1
|
Lee SU, Kim JS, Yoo D, Kim A, Kim HJ, Choi JY, Park JY, Jeong SH, Kim JM, Park KW. Ocular Motor Findings Aid in Differentiation of Spinocerebellar Ataxia Type 17 from Huntington's Disease. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1-13. [PMID: 34993890 DOI: 10.1007/s12311-021-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 02/01/2023]
Abstract
Differentiation of spinocerebellar ataxia type 17 (SCA17) from Huntington's disease (HD) is often challenging since they share the clinical features of chorea, parkinsonism, and dystonia. The ocular motor findings remain to be elucidated in SCA17, and may help differentiating SCA17 from HD. We retrospectively compared the ocular motor findings of 11 patients with SCA17 with those of 10 patients with HD. In SCA17, abnormal ocular motor findings included impaired smooth pursuit (9/11, 82%), dysmetric saccades (9/11, 82%), central positional nystagmus (CPN, 7/11, 64%), abnormal head-impulse tests (4/11, 36%), and horizontal gaze-evoked nystagmus (GEN, 3/11, 27%). Among these, CPN was more frequently observed in SCA17 than in HD (7/11 (64%) vs. 0/10 (0%), p = 0.004) while saccadic slowing was more frequently observed in HD than in SCA17 (8/10 (80%) vs. 2/11 (18%), p = 0.009). Of six patients with follow-up evaluation, five later developed bilateral saccadic hypermetria (n = 4), GEN (n = 1), CPN (n = 1), bilaterally abnormal smooth pursuit (n = 1), and hyperactive head-impulse responses (n = 1) along with a clinical decline. Ocular motor abnormalities can be utilized as a diagnostic marker for differentiation of SCA17 from HD as well as a surrogate marker for clinical decline in SCA17.
Collapse
Affiliation(s)
- Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea.,Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea. .,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Dallah Yoo
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Movement Disorder Center, Department of Neurology, Kyung Hee University Hospital, Gangdong-gu, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jeong-Yoon Choi
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Yun Park
- Deparment of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Seong-Hae Jeong
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
McBride SD, Ober J, Dylak J, Schneider W, Morton AJ. Oculomotor Abnormalities in a Sheep (Ovis aries) Model of Huntington's Disease: Towards a Biomarker for Assessing Therapeutic Efficacy. J Huntingtons Dis 2023; 12:189-200. [PMID: 37718849 DOI: 10.3233/jhd-230584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is characterized by a loss of control of motor function that causes the presence of abnormal eye movements at early stages. OBJECTIVE To determine if, compared to normal sheep, HD sheep have abnormal eye movements. METHODS We measured eye movements in a transgenic sheep (Ovis aries) model of HD using a purpose-built, head-mounted sheep oculometer. This allows us to measure saccades without the need for either behavioral training or head fixation. At the age of testing (6 years old), the HD sheep were pre-manifest. We used 21 sheep (11 HD, 10 normal). RESULTS We found small but significant differences in eye movements between normal (control) and HD sheep during vestibular ocular reflex (VOR)- and vestibular post-rotational nystagmus (PRN)-based tests. CONCLUSIONS Two measures were identified that could distinguish normal from HD sheep; the number of PRN oscillations when tested in the dark and the gain (eye movement to head movement ratio) during the VOR when tested in the light. To our knowledge, this is the first study in which eye movements have been quantified in sheep. It demonstrates the feasibility of measuring and quantifying human-relevant eye movements in this species. The HD-relevant deficits show that even in 'premanifest' sheep there are measurable signs of neurological dysfunction that are characterized by loss of control of eye movements.
Collapse
Affiliation(s)
| | - Jan Ober
- Ober Consulting Sp. z o.o., Poznań, Poland
| | | | | | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
3
|
Bocchetta M, Malpetti M, Todd EG, Rowe JB, Rohrer JD. Looking beneath the surface: the importance of subcortical structures in frontotemporal dementia. Brain Commun 2021; 3:fcab158. [PMID: 34458729 PMCID: PMC8390477 DOI: 10.1093/braincomms/fcab158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Whilst initial anatomical studies of frontotemporal dementia focussed on cortical involvement, the relevance of subcortical structures to the pathophysiology of frontotemporal dementia has been increasingly recognized over recent years. Key structures affected include the caudate, putamen, nucleus accumbens, and globus pallidus within the basal ganglia, the hippocampus and amygdala within the medial temporal lobe, the basal forebrain, and the diencephalon structures of the thalamus, hypothalamus and habenula. At the most posterior aspect of the brain, focal involvement of brainstem and cerebellum has recently also been shown in certain subtypes of frontotemporal dementia. Many of the neuroimaging studies on subcortical structures in frontotemporal dementia have been performed in clinically defined sporadic cases. However, investigations of genetically- and pathologically-confirmed forms of frontotemporal dementia are increasingly common and provide molecular specificity to the changes observed. Furthermore, detailed analyses of sub-nuclei and subregions within each subcortical structure are being added to the literature, allowing refinement of the patterns of subcortical involvement. This review focuses on the existing literature on structural imaging and neuropathological studies of subcortical anatomy across the spectrum of frontotemporal dementia, along with investigations of brain–behaviour correlates that examine the cognitive sequelae of specific subcortical involvement: it aims to ‘look beneath the surface’ and summarize the patterns of subcortical involvement have been described in frontotemporal dementia.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Cutsuridis V, Jiang S, Dunn MJ, Rosser A, Brawn J, Erichsen JT. Neural modeling of antisaccade performance of healthy controls and early Huntington's disease patients. CHAOS (WOODBURY, N.Y.) 2021; 31:013121. [PMID: 33754760 DOI: 10.1063/5.0021584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Huntington's disease (HD), a genetically determined neurodegenerative disease, is positively correlated with eye movement abnormalities in decision making. The antisaccade conflict paradigm has been widely used to study response inhibition in eye movements, and reliable performance deficits in HD subjects have been observed, including a greater number and timing of direction errors. We recorded the error rates and response latencies of early HD patients and healthy age-matched controls performing the mirror antisaccade task. HD participants displayed slower and more variable antisaccade latencies and increased error rates relative to healthy controls. A competitive accumulator-to-threshold neural model was then employed to quantitatively simulate the controls' and patients' reaction latencies and error rates and uncover the mechanisms giving rise to the observed HD antisaccade deficits. Our simulations showed that (1) a more gradual and noisy rate of accumulation of evidence by HD patients is responsible for the observed prolonged and more variable antisaccade latencies in early HD; (2) the confidence level of early HD patients making a decision is unaffected by the disease; and (3) the antisaccade performance of healthy controls and early HD patients is the end product of a neural lateral competition (inhibition) between a correct and an erroneous decision process, and not the end product of a third top-down stop signal suppressing the erroneous decision process as many have speculated.
Collapse
Affiliation(s)
- Vassilis Cutsuridis
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Shouyong Jiang
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Matt J Dunn
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Anne Rosser
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - James Brawn
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Jonathan T Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
5
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
6
|
Townend GS, van de Berg R, de Breet LHM, Hiemstra M, Wagter L, Smeets E, Widdershoven J, Kingma H, Curfs LMG. Oculomotor Function in Individuals With Rett Syndrome. Pediatr Neurol 2018; 88:48-58. [PMID: 30340908 DOI: 10.1016/j.pediatrneurol.2018.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals with Rett syndrome (RTT) are notoriously reliant on the use of eye gaze as a primary means of communication. Underlying an ability to communicate successfully via eye gaze is a complex matrix of requirements, with an intact oculomotor system being just one element. To date, the underlying neural and motor pathways associated with eye gaze are relatively under-researched in RTT. PURPOSE This study was undertaken to plug this gap in knowledge and to further the understanding of RTT in one specific area of development and function, namely oculomotor function. MATERIAL AND METHODS The eye movements of 18 girls and young women with RTT were assessed by electronystagmography (ENG). This tested their horizontal saccadic and smooth pursuit eye movements as well as optokinetic nystagmus and vestibulo-ocular reflex. Their results were compared with normative data collected from 16 typically developing children and teenagers. RESULTS Overall, the individuals with RTT demonstrated a range of eye movements on a par with their typically developing peers. However, there were a number of difficulties in executing the ENG testing with the RTT cohort which made quantitative analysis tricky, such as reduced motivation and attention to test materials and low-quality electrode signals. CONCLUSIONS This study suggests that individuals with RTT have an intact oculomotor system. However, modifications should be made to the ENG assessment procedure to combat problems in testing and add strength to the results. Further investigation into these testing difficulties is warranted in order to inform such modifications.
Collapse
Affiliation(s)
- Gillian S Townend
- Rett Expertise Centre Netherlands - GKC, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Raymond van de Berg
- Rett Expertise Centre Netherlands - GKC, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; Faculty of Physics, Tomsk State University, Tomsk, Russia
| | | | - Monique Hiemstra
- Faculty of Medicine, Maastricht University, Maastricht, The Netherlands
| | - Laura Wagter
- Faculty of Medicine, Maastricht University, Maastricht, The Netherlands
| | - Eric Smeets
- Rett Expertise Centre Netherlands - GKC, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Josine Widdershoven
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Leopold M G Curfs
- Rett Expertise Centre Netherlands - GKC, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Eddy CM, Cook JL. Emotions in action: The relationship between motor function and social cognition across multiple clinical populations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:229-244. [PMID: 29857027 DOI: 10.1016/j.pnpbp.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Clare M Eddy
- National Centre for Mental Health and College of Medical and Dental Sciences, BSMHFT, University of Birmingham, Birmingham, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Rüb U, Seidel K, Heinsen H, Vonsattel J, den Dunnen W, Korf H. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 2016; 26:726-740. [PMID: 27529157 PMCID: PMC8029421 DOI: 10.1111/bpa.12426] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought.
Collapse
Affiliation(s)
- U. Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - K. Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - H. Heinsen
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University WürzburgWürzburgD‐97080Germany
| | - J.P. Vonsattel
- The New York Brain Bank/Taub Institute, The Presbyterian Hospital and Columbia UniversityNew YorkNY
| | - W.F. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen University of GroningenRB GroningenNL‐5970The Netherlands
| | - H.W. Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| |
Collapse
|
9
|
Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt ER, van Leeuwen FW, Kampinga HH, Korf HW, Rüb U, den Dunnen WFA. Polyglutamine aggregation in Huntington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol 2015; 42:153-66. [DOI: 10.1111/nan.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/14/2015] [Indexed: 01/19/2023]
Affiliation(s)
- K. Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - S. Siswanto
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - M. Fredrich
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - M. Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - E. R. Brunt
- Department of Neurology; University of Groningen; Groningen The Netherlands
| | - F. W. van Leeuwen
- Department of Neuroscience; Maastricht University; Maastricht The Netherlands
| | - H. H. Kampinga
- Cell Biology, Radiation and Stress Cell Biology; University of Groningen; Groningen The Netherlands
| | - H. -W. Korf
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - U. Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - W. F. A. den Dunnen
- Department of Pathology and Medical Biology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| |
Collapse
|
10
|
Rüb U, Seidel K, Vonsattel JP, Lange HW, Eisenmenger W, Götz M, Del Turco D, Bouzrou M, Korf HW, Heinsen H. Huntington's Disease (HD): Neurodegeneration of Brodmann's Primary Visual Area 17 (BA17). Brain Pathol 2015; 25:701-11. [PMID: 25495445 DOI: 10.1111/bpa.12237] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease (HD), an autosomal dominantly inherited polyglutamine or CAG repeat disease along with somatomotor, oculomotor, psychiatric and cognitive symptoms, presents clinically with impairments of elementary and complex visual functions as well as altered visual-evoked potentials (VEPs). Previous volumetric and pathoanatomical post-mortem investigations pointed to an involvement of Brodmann's primary visual area 17 (BA17) in HD. Because the involvement of BA17 could be interpreted as an early onset brain neurodegeneration, we further characterized this potential primary cortical site of HD-related neurodegeneration neuropathologically and performed an unbiased estimation of the absolute nerve cell number in thick gallocyanin-stained frontoparallel tissue sections through the striate area of seven control individuals and seven HD patients using Cavalieri's principle for volume and the optical disector for nerve and glial cell density estimations. This investigation showed a reduction of the estimated absolute nerve cell number of BA17 in the HD patients (71,044,037 ± 12,740,515 nerve cells) of 32% in comparison with the control individuals (104,075,067 ± 9,424,491 nerve cells) (Mann-Whitney U-test; P < 0.001). Additional pathoanatomical studies showed that nerve cell loss was most prominent in the outer pyramidal layer III, the inner granular layers IVa and IVc as well as in the multiform layer VI of BA17 of the HD patients. Our neuropathological results in BA17 confirm and extend previous post-mortem, biochemical and in vivo neuroradiological HD findings and offer suitable explanations for the elementary and complex visual dysfunctions, as well as for the altered VEP observed in HD patients.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Jean Paul Vonsattel
- The New York Brain Bank/Taub Institute, The Presbyterian Hospital and Columbia University, New York, NY
| | - Herwig W Lange
- Chorea Center, Department of Neurology, University of Muenster, Münster, Germany
| | | | - Monika Götz
- Institute of Pathology, Aschaffenburg Hospital, Aschaffenburg, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT, Wicht H, Korf HW, den Dunnen W, Rüb U. The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies. Brain Pathol 2014; 25:121-35. [PMID: 24995389 DOI: 10.1111/bpa.12168] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are among the human synucleinopathies, which show alpha-synuclein immunoreactive neuronal and/or glial aggregations and progressive neuronal loss in selected brain regions (eg, substantia nigra, ventral tegmental area, pedunculopontine nucleus). Despite several studies about brainstem pathologies in PD and DLB, there is currently no detailed information available regarding the presence of alpha-synuclein immunoreactive inclusions (i) in the cranial nerve, precerebellar, vestibular and oculomotor brainstem nuclei and (ii) in brainstem fiber tracts and oligodendroctyes. Therefore, we analyzed the inclusion pathologies in the brainstem nuclei (Lewy bodies, LB; Lewy neurites, LN; coiled bodies, CB) and fiber tracts (LN, CB) of PD and DLB patients. As reported in previous studies, LB and LN were most prevalent in the substantia nigra, ventral tegmental area, pedunculopontine and raphe nuclei, periaqueductal gray, locus coeruleus, parabrachial nuclei, reticular formation, prepositus hypoglossal, dorsal motor vagal and solitary nuclei. Additionally we were able to demonstrate LB and LN in all cranial nerve nuclei, premotor oculomotor, precerebellar and vestibular brainstem nuclei, as well as LN in all brainstem fiber tracts. CB were present in nearly all brainstem nuclei and brainstem fiber tracts containing LB and/or LN. These findings can contribute to a large variety of less well-explained PD and DLB symptoms (eg, gait and postural instability, impaired balance and postural reflexes, falls, ingestive and oculomotor dysfunctions) and point to the occurrence of disturbances of intra-axonal transport processes and transneuronal spread of the underlying pathological processes of PD and DLB along anatomical pathways.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institute, J.W. Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K, Bouzrou M, Auburger G, Paulson H, Vonsattel JP, Lange H, Korf HW, den Dunnen W. Huntington's disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 2014; 24:247-60. [PMID: 24779419 DOI: 10.1111/bpa.12115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a progressive polyglutamine disease that leads to a severe striatal and layer-specific neuronal loss in the cerebral neo-and allocortex. As some of the clinical symptoms (eg, oculomotor dysfunctions) suggested a degeneration of select brainstem nuclei, we performed a systematic investigation of the brainstem of eight clinically diagnosed and genetically confirmed HD patients. This post-mortem investigation revealed a consistent neuronal loss in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the pons, superior and inferior olives, in the area of the excitatory burst neurons for horizontal saccades, raphe interpositus nucleus and vestibular nuclei. Immunoreactive intranuclear neuronal inclusions were present in all degenerated and apparently spared brainstem nuclei and immunoreactive axonal inclusions were observed in all brainstem fiber tracts of the HD patients. Degeneration of brainstem nuclei can account for a number of less well-understood clinical HD symptoms (ie, cerebellar, oculomotor and vestibular symptoms), while the formation of axonal aggregates may represent a crucial event in the cascades of pathological events leading to neurodegeneration in HD.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenberg Chronomedical Institute, Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D, Paulson HL, Bohl J, von Gall C, Vonsattel JP, Korf HW, den Dunnen WF. Degeneration of the cerebellum in Huntington's disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 2013; 23:165-77. [PMID: 22925167 PMCID: PMC8029117 DOI: 10.1111/j.1750-3639.2012.00629.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a polyglutamine disease and characterized neuropathologically by degeneration of the striatum and select layers of the neo- and allocortex. In the present study, we performed a systematic investigation of the cerebellum in eight clinically diagnosed and genetically confirmed HD patients. The cerebellum of all HD patients showed a considerable atrophy, as well as a consistent loss of Purkinje cells and nerve cells of the fastigial, globose, emboliform and dentate nuclei. This pathology was obvious already in HD brains assigned Vonsattel grade 2 striatal atrophy and did not correlate with the extent and distribution of striatal atrophy. Therefore, our findings suggest (i) that the cerebellum degenerates early during HD and independently from the striatal atrophy and (ii) that the onset of the pathological process of HD is multifocal. Degeneration of the cerebellum might contribute significantly to poorly understood symptoms occurring in HD such as impaired rapid alternating movements and fine motor skills, dysarthria, ataxia and postural instability, gait and stance imbalance, broad-based gait and stance, while the morphological alterations (ie ballooned neurons, torpedo-like axonal inclusions) observed in the majority of surviving nerve cells may represent a gateway to the unknown mechanisms of the pathological process of HD.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
den Dunnen WFA. Neuropathological diagnostic considerations in hyperkinetic movement disorders. Front Neurol 2013; 4:7. [PMID: 23420606 PMCID: PMC3572425 DOI: 10.3389/fneur.2013.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022] Open
Abstract
Neuropathology of hyperkinetic movement disorders can be very challenging. This paper starts with basic functional anatomy of the basal ganglia in order to appreciate that focal lesions like for instance tumor or infarction can cause hyperkinetic movement disorders like (hemi)ballism. The neuropathology of different causes of chorea (amongst others Huntington’s disease, neuroacanthosis, and HLD-2) and dystonia (DYT1, PD, and Dopa-Responsive Dystonia) are described. Besides the functional anatomy of the basal ganglia a wider anatomical network view is provided. This forms the basis for the overview of the neuropathology of different forms of tremor.
Collapse
Affiliation(s)
- Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
15
|
Seidel K, Vinet J, Dunnen WFAD, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HWGM, Rüb U, Kampinga HH, Carra S. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 2012; 38:39-53. [PMID: 21696420 DOI: 10.1111/j.1365-2990.2011.01198.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.
Collapse
Affiliation(s)
- K Seidel
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Grinberg LT, Rueb U, Heinsen H. Brainstem: neglected locus in neurodegenerative diseases. Front Neurol 2011; 2:42. [PMID: 21808630 PMCID: PMC3135867 DOI: 10.3389/fneur.2011.00042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/13/2011] [Indexed: 12/11/2022] Open
Abstract
The most frequent neurodegenerative diseases (NDs) are Alzheimer’s disease (AD), Parkinson’s disease (PD), and frontotemporal lobar degeneration associated with protein TDP-43 (FTLD–TDP). Neuropathologically, NDs are characterized by abnormal intracellular and extra-cellular protein deposits and by disease-specific neuronal death. Practically all terminal stages of NDs are clinically associated with dementia. Therefore, major attention was directed to protein deposits and neuron loss in supratentorial (telencephalic) brain regions in the course of NDs. This was also true for PD, although the pathological hallmark of PD is degeneration of pigmented neurons of the brainstem’s substantia nigra (SN). However, PD pathophysiology was explained by dopamine depletion in the telencephalic basal ganglia due to insufficiency and degeneration of the projection neurons located in SN. In a similar line of argumentation AD- and FTLD-related clinical deficits were exclusively explained by supratentorial allo- and neo-cortical laminar neuronal necrosis. Recent comprehensive studies in AD and PD early stages found considerable and unexpected involvement of brainstem nuclei, which could have the potential to profoundly change our present concepts on origin, spread, and early clinical diagnosis of these diseases. In contrast with PD and AD, few studies addressed brainstem involvement in the course of the different types of FTLD–TDP. Some of the results, including ours, disclosed a higher and more widespread pathology than anticipated. The present review will focus mainly on the impact of brainstem changes during the course of the most frequent NDs including PD, AD, and FTLD–TDP, with special emphasis on the need for more comprehensive research on FTLDs.
Collapse
Affiliation(s)
- Lea Tenenholz Grinberg
- Department of Neurology, Memory and Aging Center, University of California at San Francisco San Francisco, CA, USA
| | | | | |
Collapse
|
17
|
Klein A, Sacrey LAR, Dunnett SB, Whishaw IQ, Nikkhah G. Proximal movements compensate for distal forelimb movement impairments in a reach-to-eat task in Huntington's disease: New insights into motor impairments in a real-world skill. Neurobiol Dis 2011; 41:560-9. [PMID: 21059390 DOI: 10.1016/j.nbd.2010.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/08/2010] [Accepted: 11/01/2010] [Indexed: 01/19/2023] Open
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | | | | | |
Collapse
|