1
|
Xu J, Zhang X, Zhong J, Huang S, Wang S, Zhai H. Surface-active agent enhanced FRET effect Cu-doped NH 2-MIL-88(Fe) for highly sensitive detection of 3-nitro-L-tyrosine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124315. [PMID: 38688213 DOI: 10.1016/j.saa.2024.124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
In this study, Cu-doped NH2-MIL-88(Fe) metal-organic frameworks (MOF) were synthesized via a one-step method. Characterization techniques such as XPS, XRD and FTIR confirmed the successful incorporation of Cu2+ into NH2-MIL-88(Fe), naming this MOF as NH2-MIL-88(Fe)@Cu2+. This MOF was employed to develop a highly sensitive fluorescence sensing platform for detecting 3-nitro-L-tyrosine(3-NT). The potential for fluorescence resonance energy transfer (FRET) was suggested by the spectral overlap between NH2-MIL-88(Fe)@Cu2+'s emission and 3-NT's UV absorption. To augment this effect, cationic surfactant hexadecyltrimethylammonium bromide (CTAB), which self-assembled into nanostructured microspheres above its critical micelle concentration, was utilized. The charged surface of these microspheres, formed by the self-assembly of CTAB, is bound to the MOF surface through electrostatic force and simultaneously attracts 3-NT. Adjusting the solution's pH strengthened the interaction between NH2-MIL-88(Fe)@Cu2+ and 3-NT, thereby enhancing their mutual FRET interaction. Experimental results indicated that CTAB's introduction markedly improved the FRET effects, potentially converting a weak FRET into a strong one and enhancing detection sensitivity and accuracy. Under optimal conditions, NH2-MIL-88(Fe)@Cu2+ detected 3-NT within 0-30 μM range, with a limit of detection (LOD, S/N = 3) of 41.1 nM. Finally, the applicability of the sensor is tested by calibrating measurements in fetal bovine serum samples, achieving good performance in terms of sensitivity, selectivity and reproducibility. This research provides a method for efficient and highly sensitive 3-NT detection and insights into the FRET effect between MOF and target molecules, likely advancing related fields and inspiring future fluorescence sensor designs.
Collapse
Affiliation(s)
- Jin Xu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiapeng Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siying Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Anh NTN, Huynh TV, Nguyen VT, Nguyen TKA, Doong RA. MXene nanosheet-derived N, S-codoped graphene quantum dots for ultrasensitive and selective detection of 3-nitro-l-tyrosine in human serum. Anal Chim Acta 2024; 1292:342237. [PMID: 38309846 DOI: 10.1016/j.aca.2024.342237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
3-Nitro-l-tyrosine (3NT) is an oxidative stress metabolite associated with neurodegenerative diseases such as Parkinson's disease and rheumatoid arthritis. In this study, the N, S-co-doped graphene quantum dots (NSGQDs) derived from nitrogen-doped Ti3C2Tx MXene nanosheet via the hydrothermal method in the presence of mercaptosuccinic acid was synthesized as an optical sensing probe to detect 3NT in human serum. Tetramethyl ammonium hydroxide, the nitrogen source and delamination agent, was used to prepare nitrogen-doped MXene nanosheets via one step at room temperature. The as-prepared NSGQDs are uniform with an average size of 1.2 ± 0.6 nm, and can be stable in aqueous solution for at least 90 d to serve as the fluorescence probe. The N atoms in N-MXene reduce the restacking and aggregation of MXene nanosheets, while the sulfur dopant in NSGQDs increases the quantum yield from 6.2 to 12.1 % as well as enhances the selectivity of 3NT over the other 12 interferences via coordination interaction with nitro group in 3NT. A linear range of 0.02-150 μM in PBS and 0.05-200 μM in human serum with a recovery of 97-108 % for 3NT detection is observed. Moreover, the limit of detection can be lowered to 4.2 and 7 nM in PBS and 1 × diluted human serum, respectively. Results obtained clearly indicate the potential application of the N-Ti3C2Tx derived NSGQD for effective detection of 3NT, which can open a window for the synthesis of doped GQDs via 2D MXene materials for ultrasensitive and selective detection of other biometabolites and biomarkers of neurodegenerative diseases in biological fluids.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Anh
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan; Vinh Long University of Technology Education, 73 Nguyen Hue Street, Vinh Long City, Viet Nam
| | - Trung Viet Huynh
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Van Thanh Nguyen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Thi Kim Anh Nguyen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
| |
Collapse
|
3
|
Karmakar S, Das TK, Kalarikkal N, Saha A. A Simplified Approach for the Aqueous Synthesis of Luminescent CdSe/ZnS Core/Shell Quantum Dots and Their Applications in Ultrasensitive Determination of the Biomarker 3-Nitro-l-tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15995-16003. [PMID: 36512759 DOI: 10.1021/acs.langmuir.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In contrast to the hot-injection organometallic routes, synthesizing stable and highly luminescent core/shell nanocrystals with encapsulation of biocompatible groups through an aqueous route is a long-standing challenge. In recent years, relatively high quantum efficiency and unique properties of core/shell nanostructured materials (quantum dots) have contributed toward enhancement in sensing capability. The present work reports a facile aqueous synthesis process of core/shell CdSe/ZnS quantum dots (QDs) with encapsulation of glutathione (GSH). The optimal conditions for the synthesis of the most stable particles were ascertained, and the different experimental analyses suggest that the stable core/shell QDs in question have good crystallinity with a size around 4.7 nm with a shell thickness of 0.7 nm and a photoluminescence quantum yield of about 35%. Further, it is demonstrated that the as-synthesized material has great potential in detecting as low as 0.28 nM 3-nitro-l-tyrosine (3-NT), an important marker for oxidative stress, the level of which in our body signals several chronically diseased conditions. The enthalpy-driven interactions of CdSe/ZnS-GSH QDs with 3-NT were characterized through steady-state and time-resolved luminescence spectroscopy and isothermal microcalorimetry. The devised method of probing 3-NT was further validated with human serum samples. Thus, the proposed strategy may provide a protocol for selective determination of 3-NT under different pathological conditions.
Collapse
Affiliation(s)
- Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam686560, Kerala, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| |
Collapse
|
4
|
Attia MS, Youssef AO, Abdel-Sattar NA, Amin MA, Alharthi S, Mohamed EH, Mahmoud SA, Abou-Omar MN. A highly selective and sensitive spectrofluorimetric method for the assessment of 3-nitrotyrosine in serum using (Eu(TTA) 3Phen) photo probe. RSC Adv 2022; 12:4536-4542. [PMID: 35425515 PMCID: PMC8981050 DOI: 10.1039/d1ra07351f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
A simple, accurate and fast method was developed for the assessment of 3-nitrotyrosine as a biomarker for the early diagnosis of liver cirrhosis with minimal hepatic encephalopathy (MHE) using a (Eu(TTA)3Phen) photo probe. 3-Nitrotyrosine can remarkably quench the luminescence intensity of the (Eu(TTA)3Phen) complex in DMSO at pH = 9 and λem = 617 nm. The quenching of the luminescence intensity of (Eu(TTA)3Phen) complex particularly the electrical emission band at λem = 617 nm is used for the assessment of 3-nitrotyrosine in different serum samples of patients with liver cirrhosis. A simple, accurate and fast method was developed for the assessment of 3-nitrotyrosine as a biomarker for the early diagnosis of liver cirrhosis with minimal hepatic encephalopathy (MHE) using a (Eu(TTA)3Phen) photo probe.![]()
Collapse
Affiliation(s)
- Mohmed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Ahmed O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Nour A Abdel-Sattar
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt El Sherouk City Cairo Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar Saudi Arabia
| | - Mona N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University Cairo Egypt
| |
Collapse
|
5
|
Ramazan ZK, Sarı İ, Yıldırım BG, Güntürk İ, Küçük E, Erşan S, Seydel GŞ. The Evaluation of oxidative stress, 3-nitrotyrosine, and HMGB-1 levels in patients with Wet Type Age-Related Macular Degeneration. J Med Biochem 2021; 41:275-281. [PMID: 36042902 PMCID: PMC9375537 DOI: 10.5937/jomb0-32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Background This study aims to compare serum HMGB-1, 3-nitrotyrosine (3-NT), TAS, TOS, and OSI levels in Wettype Age-Related Macular Degeneration (wAMD) patients and healthy controls to determine the correlation of these parameters with each other. Methods Thirty patients with Wet-type Age-Related Macular Degeneration (wAMD) and 27 healthy adults, as controls were enrolled in the study. We determined the TAS and TOS levels in serum samples of both groups using commercial kits on a microplate reader. Serum HMGB-1 and 3-NT levels were measured with the enzyme-linked immunosorbent assay method. Results HMGB-1 levels were significantly higher in the patient group (137.51 pg/mL, p=0.001), while there was no difference between the two groups in serum 3-NT levels (p=0.428). A statistically significant difference found in the levels of TOS and OSI (p=0.001 and p=0.045, respectively) between the patients and controls, however, no significant difference was observed between the groups in terms of TAS levels (p=0.228). Conclusions Oxidative stress and HMGB-1 levels were increased in wAMD patients and enhanced oxidative stress may be associated with increased tissue necrosis and inflammation. Thus administration of antioxidant treatment in addition to routine therapy should be considered in wAMD.
Collapse
Affiliation(s)
- Zor Kürşad Ramazan
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İsmail Sarı
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Biçer Gamze Yıldırım
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İnayet Güntürk
- Niğde Ömer Halisdemir University, Healthcare Services, Zübeyde Hanım Health Services Vocational High School, Bor Yolu, Niğde, Turkey
| | - Erkut Küçük
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - Serpil Erşan
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Gönül Şeyda Seydel
- Niğde Ömer Halisdemir University School of Medicine Department of Medical Biochemistry, Bor Yolu, Niğde, Turkey
| |
Collapse
|
6
|
Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021; 13:6134099. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayu Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Wei
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhonghong Gao
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hailing Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
7
|
Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-tyrosine, 3-Chloro-l-tyrosine, and 3-Bromo-l-tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period. Molecules 2020; 25:molecules25215158. [PMID: 33167555 PMCID: PMC7663926 DOI: 10.3390/molecules25215158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Quantification with satisfactory specificity and sensitivity of free 3-Nitro-l-tyrosine (3-NT), 3-Chloro-l-tyrosine (3-CT), and 3-Bromo-l-tyrosine (3-BT) in biological samples as potential inflammation, oxidative stress, and cancer biomarkers is analytically challenging. We aimed at developing a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for their simultaneous analysis without an extract purification step by solid-phase extraction. Validation of the developed method yielded the following limits of detection (LOD) and quantification (LOQ) for 3-NT, 3-BT, and 3-CT: 0.030, 0.026, 0.030 ng/mL (LODs) and 0.100, 0.096, 0.098 ng/mL (LOQs). Coefficients of variation for all metabolites and tested concentrations were <10% and accuracy was within 95-105%. Method applicability was tested on colorectal cancer patients during the perioperative period. All metabolites were significantly higher in cancer patients than healthy controls. The 3-NT was significantly lower in advanced cancer and 3-BT showed a similar tendency. Dynamics of 3-BT in the early postoperative period were affected by type of surgery and presence of surgical site infections. In conclusion, a sensitive and specific LC-MS/MS method for simultaneous quantification of free 3-NT, 3-BT, and 3-CT in human plasma has been developed.
Collapse
|
8
|
Arif Z, Tarannum A, Arfat MY, Arif B, Shahab S, Arif M, Nelofar K, Badar A, Islam SN, Zaman A, Ahmad S, Iqubal MA, Gupta A, Aggarwal A, Alam K. Impact of endogenous stress on albumin structure in systemic lupus erythematosus (SLE) patients. Int J Biol Macromol 2020; 151:891-900. [PMID: 32014478 DOI: 10.1016/j.ijbiomac.2020.01.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory, autoimmune disorder of unknown etiology. The inflammatory stress in SLE patients may modify macromolecules and produce structural/functional abnormalities. The present study is aimed at examining the consequences of stresses on the structure of albumin in SLE patients. Albumin was isolated from the sera of SLE/healthy subjects. Multiple physicochemical techniques were used to elucidate, structure of albumin. Advanced glycation end products in SLE patients' albumin were identified by the AGE specific fluorescence. Quenching of tryptophan, tyrosine fluorescence and surface protein hydrophobicity was observed in SLE patients' albumin. Protein-bound carbonyls were elevated while free thiol, lysine, arginine, and alpha helicity was found to be decreased in SLE albumin. Furthermore, changes in the secondary structure of SLE albumin were observed as shift in the position of amide I/II bands. Functionality of SLE albumin was also compromised as its cobalt-binding ability was substantially declined. Adduction of moieties was detected by dynamic light scattering (DLS) and confirmed by matrix assisted laser desorption/ionization. DLS, thioflavin T and transmission electron microscopy results confirmed aggregates in SLE patients' albumin. This study may be helpful in understanding the role of modified albumin in the cofounding pathologies associated with SLE.
Collapse
Affiliation(s)
- Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India.
| | - Akhlas Tarannum
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mir Yasir Arfat
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binish Arif
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Sana Shahab
- Department of Business and Administration, College of Business and Administration, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maryam Arif
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Km Nelofar
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Badar
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Asif Zaman
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Shafeeque Ahmad
- Department of Biochemistry, Al-Falah School of Medical Science and Research Centre, Al-Falah University, Dhauj, Faridabad 121004, Haryana, India
| | - Mohammad Arif Iqubal
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Akankcha Gupta
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Malik HI, Mir AR, Abidi M, Habib S, Khan FH, Moinuddin. Preferential recognition of epitopes on peroxynitrite-modified alpha-2-macroglobulin by circulating autoantibodies in rheumatoid arthritis patients. J Biomol Struct Dyn 2020; 38:1984-1994. [PMID: 31179888 DOI: 10.1080/07391102.2019.1623073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autoimmune responses against post-translationally modified antigens are a hallmark of several autoimmune diseases. In this work, we have studied the changes in alpha-2-macroglobulin (α2M) upon modification by peroxynitrite. Furthermore, we have evaluated the immunogenicity of modified α2M in experimental rabbits and rheumatoid arthritis (RA) patients. Peroxynitrite-modified α2M showed disturbed microenvironment and altered aromatic residues under UV and fluorescence studies. Aggregation, reduction in β-sheet content, production of nitrotyrosine and shift in amide I and II bands were observed in the modified α2M by polyacrylamide gel electrophoresis besides CD and FTIR spectroscopic analysis. The exposure of hydrophobic clusters and changes in contact positions were observed in ANS and ThT binding assays. Immunological studies using ELISA showed peroxynitrite-modified α2M as highly immunogenic producing high titre of specific antibodies in immunized rabbits. Cross-reactivity studies revealed the polyspecificity of the elicited antibodies. Direct binding ELISA and competitive inhibition studies confirmed the presence of circulating antibodies in the sera of RA patients having high specificity towards the peroxynitrite-modified α2M as compared to the native α2M. Sera from healthy (normal) human subjects showed lower binding with the native and modified protein. This study confirms that peroxynitrite induces structural modifications in α2M and makes it immunogenic. The presence of neo-antigenic determinants on modified α2M with enhanced binding for circulating autoantibodies in RA patients could offer new possibilities for diagnosis and etiopathology of the disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heena Imtiaz Malik
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Minhal Abidi
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Fahim Halim Khan
- bDepartment of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
10
|
Pan L, Yang S, Wang J, Xu M, Wang S, Yi H. Inducible nitric oxide synthase and systemic lupus erythematosus: a systematic review and meta-analysis. BMC Immunol 2020; 21:6. [PMID: 32066371 PMCID: PMC7027241 DOI: 10.1186/s12865-020-0335-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background There is a growing body of evidences indicating iNOS has involved in the pathogenesis of SLE. However, the role of iNOS in SLE is inconsistency. This systematic review was designed to evaluate the association between iNOS and SLE. Results Six studies were included, reporting on a total of 277 patients with SLE. The meta-analysis showed that SLE patients had higher expression of iNOS at mRNA level than control subjects (SMD = 2.671, 95%CI = 0.446–4.897, z = 2.35, p = 0.019), and a similar trend was noted at the protein level (SMD = 3.602, 95%CI = 1.144–6.059, z = 2.87, p = 0.004) and positive rate of iNOS (OR = 9.515, 95%CI = 1.915–47.281, z = 2.76, p = 0.006) were significantly higher in SLE group compared with control group. No significant difference was observed on serum nitrite level between SLE patients and control subjects (SMD = 2.203, 95%CI = -0.386–4.793, z = 1.64, p = 0.095). The results did not modify from different sensitivity analysis, representing the robustness of this study. No significant publication bias was detected from Egger’s test. Conclusions There was a positive correlation between increasing iNOS and SLE. However, the source of iNOS is unknown. Besides NO pathway, other pathways also should be considered. More prospective random studies are needed in order to certify our results.
Collapse
Affiliation(s)
- Lu Pan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jinghua Wang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Meng Xu
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Shaofeng Wang
- The Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Bandookwala M, Thakkar D, Sengupta P. Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices. Crit Rev Anal Chem 2019; 50:265-289. [DOI: 10.1080/10408347.2019.1623010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Disha Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
12
|
Ahmad R, Hussain A, Ahsan H. Peroxynitrite: cellular pathology and implications in autoimmunity. J Immunoassay Immunochem 2019; 40:123-138. [PMID: 30843753 DOI: 10.1080/15321819.2019.1583109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In inflamed tissues, the reaction of nitric oxide and superoxide leads to the formation of an extremely reactive peroxynitrite (ONOO-), which is a well known oxidizing and nitrating agent that exhibits high reactivity at physiological pH. The peroxynitrite formed can attack a wide range of biomolecules via direct oxidative reactions or indirect radical-mediated mechanisms thus triggering cellular responses leading to cell signaling, oxidative injury, committing cells to necrosis or apoptosis. Cellular DNA is an important target for ONOO- attack, and can react with deoxyribose, nucleobases or induces single strand breaks. The free radical-mediated damage to proteins results in the modification of amino acid residues, cross-linking of side chains and fragmentation. Free/protein-bound tyrosines are attacked by various reactive nitrogen species (RNS), including peroxynitrite, to form free/protein-bound nitrotyrosine (NT). The formation of NT represents a specific peroxynitrite-mediated protein modification, and the detection of NT in proteins is considered as a biomarker for endogenous peroxynitrite activity. The peroxynitrite-driven oxidation and nitration of biomolecules may lead to autoimmunity and age-related neurodegenerative diseases. Hence, peroxynitrite modified DNA and nitrated proteins can act as neoantigens and lead to the generation of autoantibodies against self-components in autoimmune disorders.
Collapse
Affiliation(s)
- Rizwan Ahmad
- a Department of Academic Affairs, College of Medicine , Imam Abdulrahman bin Faisal University , Dammam , KSA
| | - Ahtesham Hussain
- b Lee's Biotech , Korean Institute of Bioscience and Biotechnology , Daejeon , South Korea
| | - Haseeb Ahsan
- c Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
13
|
Thao MT, Karumanchi DK, Yacout SM, Gaillard ER. Nitrite ion modifies tyrosine and lysine residues of extracellular matrix proteins. Nitric Oxide 2018; 79:51-56. [PMID: 30055286 DOI: 10.1016/j.niox.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Age-related macular degeneration (AMD) is a disease characterized by degenerative changes in the retinal pigment epithelium and Bruch's membrane. Inflammation is considered a major risk factor for the development and progression of AMD. Nitrite is a potent byproduct of inflammation and has been detected at elevated concentrations in AMD donor tissue. We hypothesize that nitrite chemically modifies the extracellular matrix (ECM) of Bruch's membrane as an initial step to degenerative changes observed in AMD. Non-enzymatically nitrated synthetic ECM peptides, fibronectin and laminin, were used as model systems for inflammation. Using LC/MS, we identified that nitration preferentially occurred on tyrosine and deamination of lysine under the studied conditions. At tyrosine residues, 3-nitrotyrosine was produced and shifted the total mass by the addition of 45 amu. Deamination of lysine occurred and resulted in the formation of either an alkene or alcohol group. The alkene group was observed with a loss of 17 amu. An addition of 1 amu was observed with alcohol formation. We hypothesize that these initial chemical modifications to the structure of ECM proteins may be the responsible for altering the structure and consequent function of Bruch's membrane.
Collapse
Affiliation(s)
- Mai T Thao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | | | - Sally M Yacout
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Elizabeth R Gaillard
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA; Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
14
|
Knight AR, Taylor EL, Lukaszewski R, Jensen KT, Jones HE, Carré JE, Isupov MN, Littlechild JA, Bailey SJ, Brewer E, McDonald TJ, Pitt AR, Spickett CM, Winyard PG. A high-sensitivity electrochemiluminescence-based ELISA for the measurement of the oxidative stress biomarker, 3-nitrotyrosine, in human blood serum and cells. Free Radic Biol Med 2018; 120:246-254. [PMID: 29555590 DOI: 10.1016/j.freeradbiomed.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/02/2023]
Abstract
The generation of 3-nitrotyrosine, within proteins, is a post-translational modification resulting from oxidative or nitrative stress. It has been suggested that this modification could be used as a biomarker for inflammatory diseases. Despite the superiority of mass spectrometry-based determinations of nitrotyrosine, in a high-throughput clinical setting the measurement of nitrotyrosine by an enzyme-linked immunosorbent assay (ELISA) is likely to be more cost-effective. ELISAs offer an alternative means to detect nitrotyrosine, but many commercially available ELISAs are insufficiently sensitive to detect nitrotyrosine in healthy human serum. Here, we report the development, validation and clinical application of a novel electrochemiluminescence-based ELISA for nitrotyrosine which provides superior sensitivity (e.g. a 50-fold increase in sensitivity compared with one of the tested commercial colorimetric ELISAs). This nitrotyrosine ELISA has the following characteristics: a lower limit of quantitation of 0.04 nM nitrated albumin equivalents; intra- and inter-assay coefficients of variation of 6.5% and 11.3%, respectively; a mean recovery of 106 ± 3% and a mean linearity of 0.998 ± 0.001. Far higher nitration levels were measured in normal human blood cell populations when compared to plasma. Mass spectrometry was used to validate the new ELISA method. The analysis of the same set of chemically modified albumin samples using the ELISA method and mass spectrometry showed good agreement for the relative levels of nitration present in each sample. The assay was applied to serum samples from patients undergoing elective surgery which induces the human inflammatory response. Matched samples were collected before and one day after surgery. An increase in nitration was detected following surgery (median (IQR): 0.59 (0.00-1.34) and 0.97 (0.00-1.70) nitrotyrosine (fmol of nitrated albumin equivalents/mg protein) for pre- and post-surgery respectively. The reported assay is suitable for nitrotyrosine determination in patient serum samples, and may also be applicable as a means to determine oxidative stress in primary and cultured cell populations.
Collapse
Affiliation(s)
- Annie R Knight
- University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Emma L Taylor
- University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | | | - Karina Tveen Jensen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Helen E Jones
- CBR Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK
| | - Jane E Carré
- University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Stephen J Bailey
- Sport and Health Sciences, Richards Building, University of Exeter, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Emily Brewer
- Clinical Chemistry, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Timothy J McDonald
- Clinical Chemistry, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Paul G Winyard
- University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK.
| |
Collapse
|
15
|
Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol Res 2017; 66:158-171. [DOI: 10.1007/s12026-017-8960-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
17
|
Kienhöfer D, Boeltz S, Hoffmann MH. Reactive oxygen homeostasis – the balance for preventing autoimmunity. Lupus 2016; 25:943-54. [DOI: 10.1177/0961203316640919] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Being mainly known for their role in the antimicrobial defense and collateral damage they cause in tissues as agents of oxidative stress, reactive oxygen species were considered “the bad guys” for decades. However, in the last years it was shown that the absence of reactive oxygen species can lead to the development of immune-mediated inflammatory diseases. Animal models of lupus, arthritis and psoriasis revealed reactive oxygen species-deficiency as a potent driver of pathogenesis. On the contrary, in chronic stages oxidative stress can still contribute to progression of inflammation. It seems that a neatly adjusted redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity and attenuates chronic stages of disease.
Collapse
Affiliation(s)
- D Kienhöfer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - S Boeltz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - M H Hoffmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| |
Collapse
|
18
|
Teixeira D, Fernandes R, Prudêncio C, Vieira M. 3-Nitrotyrosine quantification methods: Current concepts and future challenges. Biochimie 2016; 125:1-11. [PMID: 26921794 DOI: 10.1016/j.biochi.2016.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Measurement of 3-nitrotyrosine (3-NT) in biological samples can be used as a biomarker of nitrosative stress, since it is very stable and suitable for analysis. Increased 3-NT levels in biological samples have been associated with several physiological and pathological conditions. Different methods have been described for the detection and quantification of this molecule, such as (i) immunological methods; (ii) liquid chromatography, namely high-pressure liquid chromatography (HPLC)-based methods that use ultraviolet-visible (UV/VIS) absorption, electrochemical (ECD) and diode array (DAD) detection, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS); (iii) gas chromatography, such as gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). METHODS A literature review on nitrosative stress, protein nitration, as well as 3-NT quantification methods was carried out. RESULTS This review covers the different methods for analysis of 3-NT that have been developed during the last years as well as the latest advances in this field. Overall, all methods present positive and negative aspects, although it is clear that chromatography-based methods present good sensitivity and specificity. Regarding this, GC-based methods exhibit the highest sensibility in the quantification of 3-NT, although it requires a prior time consuming derivatization step. Conversely, HPLC does not require such derivatization step, despite being not as accurate as GC. CONCLUSION It becomes clear that all the methods described during this literature review, although accurate for 3-NT quantification, need to be improved regarding both sensitivity and specificity. Moreover, optimization of the protocols that have been described is clearly needed.
Collapse
Affiliation(s)
- Dulce Teixeira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Rúben Fernandes
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| |
Collapse
|
19
|
Microparticles That Form Immune Complexes as Modulatory Structures in Autoimmune Responses. Mediators Inflamm 2015; 2015:267590. [PMID: 26300590 PMCID: PMC4537755 DOI: 10.1155/2015/267590] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are induced during apoptosis, cell activation, and even “spontaneous” release. Initially MPs were considered to be inert cellular products with no biological function. However, an extensive research and functional characterization have shown that the molecular composition and the effects of MPs depend upon the cellular background and the mechanism inducing them. They possess a wide spectrum of biological effects on intercellular communication by transferring different molecules able to modulate other cells. MPs interact with their target cells through different mechanisms: membrane fusion, macropinocytosis, and receptor-mediated endocytosis. However, when MPs remain in the extracellular milieu, they undergo modifications such as citrullination, glycosylation, and partial proteolysis, among others, becoming a source of neoantigens. In rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), reports indicated elevated levels of MPs with different composition, content, and effects compared with those isolated from healthy individuals. MPs can also form immune complexes amplifying the proinflammatory response and tissue damage. Their early detection and characterization could facilitate an appropriate diagnosis optimizing the pharmacological strategies, in different diseases including cancer, infection, and autoimmunity. This review focuses on the current knowledge about MPs and their involvement in the immunopathogenesis of SLE and RA.
Collapse
|
20
|
Ryan BJ, Nissim A, Winyard PG. Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol 2014; 2:715-24. [PMID: 24955328 PMCID: PMC4062766 DOI: 10.1016/j.redox.2014.05.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023] Open
Abstract
Tissue inflammation results in the production of numerous reactive oxygen, nitrogen and chlorine species, in addition to the products of lipid and sugar oxidation. Some of these products are capable of chemically modifying amino acids. This in turn results in changes to the structure and function of proteins. Increasing evidence demonstrates that such oxidative post-translational modifications result in the generation of neo-epitopes capable of eliciting both innate and adaptive immune responses. In this paper, we focus on how free radicals and related chemical species generated in inflammatory environments modulate the antigenicity of self-proteins, resulting in immune responses which involve the generation of autoantibodies against key autoantigens in autoimmune diseases. As examples, we will focus on Ro-60 and C1q in systemic lupus erythematosus, along with type-II collagen in rheumatoid arthritis. This review also covers some of the emerging literature which demonstrates that neo-epitopes generated by oxidation are conserved, as exemplified by the evolutionarily conserved pathogen-associated molecular patterns (PAMPs). We discuss how these observations relate to the pathogenesis of both human autoimmune diseases and inflammatory disease, such as atherosclerosis. The potential for these neo-epitopes and the immune responses against them to act as biomarkers or therapeutic targets is also discussed. Oxidants can generate stable post-translational modifications (PTMs) on proteins. Oxidative PTMs are recognised in evolutionarily-conserved innate immune responses. These PTMs can represent neo-epitopes that break tolerance in autoimmune disease. Antibodies targeting these PTMs in diseases e.g. RA and SLE, can be biomarkers.
Collapse
Affiliation(s)
- Brent J. Ryan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Paul G. Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
- Corresponding author.
| |
Collapse
|
21
|
Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol 2013; 49:741-56. [PMID: 24068616 DOI: 10.1007/s12035-013-8553-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.
Collapse
|
22
|
Ahsan H. 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum Immunol 2013; 74:1392-9. [PMID: 23777924 DOI: 10.1016/j.humimm.2013.06.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/10/2013] [Accepted: 06/07/2013] [Indexed: 02/07/2023]
Abstract
The free radical-mediated damage to proteins results in the modification of amino acid residues, cross-linking of side chains and fragmentation. l-Tyrosine and protein bound tyrosine are prone to attack by various mediators and reactive nitrogen intermediates to form 3-nitrotyrosine (3-NT). Activated macrophages produce superoxide (O2(·-)) and NO, which are converted to peroxynitrite ONO2(-). 3-NT formation is also catalyzed by a class of peroxidases utilizing nitrite and hydrogen peroxide as substrates. Evidence supports the formation of 3-NT in vivo in diverse pathologic conditions and 3-NT is thought to be a relatively specific marker of oxidative damage mediated by peroxynitrite. Free/protein-bound tyrosines are attacked by various RNS, including peroxynitrite, to form free/protein-bound 3-NT, which may provide insight into the etiopathogenesis of autoimmune conditions. The formation of nitrotyrosine represents a specific peroxynitrite-mediated protein modification; thus, detection of nitrotyrosine in proteins is considered as a biomarker for endogenous peroxynitrite activity. The peroxynitrite-driven oxidation and nitration of biomolecules may lead to autoimmune diseases such as systemic lupus. The subsequent release of altered proteins may enable them to act as antigen-inducing antibodies against self-proteins. Hence, tyrosine nitrated proteins can act as neoantigens and lead to the generation of autoantibodies against self proteins in various autoimmune disorders.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
23
|
Gorelik GJ, Yarlagadda S, Patel DR, Richardson BC. Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells. ACTA ACUST UNITED AC 2012; 64:2964-74. [PMID: 22549474 DOI: 10.1002/art.34503] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE CD4+ T cells from patients with active lupus have impaired ERK pathway signaling that decreases DNA methyltransferase expression, resulting in DNA demethylation, overexpression of immune genes, and autoimmunity. The ERK pathway defect is due to impaired phosphorylation of T(505) in the protein kinase Cδ (PKCδ) activation loop. However, the mechanisms that prevent PKCδ T(505) phosphorylation in lupus T cells are unknown. Others have reported that oxidative modifications, and nitration in particular, of T cells as well as serum proteins correlate with lupus disease activity. We undertook this study to test our hypothesis that nitration inactivates PKCδ, contributing to impaired ERK pathway signaling in lupus T cells. METHODS CD4+ T cells were purified from lupus patients and controls and then stimulated with phorbol myristate acetate (PMA). Signaling protein levels, nitration, and phosphorylation were quantitated by immunoprecipitation and immunoblotting of T cell lysates. Transfections were performed by electroporation. RESULTS Treating CD4+ T cells with peroxynitrite nitrated PKCδ, preventing PKCδ T(505) phosphorylation and inhibiting ERK pathway signaling similar to that observed in lupus T cells. Patients with active lupus had higher nitrated T cell PKCδ levels than did controls, which correlated directly with disease activity, and antinitrotyrosine immunoprecipitations demonstrated that nitrated PKCδ, but not unmodified PKCδ, was refractory to PMA-stimulated T(505) phosphorylation, similar to PKCδ in peroxynitrite-treated cells. CONCLUSION Oxidative stress causes PKCδ nitration, which prevents its phosphorylation and contributes to the decreased ERK signaling in lupus T cells. These results identify PKCδ as a link between oxidative stress and the T cell epigenetic modifications in lupus.
Collapse
|
24
|
Thomson L, Tenopoulou M, Lightfoot R, Tsika E, Parastatidis I, Martinez M, Greco TM, Doulias PT, Wu Y, Tang WHW, Hazen SL, Ischiropoulos H. Immunoglobulins against tyrosine-nitrated epitopes in coronary artery disease. Circulation 2012; 126:2392-401. [PMID: 23081989 DOI: 10.1161/circulationaha.112.103796] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several lines of evidence support a pathophysiological role of immunity in atherosclerosis. Tyrosine-nitrated proteins, a footprint of oxygen- and nitrogen-derived oxidants generated by cells of the immune system, are enriched in atheromatous lesions and in circulation of patients with coronary artery disease (CAD). However, the consequences of possible immune reactions triggered by the presence of nitrated proteins in subjects with clinically documented atherosclerosis have not been explored. METHODS AND RESULTS Specific immunoglobulins that recognize 3-nitrotyrosine epitopes were identified in human lesions, as well as in circulation of patients with CAD. The levels of circulating immunoglobulins against 3-nitrotyrosine epitopes were quantified in patients with CAD (n=374) and subjects without CAD (non-CAD controls, n=313). A 10-fold increase in the mean level of circulating immunoglobulins against protein-bound 3-nitrotyrosine was documented in patients with CAD (3.75±1.8 μg antibody Eq/mL plasma versus 0.36±0.8 μg antibody Eq/mL plasma), and was strongly associated with angiographic evidence of significant CAD. CONCLUSIONS The results of this cross-sectional study suggest that posttranslational modification of proteins via nitration within atherosclerotic plaque-laden arteries and in circulation serve as neo-epitopes for the elaboration of immunoglobulins, thereby providing an association between oxidant production and the activation of the immune system in CAD.
Collapse
Affiliation(s)
- Leonor Thomson
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Khan MA, Dixit K, Uddin M, Malik A, Alam K. Role of peroxynitrite-modified H2A histone in the induction and progression of rheumatoid arthritis. Scand J Rheumatol 2012; 41:426-33. [DOI: 10.3109/03009742.2012.698300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc Natl Acad Sci U S A 2011; 108:12821-6. [PMID: 21768354 DOI: 10.1073/pnas.1110042108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The site-specific incorporation of the unnatural amino acid p-nitrophenylalanine (pNO(2)Phe) into autologous proteins overcomes self-tolerance and induces a long-lasting polyclonal IgG antibody response. To determine the molecular mechanism by which such simple modifications to amino acids are able to induce autoantibodies, we incorporated pNO(2)Phe, sulfotyrosine (SO(3)Tyr), and 3-nitrotyrosine (3NO(2)Tyr) at specific sites in murine TNF-α and EGF. A subset of TNF-α and EGF mutants with these nitrated or sulfated residues is highly immunogenic and induces antibodies against the unaltered native protein. Analysis of the immune response to the TNF-α mutants in different strains of mice that are congenic for the H-2 locus indicates that CD4 T-cell recognition is necessary for autoantibody production. IFN-γ ELISPOT analysis of CD4 T cells isolated from vaccinated mice demonstrates that peptides with mutated residues, but not the wild-type residues, are recognized. Immunization of these peptides revealed that a CD4 repertoire exists for the mutated peptides but is lacking for the wild-type peptides and that the mutated residues are processed, loaded, and presented on the I-A(b) molecule. Overall, our results illustrate that, although autoantibodies are generated against the endogenous protein, CD4 cells are activated through a neo-epitope recognition mechanism. Therefore, tolerance is maintained at a CD4 level but is broken at the level of antibody production. Finally, these results suggest that naturally occurring posttranslational modifications such as nitration may play a role in antibody-mediated autoimmune disorders.
Collapse
|
27
|
Wang G, Pierangeli SS, Papalardo E, Ansari GAS, Khan MF. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. ACTA ACUST UNITED AC 2010; 62:2064-72. [PMID: 20201076 DOI: 10.1002/art.27442] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Free radical-mediated reactions have been implicated as contributors in a number of autoimmune diseases, including systemic lupus erythematosus (SLE). However, the potential for oxidative/nitrosative stress to elicit an autoimmune response or to contribute to disease pathogenesis, and thus be useful when determining a prognosis, remains largely unexplored in humans. This study was undertaken to investigate the status and contribution of oxidative/nitrosative stress in patients with SLE. METHODS Sera from 72 SLE patients with varying levels of disease activity according to the SLE Disease Activity Index (SLEDAI) and 36 age- and sex-matched healthy controls were evaluated for serum levels of oxidative/nitrosative stress markers, including antibodies to malondialdehyde (anti-MDA) protein adducts and to 4-hydroxynonenal (anti-HNE) protein adducts, MDA/HNE protein adducts, superoxide dismutase (SOD), nitrotyrosine (NT), and inducible nitric oxide synthase (iNOS). RESULTS Serum analysis showed significantly higher levels of both anti-MDA/anti-HNE protein adduct antibodies and MDA/HNE protein adducts in SLE patients compared with healthy controls. Interestingly, not only was there an increased number of subjects positive for anti-MDA or anti-HNE antibodies, but also the levels of both of these antibodies were statistically significantly higher among SLE patients whose SLEDAI scores were > or = 6 as compared with SLE patients with lower SLEDAI scores (SLEDAI score <6). In addition, a significant correlation was observed between the levels of anti-MDA or anti-HNE antibodies and the SLEDAI score (r = 0.734 and r = 0.647, respectively), suggesting a possible causal relationship between these antibodies and SLE. Furthermore, sera from SLE patients had lower levels of SOD and higher levels of iNOS and NT compared with healthy control sera. CONCLUSION These findings support an association between oxidative/nitrosative stress and SLE. The stronger response observed in serum samples from patients with higher SLEDAI scores suggests that markers of oxidative/nitrosative stress may be useful in evaluating the progression of SLE and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Gangduo Wang
- University of Texas Medical Branch, Galveston, TX 77555-0438, USA
| | | | | | | | | |
Collapse
|
28
|
Pham VV, Stichtenoth DO, Tsikas D. Nitrite correlates with 3-nitrotyrosine but not with the F2-isoprostane 15(S)-8-iso-PGF2α in urine of rheumatic patients. Nitric Oxide 2009; 21:210-5. [DOI: 10.1016/j.niox.2009.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/06/2009] [Accepted: 09/03/2009] [Indexed: 11/24/2022]
|
29
|
Wang G, Wang J, Ma H, Khan MF. Increased nitration and carbonylation of proteins in MRL+/+ mice exposed to trichloroethene: potential role of protein oxidation in autoimmunity. Toxicol Appl Pharmacol 2009; 237:188-95. [PMID: 19332086 DOI: 10.1016/j.taap.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 12/15/2022]
Abstract
Even though reactive oxygen and nitrogen species (RONS) are implicated as mediators of autoimmune diseases (ADs), little is known about contribution of protein oxidation (carbonylation and nitration) in the pathogenesis of such diseases. The focus of this study was, therefore, to establish a link between protein oxidation and induction and/or exacerbation of autoimmunity. To achieve this, female MRL +/+ mice were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 6 or 12 weeks (10 mmol/kg, i.p., every 4(th) day). TCE treatment resulted in significantly increased formation of nitrotyrosine (NT) and induction of iNOS in the serum at both 6 and 12 weeks of treatment, but the response was greater at 12 weeks. Likewise, TCE treatment led to greater NT formation, and iNOS protein and mRNA expression in the livers and kidneys. Moreover, TCE treatment also caused significant increases ( approximately 3 fold) in serum protein carbonyls (a marker of protein oxidation) at both 6 and 12 weeks. Significantly increased protein carbonyls were also observed in the livers and kidneys (2.1 and 1.3 fold, respectively) at 6 weeks, and to a greater extent at 12 weeks (3.5 and 2.1 fold, respectively) following TCE treatment. The increases in TCE-induced protein oxidation (carbonylation and nitration) were associated with significant increases in Th1 specific cytokine (IL-2, IFN-gamma) release into splenocyte cultures. These results suggest an association between protein oxidation and induction/exacerbation of autoimmune response. The results present a potential mechanism by which oxidatively modified proteins could contribute to TCE-induced autoimmune response and necessitates further investigations for clearly establishing the role of protein oxidation in the pathogenesis of ADs.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, 2.319 Mary Moody Northen, Galveston, TX 77555-0438, USA
| | | | | | | |
Collapse
|
30
|
Bakillah A. Nitrated apolipoprotein A-I, a potential new cardiovascular marker, is markedly increased in low high-density lipoprotein cholesterol subjects. Clin Chem Lab Med 2009; 47:60-9. [DOI: 10.1515/cclm.2009.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Dhiman M, Nakayasu ES, Madaiah YH, Reynolds BK, Wen JJ, Almeida IC, Garg NJ. Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas' disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:728-40. [PMID: 18688021 DOI: 10.2353/ajpath.2008.080047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative/nitrosative stress may be important in the pathology of Chagas' disease. Experimental animals infected by Trypanosoma cruzi showed an early rise in myocardial and peripheral protein-3-nitrotyrosine (3NT) and protein-carbonyl formation that persisted during the chronic stage of disease. In comparison, experimental chronic ethanol-induced cardiomyopathy was slow to develop and presented with a moderate increase in oxidative stress and minimal to no nitrosative stress after long-term alcohol feeding of animals. The oxidative stress in both chagasic animals and animals with ethanol-induced cardiomyopathy correlated with the persistence of reactive oxygen species-producing inflammatory intermediates. Protein-3NT formation in T. cruzi-infected animals was associated with enhanced nitric oxide expression (inferred by nitrite/nitrate levels) and myeloperoxidase activity, suggesting that both peroxynitrite- and myeloperoxidase-mediated pathways contribute to increased protein nitration in Chagas' disease. We used one- and two-dimensional gel electrophoresis and Western blot analysis to identify disease-specific plasma proteins that were 3NT-modified in T. cruzi-infected animals. Nitrated protein spots (56 in total) were sequenced by matrix-assisted laser desorption ionization/time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry and identified by a homology search of public databases. Clustering of 3NT-modified proteins according to their functional characteristics revealed that the nitration of immunoglobulins, apolipoprotein isoforms, and other proteins might perturb their functions and be important in the pathology of Chagas' disease. We also showed that nitrated peptides derived from titin and alpha-actin were released into the plasma of patients with Chagas' disease. Such modified proteins may be useful biomarkers of Chagas' disease.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|