1
|
Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Int J Mol Sci 2021; 22:ijms222011126. [PMID: 34681783 PMCID: PMC8541331 DOI: 10.3390/ijms222011126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Carolin Seifert
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Ellen Balz
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Susann Herzog
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Anna Korolev
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sebastian Gaßmann
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Heiko Paland
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Matthias A. Fink
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Markus Grube
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Gabriele Jedlitschky
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Mladen V. Tzvetkov
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Bernhard H. Rauch
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Pharmacology and Toxicology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
- Correspondence: ; Tel.: +49-03834-865646
| |
Collapse
|
2
|
Oliveira-Barros EGD, Branco LC, Da Costa NM, Nicolau-Neto P, Palmero C, Pontes B, Ferreira do Amaral R, Alves-Leon SV, Marcondes de Souza J, Romão L, Fernandes PV, Martins I, Takiya CM, Ribeiro Pinto LF, Palumbo A, Nasciutti LE. GLIPR1 and SPARC expression profile reveals a signature associated with prostate Cancer Brain metastasis. Mol Cell Endocrinol 2021; 528:111230. [PMID: 33675864 DOI: 10.1016/j.mce.2021.111230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.
Collapse
Affiliation(s)
- Eliane Gouvêa de Oliveira-Barros
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer-Campus, São Pedro, Juiz de Fora, CEP: 36036-900, Brazil.
| | - Luíza Castello Branco
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Celia Palmero
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; UFRJ/Polo Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bruno Pontes
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Rackele Ferreira do Amaral
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luciana Romão
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Priscila Valverde Fernandes
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Antonio Palumbo
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luiz Eurico Nasciutti
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| |
Collapse
|
3
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival. Stem Cells Int 2018. [PMID: 29535786 PMCID: PMC5822829 DOI: 10.1155/2018/9628289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed.
Collapse
|
5
|
Zhang M, Xing L, Ke H, He YJ, Cui PF, Zhu Y, Jiang G, Qiao JB, Lu N, Chen H, Jiang HL. MnO 2-Based Nanoplatform Serves as Drug Vehicle and MRI Contrast Agent for Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11337-11344. [PMID: 28291320 DOI: 10.1021/acsami.6b15247] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multidrug resistance (MDR) greatly impedes the therapeutic efficacy of chemotherapeutic agents. Overexpression of ATP-binding cassette (ABC) transporters, such as P-gp, on the surface of tumor cells is a major mechanism in MDR. In this study, we fabricated manganese dioxide (MnO2)/doxorubicin (DOX)-loaded albumin nanoparticles (BMDN) for magnetic resonance imaging and reversing MDR in resistant tumor. BMDN facilitated the delivery of DOX into MDR tumor cells through their MDR reversal effects including enhanced cellular uptake, reduced drug efflux, and decreased hypoxic tumor microenvironment. BMDN also acted as an effective MRI contrast agent, thereby causing good in vitro and in vivo T1-weighted imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ge Jiang
- College of Life Sciences and Biotechnology, Dalian University , Dalian, China
| | | | | | | | | |
Collapse
|
6
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
7
|
Lin AL, Sum MW, DeAngelis LM. Is there a role for early chemotherapy in the management of pituitary adenomas? Neuro Oncol 2016; 18:1350-6. [PMID: 27106409 DOI: 10.1093/neuonc/now059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenomas are benign intracranial neoplasms that are frequently well-controlled with standard treatments that include surgical resection, radiotherapy, and agents that modulate hormonal excess. Unfortunately, a subset of patients remains uncontrolled or develops complications from these interventions. For these patients, chemotherapy is an additional treatment option that could improve outcomes. Temozolomide is an oral chemotherapy with a favorable side-effect profile that has shown activity against pituitary adenomas. Its non-overlapping toxicity and ability to induce rapid tumor regression renders it a potentially important adjunctive treatment. In patients with tumors that cannot be optimally addressed with standard treatments, there may be a role for early initiation of temozolomide.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.L.L., L.M.D.A.)
| | - Melissa W Sum
- Division of Endocrinology, Columbia University Medical Center, New York, New York (M.W.S.)
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York (A.L.L., L.M.D.A.)
| |
Collapse
|
8
|
Onoz M, Basaran R, Gucluer B, Isik N, Kaner T, Sav A, Elmaci I. Correlation between SPARC (Osteonectin) expression with immunophenotypical and invasion characteristics of pituitary adenomas. APMIS 2014; 123:199-204. [DOI: 10.1111/apm.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Mustafa Onoz
- Department of Neurosurgery; Medipol University School of Medicine; Istanbul Turkey
| | - Recep Basaran
- Department of Neurosurgery; Dr. Lutfi Kirdar Kartal Training and Research Hospital; Istanbul Turkey
| | - Berrin Gucluer
- Department of Pathology; Istanbul Medeniyet University Goztepe Training and Research Hospital; Istanbul Turkey
| | - Nejat Isik
- Department of Neurosurgery; Istanbul Medeniyet University Goztepe Training and Research Hospital; Istanbul Turkey
| | - Tuncay Kaner
- Department of Neurosurgery; Istanbul Medeniyet University Goztepe Training and Research Hospital; Istanbul Turkey
| | - Aydin Sav
- Department of Pathology; Acibadem University School of Medicine; Istanbul Turkey
| | - Ilhan Elmaci
- Department of Neurosurgery; Medipol University School of Medicine; Istanbul Turkey
| |
Collapse
|
9
|
Ebrahimi A, Honegger J, Schluesener H, Schittenhelm J. Osteonectin Expression in Surrounding Stroma of Craniopharyngiomas. Int J Surg Pathol 2013; 21:591-8. [DOI: 10.1177/1066896913486695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniopharyngioma is an epithelial tumor of the sellar region with a high survival rate but a high rate of recurrence, especially in children. Hypothalamic involvement, tumor recurrence, and multiple treatments result in clinical deterioration and impaired quality of life. Using immunohistochemistry, we investigated the expression pattern of osteonectin, a marker of tumor invasion and aggressive behavior, in 43 cases of craniopharyngioma. We observed a positive correlation of osteonectin expression in connective-type stromal tissue surrounding the epithelial tumor cells of craniopharyngioma with the extent of central nervous system infiltration and recurrence rate ( P < .001). Given the previous success of chemotherapeutic agents that target the tumor microenvironment, our findings on osteonectin expression in stroma of craniopharyngiomas might, hopefully, be a guide to find newer prognostic markers capable of estimating the risk of progression or recurrence. They may also aid in the development of therapeutics that target tumor microenvironment to improve patient outcome.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Division of Immunopathology of the Nervous System
- Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Juergen Honegger
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | | | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Li B, Li F, Chi L, Zhang L, Zhu S. The expression of SPARC in human intracranial aneurysms and its relationship with MMP-2/-9. PLoS One 2013; 8:e58490. [PMID: 23516489 PMCID: PMC3597740 DOI: 10.1371/journal.pone.0058490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Objective SPARC is a key determinant of invasion and metastasis in some tumors, such as gliomas, melanomas and prostate tumors. SPARC can change the composition and structure of the matrix and promote angiogenesis; these effects are closely related to clinical stage and the prognosis of tumors such as meningiomas. However, little is known about the expression of SPARC in intracranial aneurysms. The goal of this study was to establish the role of SPARC in human intracranial aneurysms. Methods Thirty-one intracranial aneurysms were immunohistochemically stained for SPARC, MMP-2 and MMP-9. As controls, normal Circle of Willis arteries were similarly immunostained. All specimens were retrieved during autopsies and were embedded in paraffin. To evaluate the expression levels of SPARC, MMP-2 and MMP-9, western blotting was also performed in three available intracranial aneurysm specimens. The limited availability of fresh intracranial aneurysm tissue was the result of the majority of patients choosing endovascular embolization. Results The results showed that SPARC, MMP-2 and MMP-9 were strongly expressed in intracranial aneurysm tissues; however, these proteins were expressed minimally or not at all in normal Circle of Willis arteries. The western blot results showed that the expression levels of SPARC, MMP-2 and MMP-9 were significantly up-regulated in intracranial aneurysms relative to the expression levels in the normal Circle of Willis arteries. Data analysis showed that SPARC was significantly correlated with MMP-2 and MMP-9, also with age and risk factors but not with the Hunt-Hess grade or with sex. Conclusion The results indicate that SPARC is widely expressed in human intracranial aneurysms, and its expression correlates with MMP-2 and MMP-9 expression, age and risk factors but not with the Hunt-Hess grade. The results of this study suggest that SPARC has a pathogenic role in the alteration of the extracellular matrix of intracranial arteries during aneurysm formation.
Collapse
Affiliation(s)
- Bo Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Lloyd-Burton SM, York EM, Anwar MA, Vincent AJ, Roskams AJ. SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 2013; 33:4468-81. [PMID: 23467362 PMCID: PMC6704956 DOI: 10.1523/jneurosci.3585-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/12/2023] Open
Abstract
Secreted protein acidic rich in cysteine (SPARC) is a matricellular protein that modulates the activity of growth factors, cytokines, and extracellular matrix to play multiple roles in tissue development and repair, such as cellular adhesion, migration, and proliferation. Throughout the CNS, SPARC is highly localized in mature ramified microglia, but its role in microglia--in development or during response to disease or injury--is not understood. In the postnatal brain, immature amoeboid myeloid precursors only induce SPARC expression after they cease proliferation and migration, and transform into mature, ramified resting microglia. SPARC null/CX3CR1-GFP reporter mice reveal that SPARC regulates the distribution and branching of mature microglia, with significant differences between cortical gray and white matter in both controls and SPARC nulls. Following ischemic and excitotoxic lesion, reactive, hypertrophic microglia rapidly downregulate and release SPARC at the lesion, concomitant with reactive, hypertrophic perilesion astrocytes upregulating SPARC. After photothrombotic stroke in the forelimb sensorimotor cortex, SPARC nulls demonstrate enhanced microgliosis in and around the lesion site, which accompanies significantly enhanced functional recovery by 32 d after lesion. Microglia from SPARC nulls also intrinsically proliferate at a greater rate in vitro--an enhanced effect that can be rescued by the addition of exogenous SPARC. SPARC is thus a novel regulator of microglial proliferation and structure, and, in addition to regulating glioma progression, may play an important role in differently regulating the gray and white matter microglial responses to CNS lesion--and modulating behavioral recovery--after injury.
Collapse
Affiliation(s)
- Samantha M. Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Elisa M. York
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Mohammad A. Anwar
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Adele J. Vincent
- Menzies Research Institute, University of Tasmania, Hobart, TAS 7000, Australia
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| |
Collapse
|
12
|
Alam R, Schultz CR, Golembieski WA, Poisson LM, Rempel SA. PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma. Neuro Oncol 2013; 15:451-61. [PMID: 23382286 DOI: 10.1093/neuonc/nos326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in astrocytomas (World Health Organization grades II-IV). We previously demonstrated that SPARC promotes glioma migration and invasion-in part, by activating the P38 mitogen-activated protein kinase (MAPK)-heat shock protein (HSP)27 signaling pathway. The commonly lost tumor suppressor phosphatase and tensin homolog (PTEN) suppresses SPARC-induced migration, which is accompanied by suppression of Shc-Ras-Raf-MEK-ERK1/2 and Akt signaling. As PTEN completely suppresses SPARC-induced migration, we proposed that PTEN must also interfere with SPARC-induced HSP27 signaling. Therefore, this study determined the effects of PTEN expression on SPARC-induced expression and phosphorylation of HSP27. METHODS Control and SPARC-expressing clones transfected with control- or PTEN-expression plasmids were plated on fibronectin-coated tissue culture plates for 3, 6, 24, and 48 h and then lysed. Equal amounts of protein were subjected to Western blot and densitometric analyses. RESULTS The results show that SPARC enhances phosphorylated (p)P38 MAPK, phosphorylated MAPK-activated protein kinase 2 (pMAPKAPK2), and serine (Ser)78 HSP27 phosphorylation relative to total HSP27. PTEN suppresses pAkt and pMAPKAPK2, suggesting that PTEN effects are downstream of pP38 MAPK. PTEN suppressed SPARC-induced sustained phosphorylation at Ser78 HSP27. As the level of total HSP27 differed based on the presence of SPARC or PTEN, the ratios of phosphorylation-specific to total HSP27 were examined. The data demonstrate that SPARC-induced phosphorylation at Ser78 remains elevated despite increasing levels of total HSP27. In contrast, PTEN inhibits SPARC-induced increases in Ser78 HSP27 phosphorylation relative to total HSP27. CONCLUSION These data describe a novel mechanism whereby PTEN inhibits SPARC-induced migration through suppression and differential regulation of pAkt and the P38 MAPK-MAPKAPK2-HSP27 signaling pathway.
Collapse
Affiliation(s)
- Ridwan Alam
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Education and Research Bldg., Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
13
|
Dieterich LC, Mellberg S, Langenkamp E, Zhang L, Zieba A, Salomäki H, Teichert M, Huang H, Edqvist PH, Kraus T, Augustin HG, Olofsson T, Larsson E, Söderberg O, Molema G, Pontén F, Georgii-Hemming P, Alafuzoff I, Dimberg A. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J Pathol 2012; 228:378-90. [PMID: 22786655 DOI: 10.1002/path.4072] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 12/23/2022]
Abstract
Glioblastoma are aggressive astrocytic brain tumours characterized by microvascular proliferation and an abnormal vasculature, giving rise to brain oedema and increased patient morbidity. Here, we have characterized the transcriptome of tumour-associated blood vessels and describe a gene signature clearly associated with pleomorphic, pathologically altered vessels in human glioblastoma (grade IV glioma). We identified 95 genes differentially expressed in glioblastoma vessels, while no significant differences in gene expression were detected between vessels in non-malignant brain and grade II glioma. Differential vascular expression of ANGPT2, CD93, ESM1, ELTD1, FILIP1L and TENC1 in human glioblastoma was validated by immunohistochemistry, using a tissue microarray. Through qPCR analysis of gene induction in primary endothelial cells, we provide evidence that increased VEGF-A and TGFβ2 signalling in the tumour microenvironment is sufficient to invoke many of the changes in gene expression noted in glioblastoma vessels. Notably, we found an enrichment of Smad target genes within the distinct gene signature of glioblastoma vessels and a significant increase of Smad signalling complexes in the vasculature of human glioblastoma in situ. This indicates a key role of TGFβ signalling in regulating vascular phenotype and suggests that, in addition to VEGF-A, TGFβ2 may represent a new target for vascular normalization therapy.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 2012; 11:20. [PMID: 22480225 PMCID: PMC3349587 DOI: 10.1186/1476-4598-11-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.
Collapse
Affiliation(s)
- Chad R Schultz
- The Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mannino M, Chalmers AJ. Radioresistance of glioma stem cells: intrinsic characteristic or property of the 'microenvironment-stem cell unit'? Mol Oncol 2011; 5:374-86. [PMID: 21659010 DOI: 10.1016/j.molonc.2011.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that glioblastoma possess 'stem-like' cells, low concentrations of which can initiate a tumour. It has been proposed that these cells are radioresistant, and that this property contributes to the poor treatment outcomes of these tumours. In this paper we propose that radioresistance is not simply an intrinsic characteristic of glioma stem cells but a result of interactions between these cells and microenvironmental factors, i.e. the 'microenvironment - stem cell unit'. The critical role of the microenvironment, along with glioma stem cells, is supported directly or indirectly by the following observations: glioma stem cells have been shown to reside preferentially in specific niches, the characteristics of which are known to influence cellular responses to radiation; radiation modifies environmental factors; and, contrarily to the consistency of clinical data, in vitro experiments have reported a wide variety in the radiation response of these cells. The paper, therefore, focuses on the interaction between tumour stem cells and the microenvironment, analyzing how its various elements (endothelial cells, extracellular matrix, cytokines, nitric oxide, oxygen levels) are affected by radiation and how these might influence the response of tumour stem cells to radiation. Finally, we summarize the ongoing debate on the optimal culture conditions for glioma stem cells and the difficulties in designing assays that reliably characterize their radiation response.
Collapse
Affiliation(s)
- Mariella Mannino
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|