nottingham NG7 2RD UK
| | - Nigel Minton
- University of Nottingham; BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences; University Park Nottingham NG7 2RD UK
| | - Peter Dürre
- Universität Ulm; Institut für Mikrobiologie und Biotechnologie; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
5
|
Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli. Res Microbiol 2016; 168:147-156. [PMID: 27789334 DOI: 10.1016/j.resmic.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022]
Abstract
In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates.
Collapse
|
6
|
Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 2014; 15:1139. [PMID: 25523312 PMCID: PMC4320612 DOI: 10.1186/1471-2164-15-1139] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2+CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui. RESULTS The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G+C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2+CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech). CONCLUSIONS The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2+CO2 make T. kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.
Collapse
Affiliation(s)
- Verena Hess
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Anja Poehlein
- />Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg August University, Institute for Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Marie Charlotte Weghoff
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rolf Daniel
- />Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg August University, Institute for Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Volker Müller
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol 2014; 92:1072-91. [PMID: 24720807 DOI: 10.1111/mmi.12614] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas system is an important aspect in bacterial immunology. The anti-phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose-containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)-mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR-mediated repression of phage P1 replication. Trans-expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.
Collapse
Affiliation(s)
- Chi-Dung Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 300, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Biswas A, Fineran PC, Brown CM. Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. ACTA ACUST UNITED AC 2014; 30:1805-13. [PMID: 24578404 DOI: 10.1093/bioinformatics/btu114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MOTIVATION CRISPR RNAs (crRNAs) are a type of small non-coding RNA that form a key part of an acquired immune system in prokaryotes. Specific prediction methods find crRNA-encoding loci in nearly half of sequenced bacterial, and three quarters of archaeal, species. These Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays consist of repeat elements alternating with specific spacers. Generally one strand is transcribed, producing long pre-crRNAs, which are processed to short crRNAs that base pair with invading nucleic acids to facilitate their destruction. No current software for the discovery of CRISPR loci predicts the direction of crRNA transcription. RESULTS We have developed an algorithm that accurately predicts the strand of the resulting crRNAs. The method uses as input CRISPR repeat predictions. CRISPRDirection uses parameters that are calculated from the CRISPR repeat predictions and flanking sequences, which are combined by weighted voting. The prediction may use prior coding sequence annotation but this is not required. CRISPRDirection correctly predicted the orientation of 94% of a reference set of arrays. AVAILABILITY AND IMPLEMENTATION The Perl source code is freely available from http://bioanalysis.otago.ac.nz/CRISPRDirection.
Collapse
Affiliation(s)
- Ambarish Biswas
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New ZealandDepartment of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| | - Chris M Brown
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New ZealandDepartment of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Affiliation(s)
- Timothy R. Sampson
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - David S. Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJJ. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet 2013; 9:e1003742. [PMID: 24039596 PMCID: PMC3764190 DOI: 10.1371/journal.pgen.1003742] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/10/2013] [Indexed: 12/18/2022] Open
Abstract
Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism. CRISPR loci and their associated genes form a diverse set of adaptive immune systems that are widespread among prokaryotes. In these systems, the CRISPR-associated genes (cas) encode for proteins that capture fragments of invading DNA and integrate these sequences between repeat sequences of the host's CRISPR locus. This information is used upon re-infection to degrade invader genomes. Storing invader sequences in host genomes necessitates a mechanism to differentiate between invader sequences on invader genomes and invader sequences on the host genome. CRISPR-Cas of Staphylococcus epidermidis (Type III-A system) is inhibited when invader sequences are flanked by repeat sequences, and this prevents targeting of the CRISPR locus on the host genome. Here we demonstrate that Escherichia coli CRISPR-Cas (Type I-E system) is not inhibited by repeat sequences. Instead, this system is specifically activated by the presence of bona fide Protospacer Adjacent Motifs (PAMs) in the target. PAMs are conserved sequences adjoining invader sequences on the invader genome, and these sequences are never adjacent to invader sequences within host CRISPR loci. PAM recognition is not affected by base pairing potential of the target with the crRNA. As such, the Type I-E system lacks the ability to specifically recognize self DNA.
Collapse
Affiliation(s)
- Edze R. Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail: (ERW); (KS)
| | | | - Kirill A. Datsenko
- Waksman Institute, Piscataway, New Jersey, United States of America
- Purdue University, West Lafayette, Indiana, United States of America
| | - Ryan N. Jackson
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Blake Wiedenheft
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Konstantin Severinov
- Waksman Institute, Piscataway, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers, The State University, Piscataway, New Jersey, United States of America
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (ERW); (KS)
| | - Stan J. J. Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
Westra ER, Staals RH, Gort G, Høgh S, Neumann S, de la Cruz F, Fineran PC, Brouns SJ. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids. RNA Biol 2013; 10:749-61. [PMID: 23535265 PMCID: PMC3737333 DOI: 10.4161/rna.24202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
Most prokaryotes contain CRISPR-Cas immune systems that provide protection against mobile genetic elements. We have focused on the ability of CRISPR-Cas to block plasmid conjugation, and analyzed the position of target sequences (protospacers) on conjugative plasmids. The analysis reveals that protospacers are non-uniformly distributed over plasmid regions in a pattern that is determined by the plasmid's mobilization type (MOB). While MOBP plasmids are most frequently targeted in the region entering the recipient cell last (lagging region), MOBF plasmids are mostly targeted in the region entering the recipient cell first (leading region). To explain this protospacer distribution bias, we propose two mutually non-exclusive hypotheses: (1) spacers are acquired more frequently from either the leading or lagging region depending on the MOB type (2) CRISPR-interference is more efficient when spacers target these preferred regions. To test the latter hypothesis, we analyzed Type I-E CRISPR-interference against MOBF prototype plasmid F in Escherichia coli. Our results show that plasmid conjugation is effectively inhibited, but the level of immunity is not affected by targeting the plasmid in the leading or lagging region. Moreover, CRISPR-immunity levels do not depend on whether the incoming single-stranded plasmid DNA, or the DNA strand synthesized in the recipient is targeted. Our findings indicate that single-stranded DNA may not be a target for Type I-E CRISPR-Cas systems, and suggest that the protospacer distribution bias might be due to spacer acquisition preferences.
Collapse
Affiliation(s)
- Edze R. Westra
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Raymond H.J. Staals
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris; Wageningen University and Research Center; Wageningen, The Netherlands
| | - Søren Høgh
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Sarah Neumann
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria; Universidad de Cantabria-Consejo Superior de Investigaciones Científicas-SODERCAN; Santander, Spain
| | - Peter C. Fineran
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| | - Stan J.J. Brouns
- Laboratory of Microbiology; Department of Agrotechnology and Food Sciences; Wageningen University; Wageningen, The Netherlands
| |
Collapse
|
12
|
Shah SA, Erdmann S, Mojica FJ, Garrett RA. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 2013; 10:891-9. [PMID: 23403393 PMCID: PMC3737346 DOI: 10.4161/rna.23764] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 02/07/2023] Open
Abstract
Protospacer adjacent motifs (PAMs) were originally characterized for CRISPR-Cas systems that were classified on the basis of their CRISPR repeat sequences. A few short 2-5 bp sequences were identified adjacent to one end of the protospacers. Experimental and bioinformatical results linked the motif to the excision of protospacers and their insertion into CRISPR loci. Subsequently, evidence accumulated from different virus- and plasmid-targeting assays, suggesting that these motifs were also recognized during DNA interference, at least for the recently classified type I and type II CRISPR-based systems. The two processes, spacer acquisition and protospacer interference, employ different molecular mechanisms, and there is increasing evidence to suggest that the sequence motifs that are recognized, while overlapping, are unlikely to be identical. In this article, we consider the properties of PAM sequences and summarize the evidence for their dual functional roles. It is proposed to use the terms protospacer associated motif (PAM) for the conserved DNA sequence and to employ spacer acqusition motif (SAM) and target interference motif (TIM), respectively, for acquisition and interference recognition sites.
Collapse
Affiliation(s)
- Shiraz A. Shah
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| | - Susanne Erdmann
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| | - Francisco J.M. Mojica
- Departamento de Fisiología; Genética y Microbiología; Facultad de Ciencias; Universidad de Alicante; Alicante, Spain
| | - Roger A. Garrett
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
13
|
Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 2013; 10:726-37. [PMID: 23563642 PMCID: PMC3737331 DOI: 10.4161/rna.24321] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase III, dual-tracrRNA:crRNA guides the CRISPR-associated endonuclease Cas9 (Csn1) to cleave site-specifically cognate target DNA. Here, we screened available genomes for type II CRISPR-Cas loci by searching for Cas9 orthologs. We analyzed 75 representative loci, and for 56 of them we predicted novel tracrRNA orthologs. Our analysis demonstrates a high diversity in cas operon architecture and position of the tracrRNA gene within CRISPR-Cas loci. We observed a correlation between locus heterogeneity and Cas9 sequence diversity, resulting in the identification of various type II CRISPR-Cas subgroups. We validated the expression and co-processing of predicted tracrRNAs and pre-crRNAs by RNA sequencing in five bacterial species. This study reveals tracrRNA family as an atypical, small RNA family with no obvious conservation of structure, sequence or localization within type II CRISPR-Cas loci. The tracrRNA family is however characterized by the conserved feature to base-pair to cognate pre-crRNA repeats, an essential function for crRNA maturation and DNA silencing by dual-RNA:Cas9. The large panel of tracrRNA and Cas9 ortholog sequences should constitute a useful database to improve the design of RNA-programmable Cas9 as genome editing tool.
Collapse
Affiliation(s)
- Krzysztof Chylinski
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
14
|
Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 2012; 13:723. [PMID: 23259483 PMCID: PMC3551663 DOI: 10.1186/1471-2164-13-723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO(2) in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility of this pathway in this organism is of specific interest since syntrophic acetate oxidation operates close to the energetic limitations of microbial life. RESULTS The genome of Th. phaeum is organized on a single circular chromosome and has a total size of 2,939,057 bp. It comprises 3.215 open reading frames of which 75% could be assigned to a gene function. The G+C content is 53.88 mol%. Many CRISPR sequences were found, indicating heavy phage attack in the past. A complete gene set for a phage was found in the genome, and indications of phage action could also be observed in culture. The genome contained all genes required for CO(2) reduction through the Wood-Ljungdahl pathway, including two formyl tetrahydrofolate ligases, three carbon monoxide dehydrogenases, one formate hydrogenlyase complex, three further formate dehydrogenases, and three further hydrogenases. The bacterium contains a menaquinone MQ-7. No indications of cytochromes or Rnf complexes could be found in the genome. CONCLUSIONS The information obtained from the genome sequence indicates that Th. phaeum differs basically from the three homoacetogenic bacteria sequenced so far, i.e., the sodium ion-dependent Acetobacterium woodii, the ethanol-producing Clostridium ljungdahlii, and the cytochrome-containing Moorella thermoacetica. The specific enzyme outfit of Th. phaeum obviously allows ATP formation both in acetate formation and acetate oxidation.
Collapse
Affiliation(s)
- Dirk Oehler
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Andreas Leimbach
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
- Department of Microbiology and Institute for Genomic Biology, University of Illinois, 601 S. Goodwin, Urbana, IL, 61801, USA
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Gerhard Gottschalk
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
15
|
Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012; 434:202-9. [PMID: 23123013 DOI: 10.1016/j.virol.2012.10.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023]
Abstract
Multiple organisms face the threat of viral infections. To combat phage invasion, bacteria and archaea have evolved an adaptive mechanism of protection against exogenic mobile genetic elements, called CRISPR-Cas. In this defense strategy, phage infection is memorized via acquisition of a short invader sequence, called a spacer, into the CRISPR locus of the host genome. Upon repeated infection, the 'vaccinated' host expresses the spacer as a precursor RNA, which is processed into a mature CRISPR RNA (crRNA) that guides an endonuclease to the matching invader for its ultimate destruction. Recent efforts have uncovered molecular details underlying the crRNA biogenesis and interference steps. However, until recently the step of adaptation had remained largely uninvestigated. In this minireview, we focus on recent publications that have begun to reveal molecular insights into the adaptive step of CRISPR-Cas immunity, which is required for the development of the heritable memory of the host against viruses.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
16
|
Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses 2012. [PMID: 23202464 PMCID: PMC3497052 DOI: 10.3390/v4102291] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phages are the most abundant biological entities on earth and pose a constant challenge to their bacterial hosts. Thus, bacteria have evolved numerous 'innate' mechanisms of defense against phage, such as abortive infection or restriction/modification systems. In contrast, the clustered regularly interspaced short palindromic repeats (CRISPR) systems provide acquired, yet heritable, sequence-specific 'adaptive' immunity against phage and other horizontally-acquired elements, such as plasmids. Resistance is acquired following viral infection or plasmid uptake when a short sequence of the foreign genome is added to the CRISPR array. CRISPRs are then transcribed and processed, generally by CRISPR associated (Cas) proteins, into short interfering RNAs (crRNAs), which form part of a ribonucleoprotein complex. This complex guides the crRNA to the complementary invading nucleic acid and targets this for degradation. Recently, there have been rapid advances in our understanding of CRISPR/Cas systems. In this review, we will present the current model(s) of the molecular events involved in both the acquisition of immunity and interference stages and will also address recent progress in our knowledge of the regulation of CRISPR/Cas systems.
Collapse
|