1
|
Neurotoxic effects of aluminium exposure as a potential risk factor for Alzheimer's disease. Pharmacol Rep 2022; 74:439-450. [PMID: 35088386 DOI: 10.1007/s43440-022-00353-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/02/2023]
Abstract
Aluminium is one of the most widely distributed elements of the Earth's crust. Its routine use has resulted in excessive human exposure and due to the potential neurotoxic effects has attained a huge interest in recent years. Despite its ubiquitous abundance, aluminium has no crucial biological functions in the human body. Oxidative stress and neuroinflammatory effects are attributed to its neurotoxic manifestations implicated in Alzheimer's disease. In this review, we have discussed the neuroinflammatory and neurodegenerative events in the brain induced by aluminium exposure. We have highlighted the neurotoxic events caused by aluminium, such as oxidative stress, apoptosis, inflammatory events, calcium dyshomeostasis, Aβ deposition, and neurofibrillary tangle formation in the brain. In addition, the protective measures needed for prevention of aluminium-induced neuronal dysregulations have also been discussed.
Collapse
|
2
|
Song J. Animal Model of Aluminum-Induced Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:113-127. [PMID: 30315452 DOI: 10.1007/978-981-13-1370-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of a satisfactory animal model for Alzheimer's disease (AD) has limited the reach progress of the pathogenesis of the disease and of therapeutic agents aiming to important pathophysiological points. In this chapter, we analyzed the research status of animal model of aluminum-induced Alzheimer's disease. Compared with other animal models, Al-maltolate-treated aged rabbits is a more reliable and efficient system in sharing a common mechanism with the development of neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Song
- Republic Health School, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 2014; 41:154-66. [PMID: 24560992 DOI: 10.1016/j.neuro.2014.02.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/30/2022]
Abstract
Aluminium is light weight and toxic metal present ubiquitously on earth which has gained considerable attention due to its neurotoxic effects. The widespread use of products made from or containing aluminium is ensuring its presence in our body. There is prolonged retention of a fraction of aluminium that enters the brain, suggesting its potential for accumulation with repeated exposures. There is no known biological role for aluminium within the body but adverse physiological effects of this metal have been observed in mammals. The generation of oxidative stress may be attributed to its toxic consequences in animals and humans. The oxidative stress has been implicated in pathogenesis of various neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. Though it remains unclear whether oxidative stress is a major cause or merely a consequence of cellular dysfunction associated with neurodegenerative diseases, an accumulating body of evidence implicates that impaired mitochondrial energy production and increased mitochondrial oxidative damage is associated with the pathogenesis of neurodegenerative disorders. Being involved in the production of reactive oxygen species, aluminium may impair mitochondrial bioenergetics and may lead to the generation of oxidative stress. In this review, we have discussed the oxidative stress and mitochondrial dysfunctions occurring in Al neurotoxicity. In addition, the ameliorative measures undertaken in aluminium induced oxidative stress and mitochondrial dysfunctions have also been highlighted.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Kiran Dip Gill
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India; Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Aluminum does not enhance beta-amyloid toxicity in rat hippocampal cultures. Brain Res 2010; 1352:265-76. [PMID: 20624378 DOI: 10.1016/j.brainres.2010.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 11/21/2022]
Abstract
A number of environmental factors have been implicated in neurodegenerative disorders, including metallotoxins such as aluminum (Al). In the present study, the toxicity of Al-quinate (AlQ), a well-characterized Al complex, was investigated in primary rat hippocampal cultures in comparison to inorganic Al (Al-S). AlQ was significantly less toxic than Al-S during both short- (3h) and long-term (24h) incubations. The neuroprotective properties of quinic acid (which constitutes the quinate moiety of AlQ) against short-term incubations with Al-S were subsequently assessed, and the organic compound was found to provide full protection, comparable to synthetic metal chelating agents desferrioxamine and clioquinol. Finally, potential synergistic actions between Al (AlQ and Al-S) and beta-amyloid (Abeta) were investigated. Neither Al form appeared to enhance Abeta toxicity, in fact, AlQ significantly reduced Abeta toxicity. Collectively, this study highlights further the impact of structural features and physiological ligands of metal complexes on toxicity profiles, and reveals promising properties of quinic acid as a metal chelator. Despite previous reports suggesting synergistic toxicity between Al and Abeta, we could not identify such a mechanism in our investigation.
Collapse
|
5
|
Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KSJ. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model. ACTA ACUST UNITED AC 2006; 52:275-92. [PMID: 16782202 DOI: 10.1016/j.brainresrev.2006.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/29/2022]
Abstract
Lack of an adequate animal model for Alzheimer's disease (AD) has limited an understanding of the pathogenesis of the disease and the development of therapeutic agents targeting key pathophysiological processes. There are undoubtedly few satisfactory animal models for exploring therapies targeting at amyloid beta (Abeta) secretion, deposition, aggregation, and probably the inflammatory response. However, an understanding of the complex events--tau, Abeta, oxidative stress, redox active iron, etc.--involved in the neuronal cell loss is still unclear due to the lack of a suitable animal model system. The use of neurotoxic agents particularly aluminum-organic complexes, especially Al-maltolate, expands the scope of AD research by providing new animal models exhibiting neurodegenerative processes relevant to AD neuropathology. Examination of different species of aged animals including the rapidly advancing transgenic mouse models revealed very limited AD-like pathology. Most other animal models have single event expression such as extracellular Abeta deposition, intraneuronal neurofilamentous aggregation of proteins akin to neurofibrillary tangles, oxidative stress or apoptosis. To date, there are no paradigms of any animal in which all the features of AD were evident. However, the intravenous injection of Al-maltolate into aged New zealand white rabbits results in conditions which mimics a number of neuropathological, biochemical and behavioral changes observed in AD. Such neurodegenerative effects include the formation of intraneuronal neurofilamentous aggregates that are tau positive, immunopositivity of Abeta, presence of redox active iron, oxidative stress and apoptosis, adds credence to the value of this animal model system. The use of this animal model should not be confused with the ongoing controversy regarding the possible role of Al in the neuropathogenesis, a debate which by no means has been concluded. Above all this animal model involving neuropathology induced by Al-maltolate provides a new information in understanding the mechanism of neurodegeneration.
Collapse
|
6
|
Zhang F, Ji M, Xu Q, Yang L, Bi S. Linear scan voltammetric indirect determination of AlIII by the catalytic cathodic response of norepinephrine at the hanging mercury drop electrode. J Inorg Biochem 2005; 99:1756-61. [PMID: 16039719 DOI: 10.1016/j.jinorgbio.2005.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/24/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.
Collapse
Affiliation(s)
- Fuping Zhang
- Department of Chemistry, State Key Laboratory of Coordination Chemistry of China, Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Guo-Ross SX, Yang EY, Walsh TJ, Bondy SC. Decrease of glial fibrillary acidic protein in rat frontal cortex following aluminum treatment. J Neurochem 1999; 73:1609-14. [PMID: 10501207 DOI: 10.1046/j.1471-4159.1999.0731609.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aluminum lactate was injected either intraperitoneally or stereotactically into the lateral cerebral ventricles of rats. Rats were killed at various times after treatment, and frontal cortex, hippocampus, and striatum were dissected out. Microtiter plate-based sandwich ELISA and immunohistochemistry were used to measure the glial fibrillary acidic protein (GFAP) concentration. GFAP levels were significantly decreased in frontal cortex 7 days after a single lateral ventricular injection of aluminum lactate and 14 days following systemic treatment. In contrast, neither hippocampus nor striatum exhibited any significant changes in the content of this astrocytic intermediate filament protein after aluminum treatment. Levels of a predominantly astroglial enzyme, glutamine synthetase, were also selectively reduced in the frontal cortex following intraventricular injection of aluminum. This depression exhibited a regional and temporal specificity similar to that found for GFAP. These results suggest a selective and progressive diminution of astrocytic responsivity in frontal cortex following either systemic or intraventricular aluminum dosing. The depression of GFAP levels reported here, which was found in the rat cerebral cortex 7-14 days after aluminum treatment in a species that does not form neurofilamentous aggregates, may reflect extended impairment of astrocytic function and suggests that these cells may be the primary targets of aluminum neurotoxicity.
Collapse
Affiliation(s)
- S X Guo-Ross
- Department of Community and Environmental Medicine, Center for Occupational and Environmental Health, University of California, Irvine 92697-1820, USA
| | | | | | | |
Collapse
|
10
|
Rao JK, Katsetos CD, Herman MM, Savory J. Experimental Aluminum Encephalomyelopathy: Relationship to Human Neurodegenerative Disease. Clin Lab Med 1998. [DOI: 10.1016/s0272-2712(18)30144-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Abstract
Enhanced expression of glial fibrillary acidic protein (GFAP) has been shown to be associated with gliosis, a generic response of the CNS to neural injury. The effects of aluminum (Al) on regional GFAP concentrations were evaluated to determine potential sites of Al-induced neural injury. Rabbits received 20 Al (100 mumol/kg) or sodium lactate injections over 1 month. Frontal cortical GFAP increased (approximately twofold above control) in Al-loaded rabbits; whereas hippocampal and cerebellar GFAP concentrations were not affected. Frontal cortical synaptophysin, neurofilament 68, and myelin basic protein concentrations were then examined in an attempt to determine cell-specific targets of Al neurotoxicity. These proteins were not affected by Al. The ability of chelators to influence brain Al concentrations and the Al effect on GFAP were assessed. Desferrioxamine (DFO) and six 3-hydroxypyridin-4-ones (CPs) were given 12 times, over 1 month, to Al-loaded rabbits. CP24 significantly reduced brain Al. CP93, CP52, and CP24 significantly reduced frontal cortical GFAP. The data suggest an Al-induced gliosis consequent to subtle damage in the frontal cortex and a protective role of some chelators against this CNS injury.
Collapse
Affiliation(s)
- R A Yokel
- College of Pharmacy, University of Kentucky Medical Center, Lexington 40536-0082, USA
| | | |
Collapse
|
12
|
Huang Y, Herman MM, Liu J, Katsetos CD, Wills MR, Savory J. Neurofibrillary lesions in experimental aluminum-induced encephalopathy and Alzheimer's disease share immunoreactivity for amyloid precursor protein, A beta, alpha 1-antichymotrypsin and ubiquitin-protein conjugates. Brain Res 1997; 771:213-20. [PMID: 9401741 DOI: 10.1016/s0006-8993(97)00780-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurofibrillary tangles of Alzheimer's disease contain predominantly tau protein and to a lesser degree amyloid precursor protein (APP), A beta protein, alpha 1-antichymotrypsin (ACT) and ubiquitin. Previously we have demonstrated the presence of phosphorylated tau and neurofilament proteins in neurofibrillary degeneration (NFD) induced by aluminum (Al) maltolate in rabbits [Savory et al., Brain Res. 669 (1995) 325-329; Savory et al., Brain Res. 707 (1996) 272-281]. Using the same animal system we have now detected APP, A beta, ACT and ubiquitin-like immunoreactivities in NFD-bearing neurons, often colocalizing in the NFD. Diffuse cytoplasmic staining for APP, A beta and ubiquitin was also present in neurons without NFD from Al maltolate-treated rabbits. This study provides additional support for immunochemical similarities between Al-induced NFD in rabbits and the neurofibrillary tangles in human subjects with Alzheimer's disease.
Collapse
Affiliation(s)
- Y Huang
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
13
|
Savory J, Huang Y, Herman MM, Wills MR. Quantitative image analysis of temporal changes in tau and neurofilament proteins during the course of acute experimental neurofibrillary degeneration; non-phosphorylated epitopes precede phosphorylation. Brain Res 1996; 707:272-81. [PMID: 8919305 DOI: 10.1016/0006-8993(95)01264-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Perturbation of the neuronal cytoskeleton represents an integral feature of neurofibrillary tangles which are characteristic neuropathological findings seen in Alzheimer's disease. Microtubule associated protein tau (tau) is considered to be the major component of these lesions although neurofilament proteins also are present. The present study explores the formation of intraneuronal tau and neurofilament protein aggregates using intracisternal administration of aluminum maltolate to rabbits. The time course of the formation of these aggregates and subsequent phosphorylation have been investigated by immunohistochemical methods using a panel of monoclonal antibodies, with quantitation of the staining by image analysis. Neurofilament proteins begin to aggregate by day 1 following aluminum maltolate injection on day 0. Increases in non-phosphorylated neurofilament proteins are observed first, with phosphorylated epitopes being recognized by day 3. Tau follows a similar pattern in that non-phosphorylated epitopes appear to precede phosphorylation. The monoclonal antibody Alz-50 which recognizes a phosphorylation-independent epitope of tau in Alzheimer's disease paired helical filaments, demonstrates positivity in the aluminum maltolate-treated rabbits by day 3. Other tau monoclonal antibodies which recognize phosphorylated tau in paired helical filaments (AT8 and PHF-1) show positive immunostaining on days 6-8. These results indicate that intraneuronal aggregation of cytoskeletal proteins can be initiated by factors other than phosphorylation. However, phosphorylation occurring as a secondary event probably contributes to stabilization of the aggregates.
Collapse
Affiliation(s)
- J Savory
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, USA
| | | | | | | |
Collapse
|
14
|
Strong MJ, Gaytan-Garcia S, Jakowec DM. Reversibility of neurofilamentous inclusion formation following repeated sublethal intracisternal inoculums of AlCl3 in New Zealand white rabbits. Acta Neuropathol 1995; 90:57-67. [PMID: 7572080 DOI: 10.1007/bf00294460] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this report, we describe the clinical, topographical and immunohistochemical characteristics of neurofilament (NF) inclusion formation induced by the intracisternal inoculation of young adult New Zealand white rabbits at 28-day intervals with 100 micrograms AlCl3 over the course of 267 days. The ability to recover following cessation of aluminum exposure has also been assessed. The extent of neurofilamentous inclusion formation was proportionate to the cumulative amount of AlCl3 inoculated and initially consisted of fusiform axonal distention in the ventral spinal cord at day 51 following the initial inoculum. Spinal motor neuron perikaryal inclusions and discrete axonal spheroids were observed at day 107 and supraspinal neurofilamentous pathology by day 156. Perikaryal inclusions were immunoreactive to antibodies recognizing both poorly phosphorylated (SMI 32) and more highly phosphorylated high molecular weight NF (NFH). In contrast, axonal spheroids were intensely immunoreactive at all stages with antibodies recognizing highly phosphorylated NFH and an age-dependent NFH phosphorylation state (SMI 34) with only faint SMI 32 immunoreactivity. Immunoreactivity to an antibody recognizing ubiquitin-protein conjugates did not appear until day 156, whereas inclusions were not immunoreactive to antibodies recognizing either phosphatase-dependent or -independent microtubule-associated protein tau at any stage. Upon withdrawal from further AlCl3 exposure after intervals of 51, 107 or 156 days following the initial inoculum, clinical recovery ensued in all rabbits. In all but the most severely affected rabbits, perikaryal neurofilamentous inclusions resolved. However, axonal spheroids continued to be prominent. These studies demonstrate that the repetitive intracisternal inoculation of AlCl3 in New Zealand white rabbits induces a reversible process of neurofilamentous inclusion formation that preferentially affects motor neurons, and in which recovery will occur in those inclusions containing an admixture of both poorly and highly phosphorylated NFH.
Collapse
Affiliation(s)
- M J Strong
- John P. Robart's Research Institute, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
15
|
Savory J, Huang Y, Herman MM, Reyes MR, Wills MR. Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits. Brain Res 1995; 669:325-9. [PMID: 7712190 DOI: 10.1016/0006-8993(94)01297-u] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracisternal administration of aluminum maltolate to rabbits produces a marked argyrophilic neurofibrillary degeneration (NFD) which is also immunoreactive for both phosphorylated and non-phosphorylated microtubule associated protein tau. Using tissue fixation in PBF, the monoclonal antibodies Tau-2 and AT8 stain the NFD. Dephosphorylation markedly reduces the positivity of AT8. Using PLP-fixed tissue, monoclonal antibody Tau-1 also immunostains aluminum-induced NFD.
Collapse
Affiliation(s)
- J Savory
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | |
Collapse
|