1
|
Zhang S, Kaiya H, Kitazawa T. Physiological roles of ghrelin in the regulation of gastrointestinal motility in vertebrates. Gen Comp Endocrinol 2025; 365:114698. [PMID: 40024446 DOI: 10.1016/j.ygcen.2025.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Ghrelin is known to be a multifunctional peptide hormone that stimulates not only growth hormone secretion and feeding but also gastrointestinal (GI) functions, including motility, secretion and mucosa proliferation. The aim of this review is to provide a comprehensive overview on the physiological roles of ghrelin in the regulation of GI motility from a comparative perspective. The effects of ghrelin on GI motility differ depending on the species, and ghrelin is a possible regulator of gastric migrating motor complexes (MMCs) in rodents, dogs and house musk shrew (suncus). However, the role of ghrelin has not been clarified in detail in other mammals, including humans and rabbits. Ghrelin is also effective to cause contraction in the GI tract of some non-mammals, but its physiological role is also not clarified at present. Distribution of the growth hormone secretagogue receptor (GHSR, ghrelin receptor) in the GI tract might be connected with the regulatory role of ghrelin in vertebrates. Comparative studies of ghrelin among animals and identification of knowledge gaps must lead us to the functional transition and importance of ghrelin in the GI tract.
Collapse
Affiliation(s)
- Shuangyi Zhang
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hiroyuki Kaiya
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara 633-2221, Japan; Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
2
|
Pascutti KM, O'Kell AL, Hill RC, Castro RA, Salute ME, Gilor C. The effect of capromorelin on glycemic control in healthy dogs. Domest Anim Endocrinol 2022; 81:106732. [PMID: 35689953 DOI: 10.1016/j.domaniend.2022.106732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Capromorelin is a ghrelin-receptor agonist widely used as an appetite stimulant in dogs. Capromorelin disrupts glucose homeostasis in cats but information regarding its effects on canine glucose homeostasis is lacking. The study objective was to evaluate the effect of capromorelin on glucose homeostatic mechanisms in healthy dogs. Eight clinically healthy client-owned adult dogs were enrolled in this prospective, cross-over, placebo-controlled study. Dogs were randomized to receive capromorelin (Entyce, 3 mg/kg) or placebo, q24h for 3 d. A wk later, treatments were crossed over. Interstitial glucose (IG) concentrations were measured using a flash glucose monitoring system throughout. On d 1 of each treatment, blood glucose (BG), insulin, glucagon, glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were measured before drug administration, then before and 30-120 min after feeding a glucose-rich diet (Ensure Plus, 21 kcal/kg). Data were analyzed as a 2-period crossover design using generalized least squares estimation. Capromorelin administration increased mean 48 h IG by10% and mean BG by 20% at 90 and 120 min post-prandially (P < 0.0001). Post-prandially, there was a time-by-treatment effect for insulin (P = 0.03) and GIP (P = 0.0002) because capromorelin doubled geometric mean insulin concentrations at 120 min and increased geometric mean GIP concentrations more rapidly than after placebo. There were no differences in glucagon or GLP-1 concentrations between treatment groups. The increase in post-prandial blood glucose was not the result of overt suppression of incretin hormone secretion. There was also no suppressive effect of capromorelin on insulin.
Collapse
Affiliation(s)
- K M Pascutti
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - A L O'Kell
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - R C Hill
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - R A Castro
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - M E Salute
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - C Gilor
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
SHINOHARA Y, ELBADAWY M, YAMANAKA M, YAMAMOTO H, ABUGOMAA A, USUI T, SASAKI K. Effect of the liquid form of traditional Chinese medicine, Hozen-S, on gastric motility in dogs. J Vet Med Sci 2022; 84:841-846. [PMID: 35473800 PMCID: PMC9246680 DOI: 10.1292/jvms.21-0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Juzen-taiho-to, a traditional Chinese herbal medicine, is used for patients with anorexia and fatigue in human medicine. In our previous study, granulated Juzen-taiho-to improved vincristine-induced gastrointestinal adverse effects through increasing gastric motility in dogs. As the effect of Hozen-S, the sweet liquid form of Juzen-taiho-to, on dog gastric motility has not been investigated, we examined the effect of administration of Hozen-S on gastric motility. Furthermore, we assessed dog plasma ghrelin level to further elucidate the mechanism of the effect of Hozen-S on gastric contraction. Finally, we assessed the palatability of Hozen-S compared to granulated Juzen-taiho-to and its effect on body weight in dogs. Administration of Hozen-S significantly increased gastric motility, plasma ghrelin concentration, and body weight. A palatability evaluation revealed that the dogs preferred Hozen-S to granulated Juzen-taiho-to. In conclusion, Hozen-S administration to dogs promoted gastric motility by raising plasma ghrelin levels. Considering these functional and palatability data, Hozen-S may replace granulated type Juzen-taiho-to and become a prominent traditional Chinese veterinary medicament.
Collapse
Affiliation(s)
- Yuta SHINOHARA
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
- Pet Health & Food Division, Iskara Industry Co., Ltd.,
Tokyo, Japan
| | - Mohamed ELBADAWY
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine,
Benha University, Elqaliobiya, Egypt
| | - Megumi YAMANAKA
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
| | - Haru YAMAMOTO
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
| | - Amira ABUGOMAA
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University,
Dakahliya, Egypt
| | - Tatsuya USUI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
| | - Kazuaki SASAKI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and
Technology, Tokyo, Japan
| |
Collapse
|
4
|
Thyroid hormone activated upper gastrointestinal motility without mediating gastrointestinal hormones in conscious dogs. Sci Rep 2021; 11:9975. [PMID: 33976260 PMCID: PMC8113274 DOI: 10.1038/s41598-021-89378-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to clarify the relationship between thyroid function and gastrointestinal motility. We established an experimental configuration in which the feedback of thyroid function was completely removed using conscious dogs. With hypothyroidism, time of phase I of interdigestive migrating contractions (IMC) was longer, time of phase II and phase III was significantly shortened, and both the continuous time of strong tetanic contraction at antrum and 10-h frequency of phase III counted from the first IMC after meal significantly decreased. Whereas, hyperthyroidism caused the opposite events to those with hypothyroidism. Furthermore, We found giant migrating contractions (GMC) occurred from the upper gastrointestinal tract when we administrated high dose of thyroid hormone. One GMC occurred from anal sides propagated to cardiac, and this propagation was similar to the emesis-like interdigestive motor activity, the other GMC occurred from oral sides propagated to anal sides and this was similar to the diarrhea-like interdigestive motor activity. We examined the relationship between thyroid function and gastrointestinal hormones including of ghrelin, GLP-1, and cholecystokinin (CCK). However, we could not find significant differences under different thyroid hormone status. This is the first report that thyroid hormone activated upper gastrointestinal motility without mediating gastrointestinal hormones.
Collapse
|
5
|
Hill TL. Gastrointestinal Tract Dysfunction With Critical Illness: Clinical Assessment and Management. Top Companion Anim Med 2019; 35:47-52. [PMID: 31122688 DOI: 10.1053/j.tcam.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
The gut is the site of digestion and absorption as well as serving as an endocrine and immune organ. All of these functions may be affected by critical illness. This review will discuss secondary effects of critical illness on the gut in terms of gastrointestinal function that is clinically observable and discuss consequences of gut dysfunction with critical illness to patient outcome. Because there is little evidence-based medicine in the veterinary field, much of our understanding of gut dysfunction with critical illness comes from animal models or from the human medical field. We can extrapolate some of these conclusions and recommendations to companion animals, particularly in dogs, who have similar gastrointestinal physiology to people. Additionally, the evidence regarding gut dysfunction in veterinary patients will be explored. By recognizing signs of dysfunction early and taking preventative measures, we may be able to increase success with treatment of critical illnesses.
Collapse
Affiliation(s)
- Tracy L Hill
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
7
|
Mikami T, Ito K, Diaz-Tartera HO, Hellström PM, Mochiki E, Takemi S, Tanaka T, Tsuda S, Jogahara T, Sakata I, Sakai T. Study of termination of postprandial gastric contractions in humans, dogs and Suncus murinus: role of motilin- and ghrelin-induced strong contraction. Acta Physiol (Oxf) 2018; 222. [PMID: 28786555 DOI: 10.1111/apha.12933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
Abstract
AIM Stomach contractions show two types of specific patterns in many species, that is migrating motor contraction (MMC) and postprandial contractions (PPCs), in the fasting and fed states respectively. We found gastric PPCs terminated with migrating strong contractions in humans, dogs and suncus. In this study, we reveal the detailed characteristics and physiological implications of these strong contractions of PPC. METHODS Human, suncus and canine gastric contractions were recorded with a motility-monitoring ingestible capsule and a strain-gauge force transducer. The response of motilin and ghrelin and its receptor antagonist on the contractions were studied by using free-moving suncus. RESULTS Strong gastric contractions were observed at the end of a PPC in human, dog and suncus models, and we tentatively designated this contraction to be a postprandial giant contraction (PPGC). In the suncus, the PPGC showed the same property as those of a phase III contraction of MMC (PIII-MMC) in the duration, motility index and response to motilin or ghrelin antagonist administration. Ghrelin antagonist administration in the latter half of the PPC (LH-PPC) attenuated gastric contraction prolonged the duration of occurrence of PPGC, as found in PII-MMC. CONCLUSION It is thought that the first half of the PPC changed to PII-MMC and then terminated with PIII-MMC, suggesting that PPC consists of a digestive phase (the first half of the PPC) and a discharge phase (LH-PPC) and that LH-PPC is coincident with MMC. In this study, we propose a new approach for the understanding of postprandial contractions.
Collapse
Affiliation(s)
- T. Mikami
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; Saitama Japan
| | - K. Ito
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; Saitama Japan
| | | | - P. M. Hellström
- Department of Medical Sciences; Uppsala University; Uppsala Sweden
| | - E. Mochiki
- Department of Digestive Tract and General Surgery; Saitama Medical Center; Saitama Medical University; Kawagoe Japan
| | - S. Takemi
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; Saitama Japan
| | - T. Tanaka
- Department of Pharmaceutical and Health Sciences; Faculty of Pharmaceutical Sciences; Josai University; Saitama Japan
| | - S. Tsuda
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; Saitama Japan
| | - T. Jogahara
- Laboratory of Animal Management and Resources; Department of Zoology; Faculty of Science; Okayama University of Science; Okayama Japan
| | - I. Sakata
- Area of Regulatory Biology; Division of Life Science; Graduate School of Science and Engineering; Saitama University; Saitama Japan
| | - T. Sakai
- Area of Life-NanoBio; Division of Strategy Research, Graduate School of Science and Engineering; Saitama University; Saitama Japan
| |
Collapse
|
8
|
Rhodes L, Zollers B, Wofford JA, Heinen E. Capromorelin: a ghrelin receptor agonist and novel therapy for stimulation of appetite in dogs. Vet Med Sci 2018; 4:3-16. [PMID: 29468076 PMCID: PMC5813110 DOI: 10.1002/vms3.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a hormone, secreted from cells in the stomach, which is important in the regulation of appetite and food intake in mammals. It exerts its action by binding to a specific G-protein-coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1a) which is found in areas of the brain associated with the regulation of food intake. Ghrelin causes a release of growth hormone (GH) through binding to GHS-R1a in the hypothalamus and pituitary gland. A class of compounds known as growth hormone secretagogues, or ghrelin receptor agonists, were developed for therapeutic use in humans for the stimulation of GH in the frail elderly, and have subsequently been studied for their effects on increasing appetite and food intake, increasing body weight, building lean muscle mass, and treating cachexia. Subsequent research has shown that ghrelin has anti-inflammatory and immunomodulatory effects. This article reviews the basic physiology of ghrelin and the ghrelin receptor agonists, including the available evidence of these effects in vitro and in vivo in rodent models, humans, dogs and cats. One of these compounds, capromorelin, has been FDA-approved for the stimulation of appetite in dogs (ENTYCE ®). The data available on the safety and effectiveness of capromorelin is reviewed, along with a discussion of the potential clinical applications for ghrelin receptor agonists in both human and veterinary medicine.
Collapse
|
9
|
Mondal A, Koyama K, Mikami T, Horita T, Takemi S, Tsuda S, Sakata I, Sakai T. Underlying mechanism of the cyclic migrating motor complex in Suncus murinus: a change in gastrointestinal pH is the key regulator. Physiol Rep 2017; 5:5/1/e13105. [PMID: 28082431 PMCID: PMC5256163 DOI: 10.14814/phy2.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
In the fasted gastrointestinal (GI) tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occurs in an ultradian rhythm, at 90–120 min time intervals, in many species. However, the underlying mechanism directing this ultradian rhythmic MMC pattern is yet to be completely elucidated. Therefore, this study aimed to identify the possible causes or factors that involve in the occurrence of the fasting gastric contractions by using Suncus murinus a small model animal featuring almost the same rhythmic MMC as that found in humans and dogs. We observed that either intraduodenal infusion of saline at pH 8 evoked the strong gastric contraction or continuously lowering duodenal pH to 3‐evoked gastric phase II‐like and phase III‐like contractions, and both strong contractions were essentially abolished by the intravenous administration of MA 2029 (motilin receptor antagonist) and D‐Lys3‐GHRP6 (ghrelin receptor antagonist) in a vagus‐independent manner. Moreover, we observed that the prostaglandin E2‐alpha (PGE2‐α) and serotonin type 4 (5HT4) receptors play important roles as intermediate molecules in changes in GI pH and motilin release. These results suggest a clear insight mechanism that change in the duodenal pH to alkaline condition is an essential factor for stimulating the endogenous release of motilin and governs the fasting MMC in a vagus‐independent manner. Finally, we believe that the changes in duodenal pH triggered by flowing gastric acid and the release of duodenal bicarbonate through the involvement of PGE2‐α and 5HT4 receptor are the key events in the occurrence of the MMC.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Life Nano-Bio, Strategic Research Division, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouhei Koyama
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takashi Mikami
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Taichi Horita
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sachiko Tsuda
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takafumi Sakai
- Department of Life Nano-Bio, Strategic Research Division, Graduate School of Science and Engineering, Saitama University, Saitama, Japan .,Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
10
|
Abstract
Ghrelin and motilin are released from gastrointestinal endocrine cells during hunger, to act through G protein-coupled receptors that have closely related amino acid sequences. The actions of ghrelin are more complex than motilin because ghrelin also exists outside the GI tract, it is processed to des-acyl ghrelin which has activity, ghrelin can exist in truncated forms and retain activity, the ghrelin receptor can have constitutive activity and is subject to biased agonism and finally additional ghrelin-like and des-acyl ghrelin receptors are proposed. Both ghrelin and motilin can stimulate gastric emptying, acting via different pathways, perhaps influenced by biased agonism at the receptors, but research is revealing additional pathways of activity. For example, it is becoming apparent that reduction of nausea may be a key therapeutic target for ghrelin receptor agonists and perhaps for compounds that modulate the constitutive activity of the ghrelin receptor. Reduction of nausea may be the mechanism through which gastroparesis symptoms are reduced. Intriguingly, a potential ability of motilin to influence nausea is also becoming apparent. Ghrelin interacts with digestive function through its effects on appetite, and ghrelin antagonists may have a place in treating Prader-Willi syndrome. Unlike motilin, ghrelin receptor agonists also have the potential to treat constipation by acting at the lumbosacral defecation centres. In conclusion, agonists of both ghrelin and motilin receptors hold potential as treatments for specific subsets of digestive system disorders.
Collapse
|
11
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
12
|
Abstract
The gastrointestinal tract is the major source of the related hormones ghrelin and motilin, which act on structurally similar G protein-coupled receptors. Nevertheless, selective receptor agonists are available. The primary roles of endogenous ghrelin and motilin in the digestive system are to increase appetite or hedonic eating (ghrelin) and initiate phase III of gastric migrating myoelectric complexes (motilin). Ghrelin and motilin also both inhibit nausea. In clinical trials, the motilin receptor agonist camicinal increased gastric emptying, but at lower doses reduced gastroparesis symptoms and improved appetite. Ghrelin receptor agonists have been trialled for the treatment of diabetic gastroparesis because of their ability to increase gastric emptying, but with mixed results; however, relamorelin, a ghrelin agonist, reduced nausea and vomiting in patients with this disorder. Treatment of postoperative ileus with a ghrelin receptor agonist proved unsuccessful. Centrally penetrant ghrelin receptor agonists stimulate defecation in animals and humans, although ghrelin itself does not seem to control colorectal function. Thus, the most promising uses of motilin receptor agonists are the treatment of gastroparesis or conditions with slow gastric emptying, and ghrelin receptor agonists hold potential for the reduction of nausea and vomiting, and the treatment of constipation. Therapeutic, gastrointestinal roles for receptor antagonists or inverse agonists have not been identified.
Collapse
|
13
|
Kuroda K, Hequing H, Mondal A, Yoshimura M, Ito K, Mikami T, Takemi S, Jogahara T, Sakata I, Sakai T. Ghrelin Is an Essential Factor for Motilin-Induced Gastric Contraction in Suncus murinus. Endocrinology 2015; 156:4437-47. [PMID: 26441238 DOI: 10.1210/en.2015-1561] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Motilin was discovered in the 1970s as the most important hormone for stimulating strong gastric contractions; however, the mechanisms by which motilin causes gastric contraction are not clearly understood. Here, we determined the coordinated action of motilin and ghrelin on gastric motility during fasted and postprandial contractions by using house musk shrew (Suncus murinus; order: Insectivora, suncus named as the laboratory strain). Motilin-induced gastric contractions at phases I and II of the migrating motor complex were inhibited by pretreatment with (D-Lys(3))-GHRP-6 (6 mg/kg/h), a ghrelin receptor antagonist. Administration of the motilin receptor antagonist MA-2029 (0.1 mg/kg) and/or (D-Lys(3))-GHRP-6 (0.6 mg/kg) at the peak of phase III abolished the spontaneous gastric phase III contractions in vivo. Motilin did not stimulate gastric contractions in the postprandial state. However, in the presence of a low dose of ghrelin, motilin evoked phase III-like gastric contractions even in the postprandial state, and postprandial gastric emptying was accelerated. In addition, pretreatment with (D-Lys(3))-GHRP-6 blocked the motilin-induced gastric contraction in vitro and in vivo, and a γ-aminobutyric acid (GABA) antagonist reversed this block in gastric contraction. These results indicate that blockade of the GABAergic pathway by ghrelin is essential for motilin-induced gastric contraction.
Collapse
Affiliation(s)
- Kayuri Kuroda
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Huang Hequing
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Anupom Mondal
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Makoto Yoshimura
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Kazuma Ito
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Takashi Mikami
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Shota Takemi
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Takamichi Jogahara
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology (K.K., H.H., A.M., M.Y., K.I., T.M., S.T., I.S., T.S.), Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; and Laboratory of Animal Management and Resources (T.J.), Department of Zoology, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
14
|
Abstract
There remains an unmet need for effective pharmacologic treatments for gastroparesis. Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor and has been shown to regulate energy homeostasis and exert prokinetic effects on gastrointestinal motility. In recent years, several ghrelin receptor agonists have been studied in clinical trials of patients with diabetic gastroparesis. The intravenous macrocyclic peptidomimetic, TZP-101, initially suggested improvement in gastroparesis symptoms with intravenous administration when compared to placebo. However, in subsequent studies of oral preparations, TZP-102 failed to confirm these results. Another ghrelin receptor agonist, RM-131, was recently shown to significantly accelerate gastric emptying (GE) in patients with type 1 and type 2 diabetes and delayed GE. RM-131 reduced total Gastroparesis Cardinal Symptom Index-Daily Diary (GCSI-DD) and composite scores among type 1 diabetics. Continued development of ghrelin agonists should be explored in attempts to expand therapeutic options for the treatment of gastroparesis.
Collapse
|
15
|
Nesfatin-1 suppresses gastric contractions and inhibits interdigestive migrating contractions in conscious dogs. Dig Dis Sci 2015; 60:1595-602. [PMID: 25563722 DOI: 10.1007/s10620-014-3505-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/21/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Nesfatin-1 is a novel 82-amino acid anorectic peptide. Acute injection of nesfatin-1 into the third brain ventricle reduces food consumption during the dark phase in rats. Nesfatin-1 is also expressed in gastric X/A-like cells in the peripheral tissues. Nesfatin-1 has been reported to reduce gastric and duodenal motility and to delay gastric emptying. AIM In the present study, we investigated the effects of nesfatin-1 on gastrointestinal motility in conscious dogs. METHODS Force transducers were implanted onto the serosal surfaces of the gastric bodies, gastric antra, duodena, and jejuna of healthy beagle dogs, and gastrointestinal motility was monitored. We evaluated the effects of nesfatin-1 on gastrointestinal motility and on the circulating levels of nesfatin-1 in the fasted and fed states. RESULTS The intravenous administration of nesfatin-1 reduced gastric contractions and inhibited cyclical interdigestive migrating contractions in the fasted state. In the fasted state, circulating levels of nesfatin-1 tended to increase during late phase I. In addition, the kinetics of the circulating levels of nesfatin-1 were opposite to those of ghrelin during the fasted state. CONCLUSIONS Nesfatin-1 regulates gastrointestinal motility, and, in particular, it inhibits gastric contractions in the fasted state. Interdigestive migrating contractions may be regulated by interactions between nesfatin-1, ghrelin, and motilin.
Collapse
|
16
|
Deloose E, Vos R, Corsetti M, Depoortere I, Tack J. Endogenous motilin, but not ghrelin plasma levels fluctuate in accordance with gastric phase III activity of the migrating motor complex in man. Neurogastroenterol Motil 2015; 27:63-71. [PMID: 25393165 DOI: 10.1111/nmo.12470] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/12/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fluctuations in motilin plasma levels have been implicated in the control of the migrating motor complex (MMC). A plasma peak of motilin is present before a gastric phase III. Furthermore, not only exogenous administration of motilin but also ghrelin induces a gastric phase III in man. Aim of this study was to investigate the role of endogenous ghrelin in the regulation of the MMC. METHODS Plasma samples for motilin and ghrelin were taken in between two consecutive phases III of either origin measured using high-resolution manometry. KEY RESULTS The duration of 1 complete MMC cycle was on average 95 ± 12 min. Sixty percent of the first phases III and 40% of the second phases III had a gastric origin (p = 0.0574). Motilin (p < 0.05) plasma levels differed significantly between the phases of the MMC but total and octanoylated ghrelin did not. The percentage change in motilin during the MMC was dependent on the origin of phase III (p < 0.05). Motilin levels increased on average with 35 ± 10% right before a gastric phase III and with 3 ± 4% before a duodenal phase III (p < 0.05). The percentage change in total and octanoylated ghrelin plasma levels was not affected by the origin of phase III. CONCLUSIONS & INFERENCES These results confirm the role of motilin but not of ghrelin as an endogenous physiological regulator of the MMC with a gastric phase III.
Collapse
Affiliation(s)
- E Deloose
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
17
|
Takahashi T. Interdigestive migrating motor complex -its mechanism and clinical importance. J Smooth Muscle Res 2014; 49:99-111. [PMID: 24662475 PMCID: PMC5137267 DOI: 10.1540/jsmr.49.99] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal
(GI) contractions in the interdigestive state. The physiological importance of gastric MMC
is a mechanical and chemical cleansing of the empty stomach in preparation for the next
meal. MMC cycle is mediated via the interaction between motilin and 5-hydroxytryptamine
(5-HT) by the positive feedback mechanism in conscious dogs. Luminal administration of
5-HT initiates duodenal phase II and phase III with a concomitant increase of plasma
motilin release. Duodenal 5-HT concentration is increased during gastric phase II and
phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces
phase III. 5-HT4 antagonists significantly inhibit both of gastric and
intestinal phase III, while 5-HT3 antagonists inhibit only gastric phase III.
These suggest that gastric MMC is regulated via vagus, 5-HT3/4 receptors and
motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons (IPAN)
and 5-HT4 receptors. We propose the possibility that maximally released motilin
by a positive feedback depletes 5-HT granules in the duodenal EC cells, resulting in no
more contractions. Stress is highly associated with the pathogenesis of functional
dyspepsia (FD). Acoustic stress attenuates gastric phase III without affecting intestinal
phase III in conscious dogs, via reduced vagal activity. Subset of FD patients shows
reduced vagal activity and impaired gastric phase III. The impaired gastric MMC may
aggravate dyspeptic symptoms following a food ingestion. Maintaining MMC cycle in the
interdigestive state is an important factor to prevent the postprandial dyspeptic
symptoms.
Collapse
Affiliation(s)
- Toku Takahashi
- Department of Surgery and Department of Neurology, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Delporte C. Structure and physiological actions of ghrelin. SCIENTIFICA 2013; 2013:518909. [PMID: 24381790 PMCID: PMC3863518 DOI: 10.1155/2013/518909] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/10/2013] [Indexed: 05/30/2023]
Abstract
Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, Bat G/E-CP611, 1070 Brussels, Belgium
| |
Collapse
|
19
|
Avau B, Carbone F, Tack J, Depoortere I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil 2013; 25:720-32. [PMID: 23910374 DOI: 10.1111/nmo.12193] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/26/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ghrelin, an orexigenic hormone secreted from the stomach, was soon after its discovery hypothesized to be a prokinetic agent, due to its homology to motilin. Studies in animals and humans, using ghrelin and ghrelin receptor agonists, confirmed this hypothesis, suggesting a therapeutic potential for the ghrelin receptor in the treatment of gastrointestinal motility disorders. Precilinical studies demonstrated that ghrelin can act directly on ghrelin receptors on the enteric nervous system, but the predominant route of action under physiological circumstances is signaling via the vagus nerve in the upper gastrointestinal tract and the pelvic nerves in the colon. Different pharmaceutical companies have designed stable ghrelin mimetics that revealed promising results in trials for the treatment of diabetic gastroparesis and post-operative ileus. Nevertheless, no drug was able to reach the market so far, facing problems proving superiority over placebo treatment in larger trials. PURPOSE This review aims to summarize the road that led to the current knowledge concerning the prokinetic properties of ghrelin with a focus on the therapeutic potential of ghrelin receptor agonists in the treatment of hypomotility disorders. In addition, we outline some of the problems that could be at the basis of the negative outcome of the trials with ghrelin agonists and question whether the right target groups were selected. It is clear that a new approach is needed to develop marketable drugs with this class of gastroprokinetic agents.
Collapse
Affiliation(s)
- B Avau
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
20
|
Cheung CK, Wu JCY. Role of ghrelin in the pathophysiology of gastrointestinal disease. Gut Liver 2013; 7:505-12. [PMID: 24073306 PMCID: PMC3782663 DOI: 10.5009/gnl.2013.7.5.505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
Ghrelin is a 28-amino-acid peptide that plays multiple roles in humans and other mammals. The functions of ghrelin include food intake regulation, gastrointestinal (GI) motility, and acid secretion by the GI tract. Many GI disorders involving infection, inflammation, and malignancy are also correlated with altered ghrelin production and secretion. Although suppressed ghrelin responses have already been observed in various GI disorders, such as chronic gastritis, Helicobacter pylori infection, irritable bowel syndrome, functional dyspepsia, and cachexia, elevated ghrelin responses have also been reported in celiac disease and inflammatory bowel disease. Moreover, we recently reported that decreased fasting and postprandial ghrelin levels were observed in female patients with functional dyspepsia compared with healthy subjects. These alterations of ghrelin responses were significantly correlated with meal-related symptoms (bloating and early satiation) in female functional dyspepsia patients. We therefore support the notion that abnormal ghrelin responses may play important roles in various GI disorders. Furthermore, human clinical trials and animal studies involving the administration of ghrelin or its receptor agonists have shown promising improvements in gastroparesis, anorexia, and cancer. This review summarizes the impact of ghrelin, its family of peptides, and its receptors on GI diseases and proposes ghrelin modulation as a potential therapy.
Collapse
Affiliation(s)
- Cynthia K Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
21
|
Kitazawa T, Yoshida A, Tamano T, Teraoka H, Kaiya H. Age-dependent reduction of ghrelin- and motilin-induced contractile activity in the chicken gastrointestinal tract. Peptides 2013; 43:88-95. [PMID: 23454175 DOI: 10.1016/j.peptides.2013.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
Ghrelin is an endogenous ligand for growth hormone secretagogue-receptor 1a (GHS-R1a) and stimulates gastrointestinal (GI) motility in the chicken. Since ghrelin stimulates GH release, which regulates growth, it might be interesting to compare ghrelin-induced responses in GI tract of different-aged chickens. Motilin is a ghrelin-related gut peptide that induces strong contraction in the small intestine. Aim of this study was to clarify age-dependent changes in ghrelin- and motilin-induced contractions of the chicken GI tract and expression of their receptor mRNAs. Chicken ghrelin caused contraction of the crop and proventriculus. Ghrelin-induced contraction in the proventriculus decreased gradually up to 100 days after hatching, but the responses to ghrelin in the crop were the same during the growth period. GHS-R1a mRNA expression in the crop tended to increase, but that in the proventriculus decreased depending on the age. Chicken motilin caused contraction of the chicken GI tract. Atropine decreased the responses to motilin in the proventriculus but not in the ileum. Motilin-induced contraction in the proventriculus but not that in the ileum decreased depending on post-hatching days. On the other hand, motilin receptor mRNA expression in every region of the GI tract decreased with age, but the decrease was more marked in the proventriculus than in the ileum. In conclusion, ghrelin- and motilin-induced GI contractions selectively decreased in the chicken proventriculus depending on post-hatching days, probably due to the age-related decrease in respective receptors expression. The results suggest an age-related contribution of ghrelin and motilin to the regulation of chicken GI motility.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | |
Collapse
|
22
|
Yanai M, Mochiki E, Ogawa A, Morita H, Toyomasu Y, Ogata K, Tabe Y, Ando H, Ohno T, Asao T, Aomori T, Fujita Y, Kuwano H. Intragastric administration of rikkunshito stimulates upper gastrointestinal motility and gastric emptying in conscious dogs. J Gastroenterol 2013; 48:611-9. [PMID: 23053427 DOI: 10.1007/s00535-012-0687-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/13/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Traditional Japanese medicine, known as Kampo medicine, consists of mixtures of several medicinal herbs widely used to treat upper gastrointestinal disorders in Japan. Rikkunshito, one of these medicines, has not been evaluated with respect to its influence on gastrointestinal motor activity. We investigated the effect of rikkunshito on upper gastrointestinal motility and plasma ghrelin concentrations in conscious dogs. METHODS Contractile response to intragastric administration of rikkunshito was studied via surgically implanted force transducers. A powdered extract of rikkunshito (1.3, 2.7, and 4.0 g) dissolved in water was administered into the stomachs of normal and vagotomized dogs before feeding and gastric emptying was evaluated. Several inhibitors of gastrointestinal motility (atropine, hexamethonium, and ondansetron) were injected intravenously before intragastric administration of rikkunshito. Plasma acylated ghrelin levels after intragastric administration of rikkunshito were measured. RESULTS In a fasting state, intragastric administration of rikkunshito induced phasic contractions in the duodenum and jejunum in normal dogs. Rikkunshito-induced contractions were inhibited by atropine, hexamethonium and ondansetron. In vagotomized dogs, rikkunshito induced phasic contractions, similar to normal dogs. Gastric emptying was accelerated by intragastric administration of rikkunshito in a dose-dependent manner. The plasma acylated ghrelin level 150 min after intragastric administration of 4.0 g of rikkunshito was significantly higher than the control value. CONCLUSIONS Intragastric administration of rikkunshito stimulates gastrointestinal contractions in the interdigestive state through cholinergic neurons and 5-HT type 3 receptors. Moreover, rikkunshito increases plasma acylated ghrelin levels. Rikkunshito may alleviate gastrointestinal disorders through its prokinetic effects.
Collapse
Affiliation(s)
- Mitsuhiro Yanai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mondal A, Aizawa S, Sakata I, Goswami C, Oda SI, Sakai T. Mechanism of ghrelin-induced gastric contractions in Suncus murinus (house musk shrew): involvement of intrinsic primary afferent neurons. PLoS One 2013; 8:e60365. [PMID: 23565235 PMCID: PMC3614873 DOI: 10.1371/journal.pone.0060365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/26/2013] [Indexed: 12/13/2022] Open
Abstract
Here, we have reported that motilin can induce contractions in a dose-dependent manner in isolated Suncus murinus (house musk shrew) stomach. We have also shown that after pretreatment with a low dose of motilin (10(-10) M), ghrelin also induces gastric contractions at levels of 10(-10) M to 10(-7) M. However, the neural mechanism of ghrelin action in the stomach has not been fully revealed. In the present study, we studied the mechanism of ghrelin-induced contraction in vitro using a pharmacological method. The responses to ghrelin in the stomach were almost completely abolished by hexamethonium and were significantly suppressed by the administration of phentolamine, prazosin, ondansetron, and naloxone. Additionally, N-nitro-l-arginine methylester significantly potentiated the contractions. Importantly, the mucosa is essential for ghrelin-induced, but not motilin-induced, gastric contractions. To evaluate the involvement of intrinsic primary afferent neurons (IPANs), which are multiaxonal neurons that pass signals from the mucosa to the myenteric plexus, we examined the effect of the IPAN-related pathway on ghrelin-induced contractions and found that pretreatment with adenosine and tachykinergic receptor 3 antagonists (SR142801) significantly eliminated the contractions and GR113808 (5-hydroxytryptamine receptor 4 antagonist) almost completely eliminated it. The results indicate that ghrelin stimulates and modulates suncus gastric contractions through cholinergic, adrenergic, serotonergic, opioidergic neurons and nitric oxide synthases in the myenteric plexus. The mucosa is also important for ghrelin-induced gastric contractions, and IPANs may be the important interneurons that pass the signal from the mucosa to the myenteric plexus.
Collapse
Affiliation(s)
- Anupom Mondal
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sayaka Aizawa
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Chayon Goswami
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sen-ichi Oda
- Laboratory of Animal Management and Resources, Department of Zoology, Okayama University of Science, Okayama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- * E-mail:
| |
Collapse
|
24
|
Kaiya H, Kangawa K, Miyazato M. What is the general action of ghrelin for vertebrates? - comparisons of ghrelin's effects across vertebrates. Gen Comp Endocrinol 2013. [PMID: 23178701 DOI: 10.1016/j.ygcen.2012.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ten years and more passed since ghrelin was discovered. Various physiological actions of ghrelin have been documented in both mammalian and nonmammalian vertebrates. Do these actions have any commonality? In this review, we focused on several effects of ghrelin, and compared the effect across vertebrates. We would like to discuss possible general function of ghrelin in vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | |
Collapse
|
25
|
Takahashi T. Mechanism of interdigestive migrating motor complex. J Neurogastroenterol Motil 2012; 18:246-57. [PMID: 22837872 PMCID: PMC3400812 DOI: 10.5056/jnm.2012.18.3.246] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/13/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022] Open
Abstract
Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal contractions in the interdigestive state. This review article discussed the mechanism of gastrointestinal MMC. Luminal administration of 5-hydroxytryptamine (5-HT) initiates duodenal phase II followed by gastrointestinal phase III with a concomitant increase of plasma motilin release in conscious dogs. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces gastrointestinal phase III. 5-HT(4) antagonists significantly inhibits both of gastric and intestinal phase III, while 5-HT(3) antagonists inhibited only gastric phase III. These suggest that gastrointestinal MMC cycle is mediated via the interaction between motilin and 5-HT by the positive feedback mechanism. Gastric MMC is regulated via vagus, 5-HT(3/4) receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons and 5-HT(4) receptors. Stress is highly associated with the pathogenesis of functional dyspepsia. Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity and increased sympathetic activity. It has been shown that subset of functional dyspepsia patients show reduced vagal activity and impaired gastric phase III. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Thus, maintaining gastric MMC in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms.
Collapse
Affiliation(s)
- Toku Takahashi
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Nunoi H, Matsuura B, Utsunomiya S, Ueda T, Miyake T, Furukawa S, Kumagi T, Ikeda Y, Abe M, Hiasa Y, Onji M. A relationship between motilin and growth hormone secretagogue receptors. ACTA ACUST UNITED AC 2012; 176:28-35. [DOI: 10.1016/j.regpep.2012.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 12/19/2022]
|
27
|
Mondal A, Xie Z, Miyano Y, Tsutsui C, Sakata I, Kawamoto Y, Aizawa S, Tanaka T, Oda SI, Sakai T. Coordination of motilin and ghrelin regulates the migrating motor complex of gastrointestinal motility in Suncus murinus. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1207-15. [PMID: 22383491 DOI: 10.1152/ajpgi.00379.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Motilin and ghrelin are the gastrointestinal (GI) hormones released in a fasting state to stimulate the GI motility of the migrating motor complex (MMC). We focused on coordination of the ghrelin/motilin family in gastric contraction in vivo and in vitro using the house musk shrew (Suncus murinus), a ghrelin- and motilin-producing mammal. To measure the contractile activity of the stomach in vivo, we recorded GI contractions either in the free-moving conscious or anesthetized S. murinus and examined the effects of administration of motilin and/or ghrelin on spontaneous MMC in the fasting state. In the in vitro study, we also studied the coordinative effect of these hormones on the isolated stomach using an organ bath. In the fasting state, phase I, II, and III contractions were clearly recorded in the gastric body (as observed in humans and dogs). Intravenous infusion of ghrelin stimulated gastric contraction in the latter half of phase I and in the phase II in a dose-dependent manner. Continuous intravenous infusion of ghrelin antagonist (d-Lys3-GHRP6) significantly suppressed spontaneous phase II contractions and prolonged the time of occurrence of the peak of phase III contractions. However, intravenous infusion of motilin antagonist (MA-2029) did not inhibit phase II contractions but delayed the occurrence of phase III contractions of the MMC. In the in vitro study, even though a high dose of ghrelin did not stimulate contraction of stomach preparations, ghrelin administration (10(-10)-10(-7) M) with pretreatment of a low dose of motilin (10(-10) M) induced gastric contraction in a dose-dependent manner. Pretreatment with 10(-8) M ghrelin enhanced motilin-stimulated gastric contractions by 10 times. The interrelation of these peptides was also demonstrated in the anesthetized S. murinus. The results suggest that ghrelin is important for the phase II contraction and that coordination of motilin and ghrelin are necessary to initiate phase III contraction of the MMC.
Collapse
Affiliation(s)
- Anupom Mondal
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The migrating motor complex (MMC) is a cyclic, recurring motility pattern that occurs in the stomach and small bowel during fasting; it is interrupted by feeding. The MMC is present in the gastrointestinal tract of many species, including humans. The complex can be subdivided into four phases, of which phase III is the most active, with a burst of contractions originating from the antrum or duodenum and migrating distally. Control of the MMC is complex. Phase III of the MMC with an antral origin can be induced in humans through intravenous administration of motilin, erythromycin or ghrelin, whereas administration of serotonin or somatostatin induces phase III activity with duodenal origin. The role of the vagus nerve in control of the MMC seems to be restricted to the stomach, as vagotomy abolishes the motor activity in the stomach, but leaves the periodic activity in the small bowel intact. The physiological role of the MMC is incompletely understood, but its absence has been associated with gastroparesis, intestinal pseudo-obstruction and small intestinal bacterial overgrowth. Measuring the motility of the gastrointestinal tract can be important for the diagnosis of gastrointestinal disorders. In this Review we summarize current knowledge of the MMC, especially its role in health and disease.
Collapse
|
29
|
Ogawa A, Mochiki E, Yanai M, Morita H, Toyomasu Y, Ogata K, Ohno T, Asao T, Kuwano H. Interdigestive migrating contractions are coregulated by ghrelin and motilin in conscious dogs. Am J Physiol Regul Integr Comp Physiol 2012; 302:R233-41. [DOI: 10.1152/ajpregu.00078.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During fasting, gastrointestinal (GI) motility is characterized by cyclical motor contractions. These contractions have been referred to as interdigestive migrating contractions (IMCs). In dogs and humans, IMCs are known to be regulated by motilin. However, in rats and mice, IMCs are regulated by ghrelin. It is not clear how these peptides influence each other in vivo. The aim of the present study was to investigate the relationship between ghrelin and motilin in conscious dogs. Twenty healthy beagles were used in this study. Force transducers were implanted in the stomach, duodenum, and jejunum to monitor GI motility. Subsequent GI motility was recorded and quantified by calculating the motility index. In examination 1, blood samples were collected in the interdigestive state, and levels of plasma ghrelin and motilin were measured. Plasma motilin peaks were observed during every gastric phase III, and plasma ghrelin peaks occurred in nearly every early phase I. Plasma motilin and ghrelin levels increased and decreased cyclically with the interdigestive states. In examination 2, saline or canine ghrelin was administered intravenously during phase II and phase III. After injection of ghrelin, plasma motilin levels were measured. Ghrelin injection during phases II and III inhibited phase III contractions and decreased plasma motilin levels. In examination 3, ghrelin was infused in the presence of the growth hormone secretagogue receptors antagonist [d-Lys3]-GHRP-6. Continuous ghrelin infusion suppressed motilin release, an effect abrogated by the infusion of [d-Lys3]-GHRP-6. Examination 4 was performed to evaluate the plasma ghrelin response to motilin administration. Motilin infusion immediately decreased ghrelin levels. In this study, we demonstrated that motilin and ghrelin cooperatively control the function of gastric IMCs in conscious dogs. Our findings suggest that ghrelin regulates the function and release of motilin and that motilin may also regulate ghrelin.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Erito Mochiki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mitsuhiro Yanai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroki Morita
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshitaka Toyomasu
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuro Ohno
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
30
|
Greenwood-Van Meerveld B, Kriegsman M, Nelson R. Ghrelin as a target for gastrointestinal motility disorders. Peptides 2011; 32:2352-6. [PMID: 21453735 DOI: 10.1016/j.peptides.2011.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of ghrelin and synthetic ghrelin receptor (GRLN-R) agonists for the treatment of gastrointestinal (GI) motility disorders is based on their ability to stimulate coordinated patterns of propulsive GI motility. This review focuses on the latest findings that support the therapeutic potential of GRLN-R agonists for the treatment of GI motility disorders. The review highlights the preclinical and clinical prokinetic effects of ghrelin and a series of novel ghrelin mimetics to exert prokinetic effects on the GI tract. We build upon a series of excellent reviews to critically discuss the evidence that supports the potential of GRLN-R agonists to normalize GI motility in patients with GI hypomotility disorders such as gastroparesis, post-operative ileus (POI), idiopathic chronic constipation and functional bowel disorders.
Collapse
|
31
|
Kitazawa T, Nakamura T, Saeki A, Teraoka H, Hiraga T, Kaiya H. Molecular identification of ghrelin receptor (GHS-R1a) and its functional role in the gastrointestinal tract of the guinea-pig. Peptides 2011; 32:1876-86. [PMID: 21843569 DOI: 10.1016/j.peptides.2011.07.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/20/2022]
Abstract
Ghrelin stimulates gastric motility in vivo in the guinea-pig through activation of growth hormone secretagogue receptor (GHS-R). In this study, we identified GHS-R1a in the guinea-pig, and examined its distribution and cellular function and compared them with those in the rat. Effects of ghrelin in different regions of gastrointestinal tract were also examined. GHS-R1a was identified in guinea-pig brain cDNA. Amino acid identities of guinea-pig GHS-R1a were 93% to horses and 85% to dogs. Expression levels of GHS-R1a mRNA were high in the pituitary and hypothalamus, moderate in the thalamus, cerebral cortex, pons, medulla oblongata and olfactory bulb, and low in the cerebellum and peripheral tissues including gastrointestinal tract. Comparison of GHS-R1a expression patterns showed that those in the brain were similar but the expression level in the gastrointestinal tract was higher in rats than in guinea-pigs. Guinea-pig GHS-R1a expressed in HEK 293 cells responded to rat ghrelin and GHS-R agonists. Rat ghrelin was ineffective in inducing mechanical changes in the stomach and colon but caused a slight contraction in the small intestine. 1,1-Dimethyl-4-phenylpiperazinium and electrical field stimulation (EFS) caused cholinergic contraction in the intestine, and these contractions were not affected by ghrelin. Ghrelin did not change spontaneous and EFS-evoked [(3)H]-efflux from [(3)H]-choline-loaded ileal strips. In summary, guinea-pig GHS-R1a was identified and its functions in isolated gastrointestinal strips were characterized. The distribution of GHS-R1a in peripheral tissues was different from that in rats, suggesting that the functional role of ghrelin in the guinea-pig is different from that in other animal species.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Bülbül M, Babygirija R, Zheng J, Ludwig K, Xu H, Lazar J, Takahashi T. Food intake and interdigestive gastrointestinal motility in ghrelin receptor mutant rats. J Gastroenterol 2011; 46:469-78. [PMID: 21258824 DOI: 10.1007/s00535-010-0366-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 12/19/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin regulates feeding activity and interdigestive contractions of the stomach in rodents. To investigate the role of endogenous ghrelin in the digestive system, we have developed GHSR-mutant rats, named FHH-Ghsr(m1Mcwi), using the Fawn-Hooded Hypertensive (FHH) parental strain. METHODS N-ethyl-N-nitrosourea (ENU) was used as a mutagen. Genomic DNA prepared from a tail clip was analyzed using the targeting induced local lesions in genomes (TILLING) approach. The non-synonymous mutation in position 343 (NM_032075) led to the generation of a premature stop codon, causing deletion of the last 22 amino acids at the C-terminal of ghrelin receptor protein. Spontaneous and ghrelin-stimulated food intake was measured in wild-type (WT) FHH and FHH-Ghsr(m1Mcwi) rats. For interdigestive motility recording, two strain gauge transducers were sutured on the antrum and duodenum. Spontaneous gastroduodenal contractions were recorded in freely moving conscious rats. RESULTS Ghrelin (40 μg/kg) failed to stimulate food intake in the mutant rats, while spontaneous food intake was not significantly different between the WT rats and FHH-Ghsr(m1Mcwi) rats. Phase III-like contractions were observed in stomach and duodenum both in the WT and FHH-Ghsr(m1Mcwi) rats. In the WT rats, ghrelin (12 μg/kg) administration enhanced spontaneous phase III-like contractions, and a GHSR antagonist, (D-lys3)GHRP-6 (0.28 mg/kg), abolished the spontaneous phase III-like contractions. In FHH-Ghsr(m1Mcwi) rats, ghrelin and (D-lys3)GHRP-6 did not affect phase III-like contractions. CONCLUSIONS It is suggested that the intact GHSR structure is essential for the ghrelin-dependent regulation of interdigestive motility and feeding behavior. Even in FHH-Ghsr(m1Mcwi) rats, spontaneous gastric phase III-like contractions were still observed, suggesting the development of a compensatory mechanism to maintain these contractions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, 5000 West National Avenue, Milwaukee, WI 53295, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Angelidis G, Valotassiou V, Georgoulias P. Current and potential roles of ghrelin in clinical practice. J Endocrinol Invest 2010; 33:823-38. [PMID: 21293171 DOI: 10.1007/bf03350350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a novel GH-releasing peptide, which has been identified as an endogenous ligand for GH-secretagogue receptor. Ghrelin is mainly secreted by the stomach and plays a critical role in a variety of physiological processes including endocrine, metabolic, cardiovascular, immunological, and other actions. Ghrelin stimulates food intake via hypothalamic neurons and causes a positive energy balance and body weight gain by decreasing fat utilization and promoting adiposity. Given the multiple effects of ghrelin, its potential clinical applications have been evaluated in various conditions. Preliminary trials have shown that it may prove valuable in the management of disease-induced cachexia. Ghrelin may improve the wasting syndrome through GH-dependent or GH-independent effects. Moreover, ghrelin may play a role in the management of disorders of gut motility and obesity. Finally, other potential clinical applications of ghrelin include the treatment of patients with diabetes mellitus, infections, rheumatological diseases or GH deficiency and the diagnosis of this hormonal disorder.
Collapse
Affiliation(s)
- G Angelidis
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, Larissa, Hellas
| | | | | |
Collapse
|
34
|
The effect of traditional Japanese medicine (Kampo) on gastrointestinal function. Surg Today 2010; 40:1105-11. [PMID: 21110152 DOI: 10.1007/s00595-010-4388-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/26/2010] [Indexed: 12/14/2022]
Abstract
Traditional Japanese medicine (Kampo) is used to treat various disorders of the gastrointestinal tract in Japan, where it is fully integrated into the modern healthcare system. Recently, scientific research on herbal medicine in Japan has been reported in English journals. The objective of the current review is to introduce two traditional Japanese medicines and to provide evidenced-based information regarding their use. Daikenchuto, which consists of three different herbs, is the most frequently prescribed traditional Japanese medicine in Japan. Daikenchuto stimulates gastrointestinal motility though a neural reflex involving presynaptic cholinergic and 5-HT3 receptors. Daikenchuto improves postoperative bowel motility and postoperative ileus. Furthermore, it is reported to cause an increase in gastrointestinal hormones (motilin, vasoactive intestinal peptide, and calcitonin gene-related peptide) and intestinal blood flow. Rikkunshito, a traditional Japanese medicine consisting of eight herbs, is thought to stimulate gastrointestinal motility and ghrelin secretion. Rikkunshito is effective for improving the symptoms of functional dyspepsia, gastroesophageal reflux disease, and cisplatin-induced anorexia and vomiting. Traditional Japanese medicine has the potential to be used successfully in the treatment of gastrointestinal disorders. Details regarding the physiological and clinical effects of traditional Japanese medicine must be further examined in order to become more widely accepted in other countries.
Collapse
|
35
|
Zietlow A, Nakajima H, Taniguchi H, Ludwig K, Takahashi T. Association between plasma ghrelin and motilin levels during MMC cycle in conscious dogs. ACTA ACUST UNITED AC 2010; 164:78-82. [PMID: 20609429 DOI: 10.1016/j.regpep.2010.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/10/2010] [Accepted: 05/25/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal contractions in the interdigestive state. Gastric phase III contractions of MMC are regulated by motilin, but not ghrelin, in dogs. Ghrelin regulates feeding activity in dogs and rodents. It remains unclear how motilin and ghrelin interact during the MMC cycle in dogs. METHODS Four strain gauge transducers were implanted on stomach and intestine in 6 female dogs. To investigate the correlation between ghrelin and motilin, plasma motilin and acyl ghrelin (active type) levels were measured by radioimmunoassay (RIA) during MMC cycle. RESULTS The peak of plasma motilin levels was always observed at the period of gastric phase III contractions. The peak of ghrelin levels were followed 20-25 min after the peak of plasma motilin levels in 13 cases of 18 observations (72.2%). These were frequently observed at the early stage of gastric phase I contractions. In 3 of 16 observations (18.8%), the ghrelin peak was not associated with the motilin peaks. Immediately after the feeding, the interdigestive GI motor pattern was changed to the postprandial pattern. No significant increases of the plasma motilin levels and ghrelin levels were observed after the feeding. CONCLUSION This is the first demonstration showing the correlation between ghrelin and motilin levels during gastric MMC cycle in conscious dogs. As it is rather difficult to evaluate the hunger score in dogs, it remains unclear whether increased ghrelin levels after finishing gastric phase III contractions may mediate hunger sensation in dogs.
Collapse
Affiliation(s)
- Aaron Zietlow
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
36
|
Sallam HS, Oliveira HM, Liu S, Chen JDZ. Mechanisms of burn-induced impairment in gastric slow waves and emptying in rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R298-305. [PMID: 20427716 DOI: 10.1152/ajpregu.00135.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delayed gastric emptying is common following severe large cutaneous burns; however, the mechanisms of burn-induced delayed gastric emptying remain unknown. The aim of this study was to explore the possible involvement of hyperglycemia and cyclooxygenase-2 receptors in the burn-induced gastric dysrhythmias. Gastric slow waves and gastric emptying were assessed in rats 6 h following sham or burn injury. Animals were randomized to one sham-burn and seven burn groups: untreated; two groups of saline treated (control); insulin treated (5 IU/kg); cyclooxygenase-2 inhibitor treated (10 mg/kg); ghrelin treated (2 nmol/rat); and gastric electrical stimulation treated. It was found that 1) severe burn injury impaired gastric slow waves postprandially and delayed gastric emptying; 2) the impairment in gastric slow waves included a decrease in the slow-wave frequency and in the percentage of normal slow waves, and an increase in the percentage of bradygastria (P = 0.001, 0.01, and 0.01, respectively vs. preburn values). None of the gastric slow-wave parameters was significantly correlated with gastric emptying; 3) cyclooxygenase-2 inhibitor normalized burn-induced delayed gastric emptying (P = 0.3 vs. sham-burn), but not gastric dysrhythmias (P < 0.002 vs. sham), whereas insulin normalized both gastric emptying (P = 0.4 vs. sham-burn) and gastric dysrhythmias (P = 0.3 vs. sham-burn); 4) both gastric electrical stimulation and ghrelin accelerated burn-induced delayed gastric emptying (P = 0.002 and 0.04, respectively, vs. untreated burn). In conclusion, hyperglycemia alters gastric slow-wave activity and delayed gastric emptying, while cyclooxygenase-2 inhibition delays gastric emptying without altering gastric slow-wave activity.
Collapse
Affiliation(s)
- Hanaa S Sallam
- Department of Internal Medicine/Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA
| | | | | | | |
Collapse
|
37
|
Nakamura T, Onaga T, Kitazawa T. Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional studies. Neurogastroenterol Motil 2010; 22:446-52, e107. [PMID: 19840269 DOI: 10.1111/j.1365-2982.2009.01422.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ghrelin stimulates gastric motility in rats, mice and humans. Although ghrelin and the ghrelin receptor are known to be expressed in the guinea-pig gastrointestinal tract, the effects of ghrelin on gastric motility have not been examined. Aim of the present study was to clarify the motor-stimulating action of ghrelin in the guinea-pig stomach. METHODS Gastric motility was measured as intraluminal pressure changes using a balloon inserted in the stomach of urethane-anaesthetized guinea pigs. The effects of ghrelin on gastric muscle contraction and [(3)H]-efflux from [(3)H]-choline-loaded strips were investigated in vitro. KEY RESULTS Ghrelin (0.3-30 microg kg(-1), i.v.) increased gastric motility in a dose-dependent manner but des-acyl ghrelin was ineffective. The action of ghrelin was completely inhibited by hexamethonium and D-Lys(3)-growth-hormone releasing peptide-6. Atropine partially decreased the stimulatory action of ghrelin. In capsaicin-pretreated guinea pigs, the ghrelin-induced response was markedly decreased. Ghrelin (1 micromol L(-1)) did not affect [(3)H]-efflux in non-stimulated preparations but significantly decreased electrical field stimulation (EFS)-induced [(3)H]-efflux. L-Nitro arginine methylester (L-NAME) attenuated the inhibition of [(3)H]-efflux by ghrelin. Ghrelin did not cause any mechanical changes in gastric strips. Electrical field stimulation caused relaxation of gastric strips, which changed to atropine-sensitive contraction in the presence of L-NAME. Relaxation induced by EFS was slightly potentiated, but the EFS-induced contraction was not affected by ghrelin. CONCLUSIONS & INFERENCES Ghrelin stimulates gastric motility of the guinea pig through activation of capsaicin-sensitive vago-vagal reflex pathway including efferent cholinergic neurons. Peripheral ghrelin receptors on enteric nitrergic nerves might affect the ghrelin-induced gastric action by releasing nitric oxide.
Collapse
Affiliation(s)
- T Nakamura
- Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | | |
Collapse
|
38
|
The prokinetic face of ghrelin. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20721347 PMCID: PMC2915793 DOI: 10.1155/2010/493614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/03/2009] [Indexed: 01/03/2023]
Abstract
This review evaluated published data regarding the effects of ghrelin on GI motility using the PubMed database for English articles from 1999 to September 2009. Our strategy was to combine all available information from previous literature, in order to provide a complete structured review on the prokinetic properties of exogenous ghrelin and its potential use for treatment of
various GI dysmotility ailments. We classified the literature into two major groups, depending on whether studies were done in health
or in disease. We sub-classified the studies into stomach, small intestinal and colon studies, and broke them down further into
studies done in vitro, in vivo (animals) and in humans. Further more, the reviewed studies were presented in a chronological order
to guide the readers across the scientific advances in the field. The review shows evidences that ghrelin and its (receptor)
agonists possess a strong prokinetic potential to serve in the treatment of diabetic, neurogenic or idiopathic gastroparesis and
possibly, chemotherapy-associated dyspepsia, postoperative, septic or post-burn ileus, opiate-induced bowel dysfunction and chronic
idiopathic constipation. Further research is necessary to close the gap in knowledge about the effect of ghrelin on the human
intestines in health and disease.
Collapse
|
39
|
The roles of motilin and ghrelin in gastrointestinal motility. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20798893 PMCID: PMC2925306 DOI: 10.1155/2010/820794] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/12/2009] [Indexed: 12/13/2022]
Abstract
In structure, ghrelin resembles motilin. The two peptides are considered to be members of the motilin-ghrelin peptide family. Motilin is considered to be an endocrine regulator of the interdigestive migrating contractions, the fasted motor pattern in the gastrointestinal (GI) tract. It has been reported that ghrelin stimulates GI motility. The gastrokinetic capacity of ghrelin has been well documented in the rodent. However, there have been few positive reports of the gastrokinetic capacity of ghrelin in dogs. Some reports with human subjects have shown that an i.v. ghrelin injection accelerated gastric emptying of a meal and improved meal-related symptoms. These results suggest that ghrelin has potential as a prokinetic. However, it seems unlikely that plasma ghrelin would play a physiological role in these digestive physiological events and stimulate gastric emptying, as these outcomes would appear to be in contradiction with the suppression of the endogenous release of ghrelin after eating. The physiological roles of ghrelin need to be clarified.
Collapse
|
40
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2009; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
41
|
De Smet B, Mitselos A, Depoortere I. Motilin and ghrelin as prokinetic drug targets. Pharmacol Ther 2009; 123:207-23. [DOI: 10.1016/j.pharmthera.2009.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 12/13/2022]
|
42
|
Kudoh K, Shibata C, Funayama Y, Fukushima K, Ueno T, Hayashi K, Inui A, Bowers CY, Sasaki I. The effect of growth hormone releasing peptide-2 on upper gastrointestinal contractile activity and food intake in conscious dogs. J Gastroenterol 2009; 44:297-304. [PMID: 19271111 DOI: 10.1007/s00535-009-0025-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/06/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of growth hormone releasing peptide (GHRP)-2, a synthetic ligand for the growth hormone secretagogue receptor, on upper gastrointestinal motility and food intake. METHODS Five neurally intact dogs and five dogs with vagotomy and pyloroplasty were equipped with strain gauge force transducers on the stomach, duodenum and jejunum. GHRP-2 (0.5-10 microg/kg) was administered intravenously in neurally intact dogs in the interdigestive state and after feeding. To study the mechanism of GHRP-2-induced inhibition on postprandial contractions, various antagonists were administered intravenously prior to GHRP-2. The effect of GHRP-2 on postprandial contractions was also studied in dogs with vagotomy. GHRP-2 was also administered immediately before feeding in each group, and its effect on food intake was assessed. RESULTS GHRP-2 did not evoke gastrointestinal contractions in the interdigestive state. GHRP-2 induced contractile inhibition continuing for 2-3 min in neurally intact dogs and dogs with vagotomy. This inhibitory effect was reversed by the alpha- and alpha(2)-blockers. GHRP-2 increased food intake in neurally intact dogs, but not in dogs with vagotomy. CONCLUSIONS These results indicate that in the upper gut GHRP-2 inhibits postprandial contractions via alpha(2)-receptors on the enteric nervous system, whereas an intact vagal nerve is necessary for a GHRP-2-induced increase in food intake.
Collapse
Affiliation(s)
- Katsuyoshi Kudoh
- Division of Biological Regulation and Oncology, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng J, Ariga H, Taniguchi H, Ludwig K, Takahashi T. Ghrelin regulates gastric phase III-like contractions in freely moving conscious mice. Neurogastroenterol Motil 2009; 21:78-84. [PMID: 18761630 DOI: 10.1111/j.1365-2982.2008.01179.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In humans and dogs, motilin regulates phase III contractions of migrating motor complex (MMC) in the interdigestive state, while ghrelin regulates MMC in rats. It still remains unclear whether ghrelin regulates phase III contractions of the mouse stomach. A miniature strain gauge transducer was sutured on the antrum to detect circular muscle contractions and gastric contractions of the interdigestive state were evaluated. Effects of ghrelin, a ghrelin receptor antagonist, and atropine on spontaneous gastric contractions were studied in freely moving conscious mice. Similar to the rat stomach, phase III-like contractions were observed in the interdigestive state, which disappeared immediately after the feeding. Ghrelin augmented spontaneous phase III-like contractions, while growth-hormone secretagogue receptor antagonists and atropine abolished the occurrence of spontaneous phase III-like contractions. The spontaneous phase III-like contractions were no more observed in vagotomized mice. These results suggest that ghrelin regulates phase III-like contractions in mice stomach via its own receptors. Ghrelin-induced gastric phase III-like contractions are mediated via vagal cholinergic pathways in mice. Our recording system of mice gastric motility may be useful to study the functional changes in gene knockout mice, in the future.
Collapse
Affiliation(s)
- J Zheng
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
44
|
Fraser GL, Venkova K, Hoveyda HR, Thomas H, Greenwood-Van Meerveld B. Effect of the ghrelin receptor agonist TZP-101 on colonic transit in a rat model of postoperative ileus. Eur J Pharmacol 2008; 604:132-7. [PMID: 19121631 DOI: 10.1016/j.ejphar.2008.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/21/2008] [Accepted: 12/09/2008] [Indexed: 12/26/2022]
Abstract
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (ghrelin receptor), is an orexigenic gut hormone with prokinetic action in the upper gastrointestinal tract. Previously we have shown in a rodent model of postoperative ileus that the synthetic ghrelin receptor agonist TZP-101 prevents the delay in gastric emptying and improves small intestinal transit. The goal of the present study was to investigate whether TZP-101 affects colonic transit and food intake in rats with postoperative ileus. Fasted rats were treated with morphine and subjected to laparotomy under isoflurane anesthesia. Following surgery the animals were placed in clean home cages and fecal pellet output and food intake were monitored for 48 h. TZP-101 or vehicle were administered as 3 i.v. bolus infusions at 0 h, 2 h and 4 h post-surgery. TZP-101 (0.03-1 mg/kg) dose-dependently decreased the time to first bowel movement and increased fecal pellet output measured at 12 h and 24 h post-surgery compared to the vehicle. The administration of TZP-101 was not associated with a significant alteration in food intake. In conclusion, this study provides the first experimental evidence that a novel ghrelin receptor agonist improves large bowel function in rats with postoperative ileus, suggesting that TZP-101 may be useful in the clinic to accelerate upper gastrointestinal transit and to shorten the time to the first bowel movement following surgery.
Collapse
|
45
|
Qiu WC, Wang ZG, Lv R, Wang WG, Han XD, Yan J, Wang Y, Zheng Q, Ai KX. Ghrelin improves delayed gastrointestinal transit in alloxan-induced diabetic mice. World J Gastroenterol 2008; 14:2572-7. [PMID: 18442208 PMCID: PMC2708372 DOI: 10.3748/wjg.14.2572] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of ghrelin on delayed gastrointestinal transit in alloxan-induced diabetic mice.
METHODS: A diabetic mouse model was established by intraperitoneal injection with alloxan. Mice were randomized into two main groups: normal mice group and diabetic mice group treated with ghrelin at doses of 0, 20, 50, 100 and 200 &mgr;g/kg ip. Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT) were studied in mice after they had a phenol red meal following injection of ghrelin. Based on the most effective ghrelin dosage, atropine was given at 1 mg/kg 15 min before the ghrelin injection for each measurement. The mice in each group were sacrificed 20 min later and their stomachs, intestines, and colons were harvested immediately. The amount of phenol red was measured. Percentages of GE, IT, and CT were calculated.
RESULTS: Percentages of GE, IT, and CT were significantly decreased in diabetic mice as compared to control mice (22.9 ± 1.4 vs 28.1 ± 1.3, 33.5 ± 1.2 vs 43.2 ± 1.9, 29.5 ± 1.9 vs 36.3 ± 1.6, P < 0.05). In the diabetic mice, ghrelin improved both GE and IT, but not CT. The most effective dose of ghrelin was 100 &mgr;g/kg and atropine blocked the prokinetic effects of ghrelin on GE and IT.
CONCLUSION: Ghrelin accelerates delayed GE and IT but has no effect on CT in diabetic mice. Ghrelin may exert its prokinetic effects via the cholinergic pathway in the enteric nervous system, and therefore has therapeutic potential for diabetic patients with delayed upper gastrointestinal transit.
Collapse
|
46
|
Ariga H, Imai K, Chen C, Mantyh C, Pappas TN, Takahashi T. Fixed feeding potentiates interdigestive gastric motor activity in rats: importance of eating habits for maintaining interdigestive MMC. Am J Physiol Gastrointest Liver Physiol 2008; 294:G655-9. [PMID: 18174270 DOI: 10.1152/ajpgi.00484.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endogenous ghrelin regulates the occurrence of interdigestive gastric phase III-like contractions in rats. However, the fasted motor pattern is not as regular and potent in humans and dogs. We hypothesize that eating habits play an important role in maintaining a regular interdigestive gastric contractions. We studied the effect of fixed-feeding regimen on interdigestive gastric contractions and plasma acyl ghrelin levels. The fixed-fed rats were trained to the assigned meal feeding regimen, once daily at 12:00 PM to 4:00 PM for 14 days. Free-fed rats were maintained with free access to food. As ghrelin regulates gastric emptying as well, solid gastric emptying was also studied in fixed-fed rats and free-fed rats. In free-fed rats, two of six rats did not show interdigestive gastric phase III-like contractions. In contrast, phase III-like contractions were observed in all rats 14 days after starting the fixed-feeding regimen. The maximal amplitude of phase III-like contractions significantly increased from 8.4 +/- 0.6 to 16.3 +/- 1.8 g (n = 6, P < 0.05) 14 days after the start of the fixed feeding. Fasted and postprandial plasma ghrelin levels were significantly increased after 14 days of fixed feeding. Solid gastric emptying was significantly accelerated in fixed-fed rats (72.1 +/- 4.2%) compared with that of free-fed rats (58.7 +/- 2.7%, n = 6, P < 0.05). Our present findings suggest that fixed feeding increases plasma ghrelin levels, potent interdigestive contractions, and acceleration of gastric emptying.
Collapse
Affiliation(s)
- Hajime Ariga
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tümer C, Oflazoğlu HD, Obay BD, Kelle M, Taşdemir E. Effect of ghrelin on gastric myoelectric activity and gastric emptying in rats. ACTA ACUST UNITED AC 2008; 146:26-32. [PMID: 17825442 DOI: 10.1016/j.regpep.2007.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/02/2007] [Indexed: 12/15/2022]
Abstract
Ghrelin is a recently discovered peptide in the endocrine cells of the stomach, which may stimulate gastric motility via the vagal nerve pathway. However, the mechanism of ghrelin-induced changes in gastrointestinal motility has not been clearly defined. The purpose of this study was to investigate the pharmacological effects of ghrelin on gastric myoelectrical activity and gastric emptying in rats, and to investigate whether cholinergic activity is involved in the effects of ghrelin. The study was performed on Sprague-Dawley rats implanted with serosal electrodes for electrogastrographic recording. Gastric slow waves were recorded from fasting rats at baseline and after injection of saline, ghrelin, atropine, or atropine+ghrelin. Gastric emptying of non-caloric liquid was measured by the spectrophotometric method in conscious rats. Intravenous administration of rat ghrelin (20 microg/kg) increased not only dominant frequency, dominant power and regularity of the gastric slow wave but also the gastric emptying rate when compared with the control rats (P<0.01, P<0.05, P<0.05, P<0.001 respectively). These stimulatory actions of ghrelin on both gastric myoelectrical activity and gastric emptying were not fully eliminated by pretreatment with atropine sulphate. These results taken together suggest that ghrelin may play a physiological role in the enteric neurotransmission controlling gastric contractions in rats.
Collapse
Affiliation(s)
- Cemil Tümer
- Mustafa Kemal University Medical Faculty, Department of Physiology, Hatay, Turkey
| | | | | | | | | |
Collapse
|
48
|
Strasser F, Lutz TA, Maeder MT, Thuerlimann B, Bueche D, Tschöp M, Kaufmann K, Holst B, Brändle M, von Moos R, Demmer R, Cerny T. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. Br J Cancer 2008; 98:300-8. [PMID: 18182992 PMCID: PMC2361459 DOI: 10.1038/sj.bjc.6604148] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Twenty-one adult patients were randomised to receive ghrelin on days 1 and 8 and placebo on days 4 and 11 or vice versa, given intravenously over a 60-min period before lunch: 10 received 2 μg kg−1 (lower-dose) ghrelin; 11 received 8 μg kg−1 (upper-dose) ghrelin. Active and total ghrelin, growth hormone (GH), and insulin-like growth factor 1 levels were monitored at baseline (4–5 days before day 1), during treatment days, and at end of study (day 17/18). Drug-related adverse events (assessed by NCI-CTC-toxicity criteria and cardiac examination) did not differ between ghrelin and placebo. No grade 3/4 toxicity or stimulation of tumour growth was observed. The peak increase of GH, a biological marker of ghrelin action, was 25 ng ml−1 with lower-dose and 42 ng ml−1 with upper-dose ghrelin. Morning fasting total ghrelin levels were higher (P<0.05) for upper-dose patients at end of study (3580 pg ml−1) than at baseline (990 pg ml−1). Insulin-like growth factor 1 levels did not change. At day 8, 81% of patients preferred ghrelin to placebo as against 63% at the end of study. Nutritional intake and eating-related symptoms, measured to explore preliminary efficacy, did not differ between ghrelin and placebo. Ghrelin is well tolerated and safe in patients with advanced cancer. For safety, tolerance, and patients' preference for treatment, no difference was observed between the lower- and upper-dose group.
Collapse
Affiliation(s)
- F Strasser
- Oncological Palliative Medicine, Division Oncology/Haematology, Department Internal Medicine and Palliative Care Center, Cantonal Hospital, Rorschacherstrasse, St Gallen 9007, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ariga H, Tsukamoto K, Chen C, Mantyh C, Pappas TN, Takahashi T. Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach. Neurogastroenterol Motil 2007; 19:675-80. [PMID: 17640183 DOI: 10.1111/j.1365-2982.2007.00945.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In humans and dogs, it is known that motilin regulates phase III contractions of migrating motor complex (MMC) in the fasted state. In rats, however, motilin and its receptor have not been found, and administration of motilin failed to induce any phase III-like contractions. Ghrelin was discovered as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R) from the rat stomach. Ghrelin promotes gastric premature phase III (phase III-like contractions) in the fasted state in rats. We hypothesized that endogenous ghrelin regulates spontaneous phase III-like contractions in rats. Strain gauge transducer was sutured on the antrum and a catheter was inserted into the jugular vein. We studied the effects of i.v. administration of ghrelin and a GHS-R antagonist on gastric phase III-like contractions in conscious rats. Plasma level of ghrelin was measured by a radioimmunoassay. Ghrelin augmented spontaneous phase III-like contractions and a GHS-R antagonist significantly attenuated the occurrence of spontaneous phase III-like contractions. During the phase I period, plasma ghrelin level increased to its peak then returned to basal level, subsequently phase III-like contractions were observed. These results suggest that endogenous ghrelin regulates gastric phase III-like contractions in rats.
Collapse
Affiliation(s)
- H Ariga
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
In the current review we summarize the available data concerning the gastric hormone ghrelin and its receptor. Ghrelin stimulates short-term food intake and long-term body weight regulation via its adipogenic and diabetogenic effects. Ghrelin stimulates gastric emptying, and these effects could be explored from a therapeutic point of view. Ghrelin levels change profoundly in anorexia, in states of insulin resistance, in obesity, and after bariatric surgery, suggesting that this is an important hormone in body weight regulation.
Collapse
Affiliation(s)
- Susie C Higgins
- Department of Endocrinology, Barts and the London Medical School, London, UK
| | | | | |
Collapse
|