1
|
Wills MKB, Keyvani Chahi A, Lau HR, Tilak M, Guild BD, New LA, Lu P, Jacquet K, Meakin SO, Bisson N, Jones N. Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. J Biol Chem 2017; 292:5748-5759. [PMID: 28213521 DOI: 10.1074/jbc.m116.770511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.
Collapse
Affiliation(s)
- Melanie K B Wills
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ava Keyvani Chahi
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hayley R Lau
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Manali Tilak
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brianna D Guild
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura A New
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Peihua Lu
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kévin Jacquet
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Susan O Meakin
- Department of Biochemistry, Western University, London, Ontario N6A 5B7, Canada
| | - Nicolas Bisson
- Cancer Research Centre, Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO) and Centre Hospitalier Universitaire de Québec Research Centre-Université Laval, Québec City, Québec G1R 2J6, Canada, and
| | - Nina Jones
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada,
| |
Collapse
|
2
|
Ulivieri C, Savino MT, Luccarini I, Fanigliulo E, Aldinucci A, Bonechi E, Benagiano M, Ortensi B, Pelicci G, D'Elios MM, Ballerini C, Baldari CT. The Adaptor Protein Rai/ShcC Promotes Astrocyte-Dependent Inflammation during Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:480-90. [PMID: 27288534 DOI: 10.4049/jimmunol.1502063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/13/2016] [Indexed: 01/13/2023]
Abstract
Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model. We found that, unexpectedly, EAE was less severe in Rai(-/-) mice compared with their wild-type counterparts despite an enhanced generation of myelin-specific Th17 cells that infiltrated into the CNS. Nevertheless, when adoptively transferred into immunodeficient Rai(+/+) mice, these cells promoted a more severe disease compared with wild-type encephalitogenic Th17 cells. This paradoxical phenotype was caused by a dampened inflammatory response of astrocytes, which were found to express Rai, to IL-17. The results provide evidence that Rai plays opposite roles in Th17 cell differentiation and astrocyte activation, with the latter dominant over the former in EAE, highlighting this adaptor as a potential novel target for the therapy of multiple sclerosis.
Collapse
Affiliation(s)
- Cristina Ulivieri
- Department of Life Sciences, University of Siena, 2 53100, Siena, Italy;
| | | | | | | | | | - Elena Bonechi
- Department of Neurosciences, 6 50134 Florence, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, 3 50134 Florence, Italy; and
| | - Barbara Ortensi
- Department of Experimental Oncology, European Institute of Oncology, 16 20139 Milan, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 16 20139 Milan, Italy
| | - Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, 3 50134 Florence, Italy; and
| | | | | |
Collapse
|
3
|
Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015; 19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 02/02/2023]
Abstract
To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.
Collapse
Affiliation(s)
- Orli Sagi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
4
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
5
|
Ferro M, Savino MT, Ortensi B, Finetti F, Genovese L, Masi G, Ulivieri C, Benati D, Pelicci G, Baldari CT. The Shc family protein adaptor, Rai, negatively regulates T cell antigen receptor signaling by inhibiting ZAP-70 recruitment and activation. PLoS One 2011; 6:e29899. [PMID: 22242145 PMCID: PMC3248456 DOI: 10.1371/journal.pone.0029899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022] Open
Abstract
Rai/ShcC is a member of the Shc family of protein adaptors expressed with the highest abundance in the central nervous system, where it exerts a protective function by coupling neurotrophic receptors to the PI3K/Akt survival pathway. Rai is also expressed, albeit at lower levels, in other cell types, including T and B lymphocytes. We have previously reported that in these cells Rai attenuates antigen receptor signaling, thereby impairing not only cell proliferation but also, opposite to neurons, cell survival. Here we have addressed the mechanism underlying the inhibitory activity of Rai on TCR signaling. We show that Rai interferes with the TCR signaling cascade one of the earliest steps –recruitment of the initiating kinase ZAP-70 to the phosphorylated subunit of the TCR/CD3 complex, which results in a generalized dampening of the downstream signaling events. The inhibitory activity of Rai is associated to its inducible recruitment to phosphorylated CD3, which occurs in the physiological signaling context of the immune synapse. Rai is moreover found as a pre-assembled complex with ZAP-70 and also constitutively interacts with the regulatory p85 subunit of PI3K, similar to neuronal cells, notwithstanding the opposite biological outcome, i.e. impairment of PI-3K/Akt activation. The data highlight the ability of Rai to establish interactions with the TCR and key signaling mediators which, either directly (e.g. by inhibiting ZAP-70 recruitment to the TCR or sequestering ZAP-70/PI3K in the cytosol) or indirectly (e.g. by promoting the recruitment of effectors responsible for signal extinction) prevent full triggering of the TCR signaling cascade.
Collapse
Affiliation(s)
- Micol Ferro
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Maria Teresa Savino
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Barbara Ortensi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Francesca Finetti
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Luca Genovese
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Giulia Masi
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Cristina Ulivieri
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Daniela Benati
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Cosima T. Baldari
- Department of Evolutionary Biology European Institute of Oncology, Milan, Italy
- Istituto Toscano Tumori, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
6
|
Beyond hematoxylin and eosin: the importance of immunohistochemical techniques for evaluating surgically resected constipated patients. Tech Coloproctol 2011; 15:371-5. [PMID: 21766200 DOI: 10.1007/s10151-011-0721-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/30/2011] [Indexed: 12/18/2022]
Abstract
Chronic constipation requiring surgical ablation for intractability is often a frustrating condition from the pathologist's point of view. In fact, limiting the histological examination to only hematoxylin-eosin staining usually yields only the information that there are no abnormalities. By employing some simple and widely available immunohistochemical methods, discussed in this review, it is possible to gather data that may help in explaining the pathophysiological basis of constipation in these patients.
Collapse
|
7
|
Bassotti G, Villanacci V. Can "functional" constipation be considered as a form of enteric neuro-gliopathy? Glia 2010; 59:345-50. [PMID: 21264943 DOI: 10.1002/glia.21115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/03/2010] [Indexed: 12/12/2022]
Abstract
Constipation has been traditionally viewed and classified as a functional or idiopathic disorder. However, evidence has been accumulating that suggests how constipation might be considered as due to abnormalities of the enteric nervous system, since alterations of this system, not evident in conventional histological examination, may be present in these patients. These abnormalities often consist in decrease or loss of the enteric glial cells, a pathological finding present in most types of constipation so far investigated. In this article we will discuss these evidences, and will try to consider constipation no more as a simple functional or idiopathic disorder but as a form of enteric neuro-gliopathy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Section, University of Perugia, Italy.
| | | |
Collapse
|
8
|
Hawley SP, Wills MK, Rabalski AJ, Bendall AJ, Jones N. Expression patterns of ShcD and Shc family adaptor proteins during mouse embryonic development. Dev Dyn 2010; 240:221-31. [DOI: 10.1002/dvdy.22506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Finetti F, Savino MT, Baldari CT. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters. Immunol Rev 2010; 232:115-34. [PMID: 19909360 DOI: 10.1111/j.1600-065x.2009.00826.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | |
Collapse
|
10
|
Savino MT, Ortensi B, Ferro M, Ulivieri C, Fanigliulo D, Paccagnini E, Lazzi S, Osti D, Pelicci G, Baldari CT. Rai acts as a negative regulator of autoimmunity by inhibiting antigen receptor signaling and lymphocyte activation. THE JOURNAL OF IMMUNOLOGY 2009; 182:301-8. [PMID: 19109161 DOI: 10.4049/jimmunol.182.1.301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rai (ShcC) belongs to the family of Shc adaptor proteins and is expressed in neuronal cells, where it acts as a survival factor activating the PI3K/Akt survival pathway. In vivo, Rai protects the brain from ischemic damage. In this study, we show that Rai is expressed in T and B lymphocytes. Based on the finding that Rai(-/-) mice consistently develop splenomegaly, the role of Rai in lymphocyte homeostasis and proliferation was addressed. Surprisingly, as opposed to neurons, Rai was found to impair lymphocyte survival. Furthermore, Rai deficiency results in a reduction in the frequency of peripheral T cells with a concomitant increase in the frequency of B cells. Rai(-/-) lymphocytes display enhanced proliferative responses to Ag receptor engagement in vitro, which correlates with enhanced signaling by the TCR and BCR, and more robust responses to allergen sensitization in vivo. A high proportion of Rai(-/-) mice develop a lupus-like autoimmune syndrome characterized by splenomegaly, spontaneous peripheral T and B cell activation, autoantibody production, and deposition of immune complexes in the kidney glomeruli, resulting in autoimmune glomerulonephritis. The data identify Rai as a negative regulator of lymphocyte survival and activation and show that loss of this protein results in breaking of immunological tolerance and development of systemic autoimmunity.
Collapse
|
11
|
Battling cancer on many fronts. Meeting on New Battlefields in Human Cancer--Attacking in Many Fronts. EMBO Rep 2009; 9:853-8. [PMID: 18688257 DOI: 10.1038/embor.2008.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/23/2008] [Indexed: 11/08/2022] Open
|