1
|
Mesfin A, Lachat C, Gebreyesus SH, Roro M, Tesfamariam K, Belachew T, De Boevre M, De Saeger S. Mycotoxins Exposure of Lactating Women and Its Relationship with Dietary and Pre/Post-Harvest Practices in Rural Ethiopia. Toxins (Basel) 2023; 15:toxins15040285. [PMID: 37104223 PMCID: PMC10143280 DOI: 10.3390/toxins15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins can be transferred to breast milk during lactation. Hence, the presence of multiple mycotoxins (aflatoxins B1, B2, G1, G2, and M1, alpha and beta zearalanol, deoxynivalenol, fumonisins B1, B2, B3, and hydrolyzed B1, nivalenol, ochratoxin A, ochratoxin alpha, and zearalenone) in breast milk samples was assessed in our study. Furthermore, the relationship between total fumonisins and pre/post-harvest and the women's dietary practices was examined. Liquid chromatography coupled with tandem mass spectrometry was used to analyze the 16 mycotoxins. An adjusted censored regression model was fitted to identify predictors of mycotoxins, i.e., total fumonisins. We detected only fumonisin B2 (15% of the samples) and fumonisin B3 (9% of the samples) while fumonisin B1 and nivalenol were detected only in a single breast milk sample. No association between total fumonisins and pre/post-harvest and dietary practices was found (p < 0.05). The overall exposure to mycotoxins was low in the studied women, although fumonisins contamination was not negligible. Moreover, the recorded total fumonisins was not associated with any of the pre/post-harvest and dietary practices. Therefore, to better identify predictors of fumonisin contamination in breast milk, longitudinal studies with food samples in addition to breast milk samples and with larger sample sizes are needed for the future.
Collapse
Affiliation(s)
- Addisalem Mesfin
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma 1000, Ethiopia
- Department of Human Nutrition, College of Agriculture, Hawassa University, Hawassa 1000, Ethiopia
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
| | - Seifu Hagos Gebreyesus
- Department of Nutrition and Dietetics, School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Meselech Roro
- Department of Reproductive Health and Health Service Management, School of Public Health, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ambo 1000, Ethiopia
| | - Tefera Belachew
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma 1000, Ethiopia
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- MYTOX-SOUTH® International Thematic Network, Ghent University, 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa
| |
Collapse
|
2
|
Warth B, Braun D, Ezekiel CN, Turner PC, Degen GH, Marko D. Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chem Res Toxicol 2016; 29:1087-97. [DOI: 10.1021/acs.chemrestox.6b00125] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria
- Partnership
for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, Addis Ababa, Ethiopia
| | - Paul C. Turner
- Maryland
Institute for Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| |
Collapse
|
3
|
Turner PC. The molecular epidemiology of chronic aflatoxin driven impaired child growth. SCIENTIFICA 2013; 2013:152879. [PMID: 24455429 PMCID: PMC3881689 DOI: 10.1155/2013/152879] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/27/2013] [Indexed: 06/03/2023]
Abstract
Aflatoxins are toxic secondary fungal metabolites that contaminate dietary staples in tropical regions; chronic high levels of exposure are common for many of the poorest populations. Observations in animals indicate that growth and/or food utilization are adversely affected by aflatoxins. This review highlights the development of validated exposure biomarkers and their use here to assess the role of aflatoxins in early life growth retardation. Aflatoxin exposure occurs in utero and continues in early infancy as weaning foods are introduced. Using aflatoxin-albumin exposure biomarkers, five major studies clearly demonstrate strong dose response relationships between exposure in utero and/or early infancy and growth retardation, identified by reduced birth weight and/or low HAZ and WAZ scores. The epidemiological studies include cross-sectional and longitudinal surveys, though aflatoxin reduction intervention studies are now required to further support these data and guide sustainable options to reduce the burden of exposure. The use of aflatoxin exposure biomarkers was essential in understanding the observational data reviewed and will likely be a critical monitor of the effectiveness of interventions to restrict aflatoxin exposure. Given that an estimated 4.5 billion individuals live in regions at risk of dietary contamination the public health concern cannot be over stated.
Collapse
Affiliation(s)
- Paul Craig Turner
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Blair JD, Ikonomou MG, Kelly BC, Surridge B, Gobas FAPC. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6262-6268. [PMID: 19746723 DOI: 10.1021/es9013135] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study presents results of an analytical method developed for the quantification of monoalkyl phthalate esters (MPEs) in seawater, sediments, and biota. The method uses accelerated solvent extraction, solid-phase extraction, and liquid chromatography electrospray ionization tandem mass spectrometry (LC/ ESI-MS/MS). Results show the method is robust and can provide trace measurement of several MPE analytes at low parts per trillion levels in water and low parts per billion levels in sediments and biological tissues. Analyte recoveries varied between 70% and 110%. Method detection limits (MDLs) varied between 0.19 and 3.98 ng/L in seawater and between 0.024 and 0.99 ng/g in sediment and biota, which is approximately 10-50 times lower than previously reported MDLs using gas chromatography mass spectrometry. We applied the method to field collected samples of seawater, sediments, and tissues of mussels, crabs, and fish from False Creek an urbanized marine inlet near Vancouver, Canada. The results indicate residues of several MPEs can be found in surface waters, sediments, and organism tissues of this marine system. Monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl)-phthalate (MEHP) were frequently detected in all matrices. MnBP generally exhibited the highest concentrations among MPEs analyzed. Detectable concentrations of MPEs varied from 1 to 600 ng/L in seawater, 0.1 to 20 ng/g dry wt in sediments, and 0.1 to 600 ng/g wet wt in biota. Observed concentrations of low molecular weight MPEs in mussels were found to be significantly higher (P < 0.05) than those of corresponding parent DPEs (e.g., MnBP > DBP). Mono-iso-nonyl-phthalate (MoC9) and mono-iso-decyl phthalate (MoC10), which were routinely detected in water and sediments, were not detected in False Creek biota, indicating negligible uptake and/or in vivo bioformation of these high molecular weight MPEs. The ability to measure MPEs in complex environmental samples provided by this LC/ESI-MS/MS method expands the capability for future biomonitoring and risk assessment of phthalate plasticizers.
Collapse
Affiliation(s)
- Joel D Blair
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | | | |
Collapse
|