1
|
Gao H, Zhang Y, Li Y, Chang H, Cheng B, Li N, Yuan W, Li S, Wang Q. μ-Opioid Receptor-Mediated Enteric Glial Activation Is Involved in Morphine-Induced Constipation. Mol Neurobiol 2021; 58:3061-3070. [PMID: 33624141 DOI: 10.1007/s12035-021-02286-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/08/2021] [Indexed: 01/04/2023]
Abstract
Among all the side effects, opioid-induced constipation (OIC) has the highest incidence rate in people who take chronic opioid therapy. Increasing evidence shows that enteric glial cells (EGCs) play a pivotal role in the modulation of gastrointestinal motility. We aim to investigate whether EGCs are involved in OIC and possible mechanisms. Eight-week male C57BL/6 mice were randomized into four groups: the control group, the morphine group, the gliotoxin fluorocitrate (FC) group, and the FC plus morphine group. OIC was induced by injection of morphine subcutaneously. Colonic motility was evaluated by in vivo motility assays and colonic migrating motor complex (CMMC) in vitro. Both the Ca2+ responses and the release of inflammatory cytokine by EGCs were detected in vitro. Proteins were detected by immunofluorescence staining and Western blot. The morphine group showed prolonged gastrointestinal motility compared with the control group. Once EGCs were disrupted by FC, such inhibitory effect was abolished. There was a remarkable enhancement of the GFAP expression on colonic EGCs. Immunofluorescence exhibited that μ-opioid receptor (MOR) collocated with GFAP, indicating the existence of MOR in EGCs. Moreover, morphine activated the EGCs significantly through enhancing GFAP expression and Ca2+ amplitude. Both effects can be reversed by MOR-siRNA. Morphine treatment elevated the enteric glial release of proinflammatory cytokines notably and this effect was abolished when EGCs were silenced by MOR-siRNA. The activation of EGCs via MOR and the increased proinflammatory cytokine from EGCs may be involved in morphine-induced constipation. These results provided a potential therapeutic target for OIC.
Collapse
Affiliation(s)
- Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yuxin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Na Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wei Yuan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shuang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
2
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
3
|
Yuan X, Caron A, Wu H, Gautron L. Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Front Neuroanat 2018; 12:4. [PMID: 29410615 PMCID: PMC5787097 DOI: 10.3389/fnana.2018.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022] Open
Abstract
Past studies have suggested that non-neuronal brain cells express the leptin receptor. However, the identity and distribution of these leptin receptor-expressing non-neuronal brain cells remain debated. This study assessed the distribution of the long form of the leptin receptor (LepRb) in non-neuronal brain cells using a reporter mouse model in which LepRb-expressing cells are permanently marked by tdTomato fluorescent protein (LepRb-CretdTomato). Double immunohistochemistry revealed that, in agreement with the literature, the vast majority of tdTomato-tagged cells across the mouse brain were neurons (i.e., based on immunoreactivity for NeuN). Non-neuronal structures also contained tdTomato-positive cells, including the choroid plexus and the perivascular space of the meninges and, to a lesser extent, the brain. Based on morphological criteria and immunohistochemistry, perivascular cells were deduced to be mainly pericytes. Notably, tdTomato-positive cells were immunoreactive for vitronectin and platelet derived growth factor receptor beta (PDGFBR). In situ hybridization studies confirmed that most tdTomato-tagged perivascular cells were enriched in leptin receptor mRNA (all isoforms). Using qPCR studies, we confirmed that the mouse meninges were enriched in Leprb and, to a greater extent, the short isoforms of the leptin receptor. Interestingly, qPCR studies further demonstrated significantly altered expression for Vtn and Pdgfrb in the meninges and hypothalamus of LepRb-deficient mice. Collectively, our data demonstrate that the only intracranial non-neuronal cells that express LepRb in the adult mouse are cells that form the blood-brain barrier, including, most notably, meningeal perivascular cells. Our data suggest that pericytic leptin signaling plays a role in the integrity of the intracranial perivascular space and, consequently, may provide a link between obesity and numerous brain diseases.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Nikiforou M, Willburger C, de Jong AE, Kloosterboer N, Jellema RK, Ophelders DRMG, Steinbusch HWM, Kramer BW, Wolfs TGAM. Global hypoxia-ischemia induced inflammation and structural changes in the preterm ovine gut which were not ameliorated by mesenchymal stem cell treatment. Mol Med 2016; 22:244-257. [PMID: 27257938 PMCID: PMC5023518 DOI: 10.2119/molmed.2015.00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.
Collapse
Affiliation(s)
- Maria Nikiforou
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carolin Willburger
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anja E de Jong
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico Kloosterboer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daan RMG Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry WM Steinbusch
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim GAM Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016; 13:517-28. [PMID: 27435372 PMCID: PMC5005185 DOI: 10.1038/nrgastro.2016.107] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enteric nervous system (ENS) is large, complex and uniquely able to orchestrate gastrointestinal behaviour independently of the central nervous system (CNS). An intact ENS is essential for life and ENS dysfunction is often linked to digestive disorders. The part the ENS plays in neurological disorders, as a portal or participant, has also become increasingly evident. ENS structure and neurochemistry resemble that of the CNS, therefore pathogenic mechanisms that give rise to CNS disorders might also lead to ENS dysfunction, and nerves that interconnect the ENS and CNS can be conduits for disease spread. We review evidence for ENS dysfunction in the aetiopathogenesis of autism spectrum disorder, amyotrophic lateral sclerosis, transmissible spongiform encephalopathies, Parkinson disease and Alzheimer disease. Animal models suggest that common pathophysiological mechanisms account for the frequency of gastrointestinal comorbidity in these conditions. Moreover, the neurotropic pathogen, varicella zoster virus (VZV), unexpectedly establishes latency in enteric and other autonomic neurons that do not innervate skin. VZV reactivation in these neurons produces no rash and is therefore a clandestine cause of gastrointestinal disease, meningitis and strokes. The gut-brain alliance has raised consciousness as a contributor to health, but a gut-brain axis that contributes to disease merits equal attention.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, 622 West 168th Street, New York, New York 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
6
|
Cardoso AM, Schetinger MRC, Correia-de-Sá P, Sévigny J. Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 2015; 191:25-38. [PMID: 26008223 DOI: 10.1016/j.autneu.2015.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| |
Collapse
|
7
|
Nagy JI, Urena-Ramirez V, Ghia JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 2014; 588:1480-90. [PMID: 24548563 PMCID: PMC4043341 DOI: 10.1016/j.febslet.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
Neurons in the enteric nervous system utilize numerous neurotransmitters to orchestrate rhythmic gut smooth muscle contractions. We examined whether electrical synapses formed by gap junctions containing connexin36 also contribute to communication between enteric neurons in mouse colon. Spontaneous contractility properties and responses to electrical field stimulation and cholinergic agonist were altered in gut from connexin36 knockout vs. wild-type mice. Immunofluorescence revealed punctate labelling of connexin36 that was localized at appositions between somata of enteric neurons immunopositive for the enzyme nitric oxide synthase. There is indication for a possible functional role of gap junctions between inhibitory nitrergic enteric neurons.
Collapse
Affiliation(s)
- James Imre Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Viridiana Urena-Ramirez
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
8
|
Sharkey KA. Tyrosine hydroxylase in the stalk-median eminence and posterior pituitary is inactivated only during the plateau phase of the preovulatory prolactin surge. Endocrinology 1989; 125:918-25. [PMID: 25689252 DOI: 10.1172/jci76303] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study examined changes in the activity of tyrosine hydroxylase (TH) in the stalk-median eminence (SME) and posterior pituitary (PP) during the preovulatory PRL surge. Immature female rats were injected with PMSG on day 28. Blood PRL levels were low on the morning of day 30, rose to a peak from 1400-1600 h, remained at a lower plateau from 1800-2400 h, and declined to basal levels on the morning of day 31. SME, PP, and striatum were removed from PMSG-treated rats at selected times during the periovulatory period and from age-matched control rats. TH activity was determined in tissue homogenates by a coupled hydroxylation-decarboxylation assay. Apparent Km and maximum velocity values with respect to 6-methyl tetrahydropterine were estimated from substrate saturation curves. The kinetic parameters for TH in either the SME or the PP of control rats were similar at 1100 and 1800 h on day 30. However, the apparent Km in both tissues was significantly lower than that in the striatum. The affinity of TH in the SME and PP was unchanged before and during the peak phase of the PRL surge, reduced significantly during the late plateau, and returned to presurge levels in the morning of day 31. TH activity in the striatum was similar at all times examined. To determine the state of activation of the enzyme, tissue homogenates were preincubated with cAMP, ATP, and magnesium. TH activity in the SME during the peak phase was unchanged by cAMP, and that in the PP was modestly increased. The relatively inactive enzyme in both tissues during the plateau phase was markedly activated by a cAMP-dependent mechanism. The low affinity of striatal TH was greatly increased by cAMP at both times. These data suggest that TH in the SME and PP exists in an activated state most of the time and is transiently inactivated during the plateau phase of the PRL surge. In contrast, TH in the striatum is relatively inactive in the basal state and is not affected by hormonal changes induced by PMSG. We conclude that the peak PRL surge occurs in spite of active dopamine (DA) neurons, suggesting that it is generated by a nondopaminergic mechanism. Decreased TH activity in DA neurons in the SME and PP may prolong the PRL surge during the plateau phase, whereas increased DA activity coincides with the termination of the surge.
Collapse
|