1
|
Hussain H, Djurin T, Rodriguez J, Daneelian L, Sundi S, Fadel A, Saadoon Z. Transactivation Response DNA-Binding Protein of 43 (TDP-43) and Glial Cell Roles in Neurological Disorders. Cureus 2022; 14:e30639. [DOI: 10.7759/cureus.30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
|
2
|
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of disorders without effective disease-modifying therapies. Pathologically, these disorders are characterised by disease-specific protein aggregates in neurons and/or glia and referred to as proteinopathies. Many neurodegenerative diseases show pathological overlap with the same abnormally deposited protein occurring in anatomically distinct regions, which give rise to specific patterns of cognitive and motor clinical phenotypes. Sequential distribution patterns of protein inclusions throughout the brain have been described. Rather than occurring in isolation, it is increasingly recognised that combinations of one or more proteinopathies with or without cerebrovascular disease frequently occur in individuals with neurodegenerative diseases. In addition, complex constellations of ageing-related and incidental pathologies associated with tau, TDP-43, Aβ, α-synuclein deposition have been commonly reported in longitudinal ageing studies. This review provides an overview of current classification of neurodegenerative and age-related pathologies and presents the spectrum and complexity of mixed pathologies in community-based, longitudinal ageing studies, in major proteinopathies, and genetic conditions. Mixed pathologies are commonly reported in individuals >65 years with and without cognitive impairment; however, they are increasingly recognised in younger individuals (<65 years). Mixed pathologies are thought to lower the threshold for developing cognitive impairment and dementia. Hereditary neurodegenerative diseases also show a diverse range of mixed pathologies beyond the proteinopathy primarily linked to the genetic abnormality. Cases with mixed pathologies might show a different clinical course, which has prognostic relevance and obvious implications for biomarker and therapy development, and stratifying patients for clinical trials.
Collapse
|
3
|
Autopsy-diagnosed neurodegenerative dementia cases support the use of cerebrospinal fluid protein biomarkers in the diagnostic work-up. Sci Rep 2021; 11:10837. [PMID: 34035398 PMCID: PMC8149718 DOI: 10.1038/s41598-021-90366-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Various proteins play a decisive role in the pathology of different neurodegenerative diseases. Nonetheless, most of these proteins can only be detected during a neuropathological assessment, although some non-specific biomarkers are routinely tested for in the cerebrospinal fluid (CSF) as a part of the differential diagnosis of dementia. In antemortem CSF samples from 117 patients with different types of neuropathologically confirmed neurodegenerative disease with dementia, we assessed total-tau (t-tau), phosphorylated-tau (181P) (p-tau), amyloid-beta (1–42) (Aβ42), TAR DNA binding protein (TDP)-43, progranulin (PGRN), and neurofilament light (NfL) chain levels, and positivity of protein 14-3-3. We found t-tau levels and the t-tau/p-tau ratios were significantly higher in prion diseases compared to the other neurodegenerative diseases. Statistically significant differences in the t-tau/Aβ42 ratio predominantly corresponded to t-tau levels in prion diseases and Aβ42 levels in AD. TDP-43 levels were significantly lower in prion diseases. Additionally, the TDP-43/Aβ42 ratio was better able to distinguish Alzheimer’s disease from other neurodegenerative diseases compared to using Aβ42 alone. In frontotemporal lobar degeneration, PRGN levels were significantly higher in comparison to other neurodegenerative diseases. There is an increasing need for biomarkers suitable for diagnostic workups for neurodegenerative diseases. It appears that adding TDP-43 and PGRN to the testing panel for neurodegenerative diseases could improve the resolution of differential diagnoses.
Collapse
|
4
|
Klotz S, König T, Erdler M, Ulram A, Nguyen A, Ströbel T, Zimprich A, Stögmann E, Regelsberger G, Höftberger R, Budka H, Kovacs GG, Gelpi E. Co-incidental C9orf72 expansion mutation-related frontotemporal lobar degeneration pathology and sporadic Creutzfeldt-Jakob disease. Eur J Neurol 2020; 28:1009-1015. [PMID: 33131137 PMCID: PMC7898301 DOI: 10.1111/ene.14621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Background The C9orf72 hexanucleotide expansion mutation is the most common cause of genetic frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and combined FTD‐ALS. Its underlying neuropathology combines TDP‐43 pathology and dipeptide repeat protein (DPR) deposits and may also associate with other neurodegeneration‐associated protein aggregates. Herein we present a unique combination of C9orf72 mutation with sporadic Creutzfeldt−Jakob disease (CJD) in a 74‐year‐old patient with rapidly progressive dementia. Methods Detailed neuropathological examination including immunohistochemistry for several proteinopathies. Genetic analysis was conducted by repeat primed polymerase chain reaction (PCR). Furthermore, we analyzed additional C9orf72 mutation carriers for prion−protein (PrP) deposits in brain tissue and screened the cerebellar cortex of other CJD cases for p62/DPR neuronal inclusions to assess the frequency of combined pathologies. Results Postmortem brain examination of a patient with a rapidly progressive neurological deterioration of 8 months’ duration confirmed the diagnosis of CJD. She harbored valine homozygosity at PRNP codon 129. In addition, a frontotemporal lobar degeneration (FTLD)‐pattern with TDP‐43 protein aggregates and p62+/C9RANT+ positive inclusions along with a high degree of Alzheimer‐related pathology (A3B3C3) were identified. The suspected C9orf72 expansion mutation was confirmed by repeat‐primed PCR. Screening of 13 C9orf72 cases showed no pathological PrP aggregates and screening of 100 CJD cases revealed no other C9orf72 expansion mutation carriers. Conclusion A combination of a C9orf72 expansion mutation‐related FTLD with sporadic CJD in the same patient is rare. While the rarity of both diseases makes this concurrence most likely to be coincidental, questions regarding a potential link between these two neurodegenerative pathologies deserve further studies.
Collapse
Affiliation(s)
- Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marcus Erdler
- Department of Neurology, Klinik Donaustadt mit Ludwig-Boltzmann-Institut, Vienna, Austria
| | - Andreas Ulram
- Department of Neurosurgery, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Anita Nguyen
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Ströbel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | | | | | - Günther Regelsberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| |
Collapse
|
5
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
6
|
Are comorbidities compatible with a molecular pathological classification of neurodegenerative diseases? Curr Opin Neurol 2020; 32:279-291. [PMID: 30672825 DOI: 10.1097/wco.0000000000000664] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on comorbidities in neurodegenerative conditions. The term comorbidity is used here to distinguish cases with overlapping pathogenic mechanisms, which includes combinations of neurodegenerative proteinopathies from cases with multimorbidity, which is defined as concomitant brain and systemic disorders with different pathogenic mechanisms. RECENT FINDINGS Comorbid proteinopathies are more frequent in both sporadic and hereditary neurodegenerative diseases than previously assumed. The most frequent additional proteinopathies are related to Alzheimer's disease, Lewy body disorder, and limbic predominant transactive response DNA-binding protein 43 proteinopathy, however, different forms of tau pathologies are also increasingly recognized. In addition to ageing, synergistic interaction of proteins, common disease pathways, and the influence of genetic variations are discussed as possible pathogenic players. SUMMARY Comorbid proteinopathies might influence the clinical course and have implications for biomarker and therapeutic development. As pure forms of proteinopathies are still observed, the notion of current molecular classification is justified. This corroborates elucidation of various pathogenic pathways leading to neurodegeneration. Assuming that single proteins and associated pathways are targeted in therapy trials, efforts are needed to better stratify patients and to select pure proteinopathy forms lacking unfavorable genetic constellations. Otherwise combined therapeutic strategies might be necessary for comorbid proteinopathies.
Collapse
|
7
|
Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016; 56:269-283. [DOI: 10.1016/j.neuro.2016.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
8
|
Kovacs GG, Rahimi J, Ströbel T, Lutz MI, Regelsberger G, Streichenberger N, Perret-Liaudet A, Höftberger R, Liberski PP, Budka H, Sikorska B. Tau pathology in Creutzfeldt-Jakob disease revisited. Brain Pathol 2016; 27:332-344. [PMID: 27377321 PMCID: PMC8028936 DOI: 10.1111/bpa.12411] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a human prion disease with different etiologies. To determine the spectrum of tau pathologies in CJD, we assessed phospho-Tau (pTau) immunoreactivities in 75 sporadic CJD cases including an evaluation of the entorhinal cortex and six hippocampal subregions. Twelve cases (16%) showed only small tau-immunoreactive neuritic profiles. Fifty-two (69.3%) showed additional tau pathology in the medial temporal lobe compatible with primary age related tauopathy (PART). In 22/52 cases the lower pTau immunoreactivity load in the entorhinal cortex as compared to subiculum, dentate gyrus or CA4 region of the hippocampus was significantly different from the typical distribution of the Braak staging. A further 11 cases (14.7%) showed widespread tau pathologies compatible with features of primary tauopathies or the gray matter type of ageing-related tau astrogliopathy (ARTAG). Prominent gray matter ARTAG was also observed in two out of three additionally examined V203I genetic CJD cases. Analysis of cerebrospinal fluid revealed prominent increase of total tau protein in cases with widespread tau pathology, while pTau (T181) level was increased only in four. This correlated with immunohistochemical observations showing less pathology with anti-pTau T181 antibody when compared to anti-pTau S202/T205, T212/S214 and T231. The frequency of tau pathologies is not unusually high in sporadic CJD and does not precisely relate to PrP deposition. However, the pattern of hippocampal tau pathology often deviates from the stages of Braak. Currently applied examination of cerebrospinal fluid pTau (T181) level does not reliably reflect primary tauopathies, PART and ARTAG seen in CJD brains.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Jasmin Rahimi
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Günther Regelsberger
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Nathalie Streichenberger
- Prion Disease Laboratory, Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France.,Institut NeuroMyogène CNRS UMR 5310 - INSERM U1217, Lyon, France
| | - Armand Perret-Liaudet
- Prion Disease Laboratory, Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France.,Centre de Recherche en Neurosciences de Lyon (Laboratoire BioRaN), Université Claude Bernard Lyon 1 - CNRS UMR5292 - INSERM U1028, Lyon, France
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Herbert Budka
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Mougeot JL, Hirsch MA, Stevens CB, Mougeot F. Oral biomarkers in exercise-induced neuroplasticity in Parkinson's disease. Oral Dis 2016; 22:745-753. [PMID: 26878123 DOI: 10.1111/odi.12463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
In this article, we review candidate biomarkers for Parkinson's disease (PD) in oral cavity, potential of oral biomarkers as markers of neuroplasticity, and literature on the effects of exercise on oral cavity biomarkers in PD. We first describe how pathophysiological pathways of PD may be transduced from brain stem and ganglia to oral cavity through the autonomic nervous system or transduced by a reverse path. Next we describe the effects of exercise in PD and potential impact on oral cavity. We propose that biomarkers in oral cavity may be useful targets for describing exercise-induced brain neuroplasticity in PD. Nevertheless, much research remains to be carried out before applying these biomarkers for the determination of disease state and therapeutic response to develop strategies to mitigate motor or non-motor symptoms in PD.
Collapse
Affiliation(s)
- J-Lc Mougeot
- Department of Oral Medicine, Carolinas HealthCare System, Charlotte, NC, USA
| | - M A Hirsch
- Carolinas Rehabilitation, Department of Physical Medicine and Rehabilitation, Carolinas HealthCare System, Charlotte, NC, USA
| | - C B Stevens
- Department of Oral Medicine, Carolinas HealthCare System, Charlotte, NC, USA
| | - Fkb Mougeot
- Department of Oral Medicine, Carolinas HealthCare System, Charlotte, NC, USA.
| |
Collapse
|
10
|
Jaunmuktane Z, Mead S, Ellis M, Wadsworth JDF, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, Rudge P, Collinge J, Brandner S. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 2015; 525:247-50. [PMID: 26354483 DOI: 10.1038/nature15369] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022]
Abstract
More than two hundred individuals developed Creutzfeldt-Jakob disease (CJD) worldwide as a result of treatment, typically in childhood, with human cadaveric pituitary-derived growth hormone contaminated with prions. Although such treatment ceased in 1985, iatrogenic CJD (iCJD) continues to emerge because of the prolonged incubation periods seen in human prion infections. Unexpectedly, in an autopsy study of eight individuals with iCJD, aged 36-51 years, in four we found moderate to severe grey matter and vascular amyloid-β (Aβ) pathology. The Aβ deposition in the grey matter was typical of that seen in Alzheimer's disease and Aβ in the blood vessel walls was characteristic of cerebral amyloid angiopathy and did not co-localize with prion protein deposition. None of these patients had pathogenic mutations, APOE ε4 or other high-risk alleles associated with early-onset Alzheimer's disease. Examination of a series of 116 patients with other prion diseases from a prospective observational cohort study showed minimal or no Aβ pathology in cases of similar age range, or a decade older, without APOE ε4 risk alleles. We also analysed pituitary glands from individuals with Aβ pathology and found marked Aβ deposition in multiple cases. Experimental seeding of Aβ pathology has been previously demonstrated in primates and transgenic mice by central nervous system or peripheral inoculation with Alzheimer's disease brain homogenate. The marked deposition of parenchymal and vascular Aβ in these relatively young patients with iCJD, in contrast with other prion disease patients and population controls, is consistent with iatrogenic transmission of Aβ pathology in addition to CJD and suggests that healthy exposed individuals may also be at risk of iatrogenic Alzheimer's disease and cerebral amyloid angiopathy. These findings should also prompt investigation of whether other known iatrogenic routes of prion transmission may also be relevant to Aβ and other proteopathic seeds associated with neurodegenerative and other human diseases.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joanna Kenny
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, 125 Kingsway, London WC2B 6NH, UK
| | - Peter Rudge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.,Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
11
|
Guerrero-Muñoz MJ, Castillo-Carranza DL, Krishnamurthy S, Paulucci-Holthauzen AA, Sengupta U, Lasagna-Reeves CA, Ahmad Y, Jackson GR, Kayed R. Amyloid-β oligomers as a template for secondary amyloidosis in Alzheimer's disease. Neurobiol Dis 2014; 71:14-23. [PMID: 25134727 DOI: 10.1016/j.nbd.2014.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022] Open
Abstract
Alzheimer's disease is a complex disease characterized by overlapping phenotypes with different neurodegenerative disorders. Oligomers are considered the most toxic species in amyloid pathologies. We examined human AD brain samples using an anti-oligomer antibody generated in our laboratory and detected potential hybrid oligomers composed of amyloid-β, prion protein, α-synuclein, and TDP-43 phosphorylated at serines 409 and 410. These data and in vitro results suggest that Aβ oligomer seeds act as a template for the aggregation of other proteins and generate an overlapping phenotype with other neuronal disorders. Furthermore, these results could explain why anti-amyloid-β therapy has been unsuccessful.
Collapse
Affiliation(s)
- Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shashirekha Krishnamurthy
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cristian A Lasagna-Reeves
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yembur Ahmad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George R Jackson
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
12
|
Abstract
In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes. IMPORTANCE In prion diseases, the prion protein misfolds and aggregates in the central nervous system and sometimes in other organs, including muscle, yet the cellular pathways of prion aggregate clearance are unclear. Here we investigated the clearance of prion aggregates in the muscle of a transgenic mouse model that develops profound muscle degeneration. We found that endoplasmic reticulum stress pathways were activated and that autophagy was induced. Blocking of autophagic degradation in cell culture models led to an accumulation of aggregated prion protein. Collectively, these findings suggest that autophagy has an instrumental role in prion protein clearance.
Collapse
|
13
|
Reiniger L, Mirabile I, Lukic A, Wadsworth JDF, Linehan JM, Groves M, Lowe J, Druyeh R, Rudge P, Collinge J, Mead S, Brandner S. Filamentous white matter prion protein deposition is a distinctive feature of multiple inherited prion diseases. Acta Neuropathol Commun 2013; 1:8. [PMID: 24252267 PMCID: PMC4046834 DOI: 10.1186/2051-5960-1-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sporadic, inherited and acquired prion diseases show distinct histological patterns of abnormal prion protein (PrP) deposits. Many of the inherited prion diseases show striking histological patterns, which often associate with specific mutations. Most reports have focused on the pattern of PrP deposition in the cortical or cerebellar grey matter. RESULTS We observed that the subcortical white matter in inherited prion diseases frequently contained filamentous depositions of abnormal PrP, and we have analysed by immunohistochemistry, immunofluorescence and electron microscopy 35 cases of inherited prion disease seen at the UK National Prion Clinic. We report here that filamentous PrP is abundantly deposited in myelinated fibres in inherited prion diseases, in particular in those with N-terminal mutations. CONCLUSIONS It is possible that the presence of filamentous PrP is related to the pathogenesis of inherited forms, which is different from those sporadic and acquired forms.
Collapse
Affiliation(s)
- Lilla Reiniger
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Ilaria Mirabile
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Ana Lukic
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | | | | | - Michael Groves
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Jessica Lowe
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Ronald Druyeh
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Peter Rudge
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - John Collinge
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Simon Mead
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Sebastian Brandner
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
| |
Collapse
|
14
|
Prion protein codon 129 polymorphism modifies age at onset of frontotemporal dementia with the C.709-1G>A progranulin mutation. Alzheimer Dis Assoc Disord 2011; 25:93-5. [PMID: 20711061 DOI: 10.1097/wad.0b013e3181eff695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Frontotemporal lobar degeneration because of mutations in the progranulin (PGRN) gene presents a high variability both in the clinical phenotype and age of onset of disease. Factors that influence this variability remain largely unknown. The aim of our study was to determine whether selected genetic variables modify age at onset of disease in our series of 21 patients with a single splicing mutation (c.709-1G>A) in the PGRN gene, all of whom were of Basque descent. In our analysis, we included the following genetic variables: PGRN rs5848 and rs9897526 polymorphisms, APOE and microtubule-associated protein tau genotypes, and PRNP codon 129 polymorphism. We found no association between PGRN polymorphisms, APOE and microtubule-associated protein tau genotypes, and age at onset of the disease; whereas we report evidence for an association between PRNP codon 129 polymorphism and age at onset of disease in frontotemporal dementia-PGRN(+) patients. MM homozygous carriers presented onset of disease on average 8.5 years earlier than patients who carried at least 1 valine on their PRNP codon 129 (MV or VV). The biological justification for this association remains speculative.
Collapse
|
15
|
Kovacs GG, Seguin J, Quadrio I, Höftberger R, Kapás I, Streichenberger N, Biacabe AG, Meyronet D, Sciot R, Vandenberghe R, Majtenyi K, László L, Ströbel T, Budka H, Perret-Liaudet A. Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathol 2011; 121:39-57. [PMID: 20593190 DOI: 10.1007/s00401-010-0713-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 01/15/2023]
Abstract
The E200K mutation is the most frequent prion protein gene (PRNP) mutation detected worldwide that is associated with Creutzfeldt-Jakob disease (CJD) and thought to have overlapping features with sporadic CJD, yet detailed neuropathological studies have not been reported. In addition to the prion protein, deposition of tau, α-synuclein, and amyloid-β has been reported in human prion disease. To describe the salient and concomitant neuropathological alterations, we performed a systematic clinical, neuropathological, and biochemical study of 39 individuals carrying the E200K PRNP mutation originating from different European countries. The most frequent clinical symptoms were dementia and ataxia followed by myoclonus and various combinations of further symptoms, including vertical gaze palsy and polyneuropathy. Neuropathological examination revealed relatively uniform anatomical pattern of tissue lesioning, predominating in the basal ganglia and thalamus, and also substantia nigra, while the deposition of disease-associated PrP was more influenced by the codon 129 constellation, including different or mixed types of PrP(res) detected by immunoblotting. Unique and prominent intraneuronal PrP deposition involving brainstem nuclei was also noted. Systematic examination of protein depositions revealed parenchymal amyloid-β in 53.8%, amyloid angiopathy (Aβ) in 23.1%, phospho-tau immunoreactive neuritic profiles in 92.3%, neurofibrillary degeneration in 38.4%, new types of tau pathology in 33.3%, and Lewy-type α-synuclein pathology in 15.4%. TDP-43 and FUS immunoreactive protein deposits were not observed. This is the first demonstration of intensified and combined neurodegeneration in a genetic prion disease due to a single point mutation, which might become an important model to decipher the molecular interplay between neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 736] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
17
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
18
|
Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, Malcolm DS, Holm I, Johannsen P, Brown J, Fisher EMC, van der Zee J, Bruyland M, Van Broeckhoven C, Collinge J, Brandner S, Futter C, Isaacs AM. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet 2010; 19:2228-38. [PMID: 20223751 PMCID: PMC2865375 DOI: 10.1093/hmg/ddq100] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in CHMP2B cause frontotemporal dementia (FTD) in a large Danish pedigree, which is termed FTD linked to chromosome 3 (FTD-3), and also in an unrelated familial FTD patient. CHMP2B is a component of the ESCRT-III complex, which is required for function of the multivesicular body (MVB), an endosomal structure that fuses with the lysosome to degrade endocytosed proteins. We report a novel endosomal pathology in CHMP2B mutation-positive patient brains and also identify and characterize abnormal endosomes in patient fibroblasts. Functional studies demonstrate a specific disruption of endosome–lysosome fusion but not protein sorting by the MVB. We provide evidence for a mechanism for impaired endosome–lysosome fusion whereby mutant CHMP2B constitutively binds to MVBs and prevents recruitment of proteins necessary for fusion to occur, such as Rab7. The fusion of endosomes with lysosomes is required for neuronal function and the data presented therefore suggest a pathogenic mechanism for FTD caused by CHMP2B mutations.
Collapse
Affiliation(s)
- Hazel Urwin
- MRC Prion Unit, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009; 256:1205-14. [PMID: 19271105 DOI: 10.1007/s00415-009-5069-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/09/2009] [Indexed: 12/12/2022]
Abstract
Ever since the significance of pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) for human disease has been recognized in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U), a number of publications have emerged reporting on this pathology in a variety of neurodegenerative diseases. Given the heterogeneous and, in part, conflicting nature of the recent findings, we here review pathological TDP-43 and its relationship to human disease with a special focus on ALS and FTLD-U. To this end, we propose a classification scheme in which pathological TDP-43 is the major disease defining pathology in one group, or is present in addition to other neurodegenerative hallmark pathologies in a second category. We conclude that the TDP-43 proteinopathies represent a novel class of neurodegenerative disorders akin to alpha-synucleinopathies and tauopathies, with the concept of ALS and FTLD-U to be widened to a broad clinico-pathological multisystem disease, i.e., TDP-43 proteinopathy.
Collapse
|
20
|
Kovacs GG, Budka H. Molecular pathology of human prion diseases. Int J Mol Sci 2009; 10:976-99. [PMID: 19399233 PMCID: PMC2672014 DOI: 10.3390/ijms10030976] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP) to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.
Collapse
Affiliation(s)
| | - Herbert Budka
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +43-1-40400-5500; Fax: +43-1-40400-5511
| |
Collapse
|