1
|
Co-Administration of Adjuvanted Recombinant Ov-103 and Ov-RAL-2 Vaccines Confer Protection against Natural Challenge in A Bovine Onchocerca ochengi Infection Model of Human Onchocerciasis. Vaccines (Basel) 2022; 10:vaccines10060861. [PMID: 35746469 PMCID: PMC9229719 DOI: 10.3390/vaccines10060861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, is a neglected tropical disease mainly of sub-Saharan Africa. Worldwide, an estimated 20.9 million individuals live with infection and a further 205 million are at risk of disease. Current control methods rely on mass drug administration of ivermectin to kill microfilariae and inhibit female worm fecundity. The identification and development of efficacious vaccines as complementary preventive tools to support ongoing elimination efforts are therefore an important objective of onchocerciasis research. We evaluated the protective effects of co-administering leading O. volvulus-derived recombinant vaccine candidates (Ov-103 and Ov-RAL-2) with subsequent natural exposure to the closely related cattle parasite Onchocerca ochengi. Over a 24-month exposure period, vaccinated calves (n = 11) were shown to acquire infection and microfilaridermia at a significantly lower rate compared to unvaccinated control animals (n = 10). Furthermore, adult female worm burdens were negatively correlated with anti-Ov-103 and Ov-RAL-2 IgG1 and IgG2 responses. Peptide arrays identified several Ov-103 and Ov-RAL-2-specific epitopes homologous to those identified as human B-cell and helper T-cell epitope candidates and by naturally-infected human subjects in previous studies. Overall, this study demonstrates co-administration of Ov-103 and Ov-RAL-2 with Montanide™ ISA 206 VG is highly immunogenic in cattle, conferring partial protection against natural challenge with O. ochengi. The strong, antigen-specific IgG1 and IgG2 responses associated with vaccine-induced protection are highly suggestive of a mixed Th1/Th2 associated antibody responses. Collectively, this evidence suggests vaccine formulations for human onchocerciasis should aim to elicit similarly balanced Th1/Th2 immune responses.
Collapse
|
2
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
3
|
Thatcher EF, Gershwin LJ, Baker NF. Levels of serum IgE in response to gastrointestinal nematodes in cattle. Vet Parasitol 1989; 32:153-61. [PMID: 2773267 DOI: 10.1016/0304-4017(89)90116-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Serum IgE concentration has been considered a valuable measurement in parasitic infections, yet little has been reported regarding cattle. This study examines the association of IgE levels of nematode-naïve Holstein steer calves and the level of gastrointestinal parasitism acquired by grazing irrigated pasture for 30 days. Total IgE levels were determined by enzyme-linked immunosorbent assay (ELISA) specific for bovine IgE on serum collected both before and after exposure to parasite-infected pastures. Following necropsy, parasite loads were determined by direct count from the contents of the abomasum, small intestine, cecum and large intestine; species of Ostertagia and Cooperia being the most common helminths found. Significant increases of IgE in the serum of calves with light infestations were seen, whereas calves with moderate to heavy infestations showed only mild IgE increases. With increased parasite burden, the frequency of increased IgE levels was reduced. Additionally, there appeared to be a seasonal correlation relating the level of serum IgE detected to the number of worms counted and to the course of parasite development.
Collapse
Affiliation(s)
- E F Thatcher
- Veterinary Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
4
|
Reiter I, Büttner M, Seitz A. Trypanosoma theileri Laveran, 1902, in naturally and experimentally infected cattle: parasite isolation, serological and cellular reactions and Berenil sensitivity. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1987; 34:380-90. [PMID: 3687290 DOI: 10.1111/j.1439-0450.1987.tb00411.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|