1
|
Long-Pulse Gastric Electrical Stimulation Repairs Interstitial Cells of Cajal and Smooth Muscle Cells in the Gastric Antrum of Diabetic Rats. Gastroenterol Res Pract 2018; 2018:6309157. [PMID: 30538740 PMCID: PMC6258098 DOI: 10.1155/2018/6309157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background/Aims The damage of interstitial cells of Cajal and smooth muscle cells has far-reaching implications in the pathogenesis of gastroparesis in diabetic patients. Gastric electrical stimulation (GES) is an efficient therapy for gastric motility disorders, but the mechanisms of GES require clarification. Methods Male rats were randomly divided into the control group, diabetic rat group (DM), diabetic rats with sham GES group (DM + SGES), and diabetic rats with different frequency GES group (DM + GES) (GES1: 5.5 cpm, 100 ms, 4 mA; GES2: 5.5 cpm, 300 ms, 4 mA; and GES3: 5.5 cpm, 550 ms, 2 mA). Gastric contractions were explored using the organ bath technique. The alterations of interstitial cells of Cajal, the SCF/c-kit pathway, and smooth muscle cells were also investigated. Results (1) Gastric contractions were significantly improved in the DM + GES group compared with those in the DM group. (2) The damage of interstitial cells of Cajal was prevented in the DM + GES group in contrast to the DM group. Moreover, long-pulse GES increased the expression of the SCF/c-kit pathway. More proliferated interstitial cells of Cajal in muscle layers were observed obviously in the DM + GES group. (3) The number of smooth muscle cells in the DM group was not significantly decreased compared with that in the control group. However, ultrastructural changes were distinctly damaged in the DM group. The application of GES protected against the alteration of the ultrastructures of smooth muscle cells. Conclusions Long-pulse GES improves gastric contraction possibly by enhancing the proliferation of interstitial cells of Cajal and restoring the injury of smooth muscle cells.
Collapse
|
2
|
Emerging Gastric Stimulation for Dysmotility Disorder and Obesity. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Horn C, Zirpel L, Sciullo M, Rosenberg D. Impact of electrical stimulation of the stomach on gastric distension-induced emesis in the musk shrew. Neurogastroenterol Motil 2016; 28:1217-32. [PMID: 27072787 PMCID: PMC4956516 DOI: 10.1111/nmo.12821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) is implicated as a potential therapy for difficult-to-treat nausea and vomiting; however, there is a lack of insight into the mechanisms responsible for these effects. This study tested the relationship between acute GES and emesis in musk shrews, an established emetic model system. METHODS Urethane-anesthetized shrews were used to record emetic responses (monitoring intra-tracheal pressure and esophageal contractions), respiration rate, heart rate variability, blood pressure, and gastrointestinal electromyograms. We investigated the effects of acute GES pulse duration (0.3, 1, 5, and 10 ms), current amplitude (0.5, 1, and 2 mA), pulse frequency (8, 15, 30, and 60 Hz), and electrode placement (antrum, body, and fundus) on emesis induced by gastric stretch, using a balloon. KEY RESULTS There were four outcomes: (i) GES did not modify the effects of gastric stretch-induced emesis; (ii) GES produced emesis, depending on the stimulation parameters, but was less effective than gastric stretch; (iii) other physiological changes were closely associated with emesis and could be related to a sub-threshold activation of the emetic system, including suppression of breathing and rise in blood pressure; and (iv) a control experiment showed that 8-OH-DPAT, a reported 5-HT1A receptor agonist that acts centrally as an antiemetic, blocked gastric stretch-induced emesis. CONCLUSIONS AND INFERENCES These results do not support an antiemetic effect of acute GES on gastric distension-induced emesis within the range of conditions tested, but further evaluation should focus on a broader range of emetic stimuli and GES stimulation parameters.
Collapse
Affiliation(s)
- C.C. Horn
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA,Department of Medicine: Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Corresponding Author: Charles C. Horn, PhD, Hillman Cancer Center – Research Pavilion, G.17b, 5117 Centre Avenue, Pittsburgh, PA 15213, Phone: (+00) 1-412-623-1417, Fax: 412-623-1119,
| | - L. Zirpel
- Neuromodulation Global Research, Medtronic
| | - M. Sciullo
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - D. Rosenberg
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Angeli TR, Du P, Midgley D, Paskaranandavadivel N, Sathar S, Lahr C, Abell TL, Cheng LK, O'Grady G. Acute Slow Wave Responses to High-Frequency Gastric Electrical Stimulation in Patients With Gastroparesis Defined by High-Resolution Mapping. Neuromodulation 2016; 19:864-871. [PMID: 27284964 DOI: 10.1111/ner.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS High-frequency gastric electrical stimulation (GES) has emerged as a therapy for gastroparesis, but the mechanism(s) of action remain unclear. There is a need to refine stimulation protocols for clinical benefit, but a lack of accurate techniques for assessing mechanisms in clinical trials, such as slow wave modulation, has hindered progress. We thereby aimed to assess acute slow wave responses to GES in gastroparesis patients using high-resolution (HR) (multi-electrode) mapping, across a range of stimulation doses achievable by the Enterra stimulation device (Medtronic Inc., MN, USA). MATERIALS AND METHODS Patients with medically refractory gastroparesis (n = 8) undergoing device implantation underwent intraoperative HR mapping (256 electrodes). Baseline recordings were followed by four protocols of increasing stimulation intensity, with washout periods. Slow wave patterns, frequency, velocity, amplitude, and dysrhythmia rates were quantified by investigators blinded to stimulation settings. RESULTS There was no difference in slow wave pattern, frequency, velocity, or amplitude between baseline, washout, and stimulation periods (all p > 0.5). Dysrhythmias included ectopic pacemakers, conduction blocks, retrograde propagation, and colliding wavefronts, and dysrhythmia rates were unchanged with stimulation off vs. on (31% vs. 36% duration dysrhythmic; p > 0.5). Symptom scores and gastric emptying were improved at 5.8 month follow-up (p < 0.05). CONCLUSIONS High-frequency GES protocols achievable from a current commercial device did not acutely modulate slow wave activity or dysrhythmias. This study advances clinical methods for identifying and assessing therapeutic GES parameters, and can be applied in future studies on higher-energy protocols and devices.
Collapse
Affiliation(s)
- Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Midgley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christopher Lahr
- Department of Surgery, Mississippi Medical Center, Jackson, MS, USA
| | - Thomas L Abell
- Department of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
O'Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2015; 41:854-62. [PMID: 25115692 DOI: 10.1111/1440-1681.12288] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Gastric arrhythmia continues to be of uncertain diagnostic and therapeutic significance. However, recent progress has been substantial, with technical advances, theoretical insights and experimental discoveries offering new translational opportunities. The discoveries that interstitial cells of Cajal (ICC) generate slow waves and that ICC defects are associated with dysmotility have reinvigorated gastric arrhythmia research. Increasing evidence now suggests that ICC depletion and damage, network disruption and channelopathies may lead to aberrant slow wave initiation and conduction. Histological and high-resolution (HR) electrical mapping studies have now redefined the human 'gastric conduction system', providing an improved baseline for arrhythmia research. The application of HR mapping to arrhythmia has also generated important new insights into the spatiotemporal dynamics of arrhythmia onset and maintenance, resulting in the emergence of new provisional classification schemes. Meanwhile, the strong associations between gastric functional disorders and electrogastrography (EGG) abnormalities (e.g. in gastroparesis, unexplained nausea and vomiting and functional dyspepsia) continue to motivate deeper inquiries into the nature and causes of gastrointestinal arrhythmias. In future, technical progress in EGG methods, new HR mapping devices and software, wireless slow wave acquisition systems and improved gastric pacing devices may achieve validated applications in clinical practice. Neurohormonal factors in arrhythmogenesis also continue to be elucidated and a deepening understanding of these mechanisms may open opportunities for drug design for treating arrhythmias. However, for all translational goals, it remains to be seen whether arrhythmia can be corrected in a way that meaningfully improves organ function and symptoms in patients.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
6
|
Yu X, Tu L, Lei P, Song J, Xu H, Hou X. Antiemesis effect and brain fMRI response of gastric electrical stimulation with different parameters in dogs. Neurogastroenterol Motil 2014; 26:1049-56. [PMID: 24965904 DOI: 10.1111/nmo.12362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/17/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND The aims of this study were to investigate the effect of gastric electrical stimulation (GES) with different parameters on emesis induced by apomorphine, and possible center mechanisms by brain functional magnetic resonance imaging (fMRI). METHODS Six dogs implanted with electrodes on gastric serosa were used in this study. Part 1: Apomorphine was injected in the control session and GES sessions. GESs with different parameters were applied in GES session. Gastric slow waves and emesis and behaviors suggestive of nausea were recorded in each session. Part 2: Each dog was anesthetized and given GESs with different parameters or sham stimulation for 15 min after baseline (5 min), respectively. The location of cerebral activation induced by GES was investigated by fMRI. KEY RESULTS Apomorphine induced emesis and behaviors suggestive of nausea, and gastric dysrhythmia. The emesis frequency in control session was 5.5 ± 0.99, and symptoms score was 22.17 ± 1.01. GES with short pulse and long pulse could not improve emesis and symptoms induced by apomorphine. The emesis frequency (4.5 ± 0.76 in short pulse and 6.33 ± 1.05 in long pulse) and symptoms scores had no significant difference compared to control session (each p > 0.05). GES with trains of short pulse reduced emesis time frequency (3.83 ± 0.7, p = 0.042 vs control) and symptoms score (p = 0.037 vs control) obviously. Brain fMRI showed that GES with short pulse and long pulse activated brain stem region, and trains of short pulse made amygdala and occipital lobe activation. CONCLUSIONS & INFERENCES Apomorphine induced emesis and gastric dysrhythmia. GES with trains of short pulses relieves emetic responses through activation of amygdala region.
Collapse
Affiliation(s)
- X Yu
- Department of Gastroenterology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
7
|
Sun Y, Tan Y, Song G, Chen JDZ. Effects and mechanisms of gastric electrical stimulation on visceral pain in a rodent model of gastric hyperalgesia secondary to chemically induced mucosal ulceration. Neurogastroenterol Motil 2014; 26:176-86. [PMID: 24165025 DOI: 10.1111/nmo.12248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) has been suggested as a potential treatment for patients with gastric motility disorders. The aim of this study was to examine the effects and mechanisms of GES on visceral pain in awaken rats. METHODS Under anesthesia, acetic acid was injected into the submucosal layer of the stomach wall in Sprague-Dawley (SD) male rats. Each rat was chronically placed with an intragastric balloon and two pairs of electrodes on gastric serosa for GES and at the neck muscles for electromyography (EMG) recordings respectively. The study was composed of four experiments. Exp 1 was designed to determine optimal GES parameters in reducing EMG response to gastric distention (GD). Exp 2 was performed to investigate the effect of GES on gastric tone/accommodation. Exp 3 was to investigate if the opioid pathway was involved in the analgesic effects of GES. Exp 4 was to assess the effectiveness of GES on the spinal cord neurons (T9-T10) responding to GD. KEY RESULTS (i) Gastric electrical stimulation with a train on of 0.1 s and off of 0.4 s, 0.25 ms, 100 Hz, and 6 mA significantly reduced GD-induced EMG responses at GD 40, 60, and 80 mmHg. (ii) The inhibitory effects of GES on the GD-induced EMG responses were blocked by Naloxone. (iii) GES inhibited 90% of high-threshold (HT) spinal neurons in response to GD. However, GES with the same parameters only suppressed 36.3% low-threshold (LT) neuronal response to GD. CONCLUSIONS & INFERENCES Gastric electrical stimulation with optimal parameters inhibits visceral pain; the analgesic effect of GES on visceral pain is mediated via the endogenous opioid system and the suppression of spinal afferent neuronal activities.
Collapse
Affiliation(s)
- Y Sun
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA; Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | | | | | | |
Collapse
|
8
|
Farajidavar A, O'Grady G, Rao SMN, Cheng LK, Abell T, Chiao JC. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings. Physiol Meas 2012; 33:N29-37. [PMID: 22635054 DOI: 10.1088/0967-3334/33/6/n29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
Collapse
Affiliation(s)
- Aydin Farajidavar
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | | | | | | | | | | |
Collapse
|