1
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany
| | - Gerhard Link
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Hosoya M, Saeki T, Saegusa C, Matsunaga T, Okano H, Fujioka M, Ogawa K. Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regen Ther 2018; 10:54-63. [PMID: 30581897 PMCID: PMC6299162 DOI: 10.1016/j.reth.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction Pendred syndrome is an autosomal-recessive disease characterized by congenital hearing loss and thyroid goiter. Previously, cell stress susceptibilities were shown to increase in patient-derived cells with intracellular aggregation using an in vitro acute cochlear cell model derived from patient-specific pluripotent stem (iPS) cells. Moreover, we showed that rapamycin can relieve cell death. However, studies regarding long-term cell survival without cell stressors that mimic the natural course of disease or the rational minimum concentration of rapamycin that prevents cell death are missing. Methods In this report, we first investigated the rational minimum concentration of rapamycin using patient-specific iPS cells derived-cochlear cells with three different conditions of acute stress. We next confirmed the effects of rapamycin in long-term cell survival and phenotypes by using cochlear cells derived from three different patient-derived iPS cells. Results We found that inner ear cells derived from Pendred syndrome patients are more vulnerable than those from healthy individuals during long-term culturing; however, this susceptibility was relieved via treatment with low-dose rapamycin. The slow progression of hearing loss in patients may be explained, in part, by the vulnerability observed in patient cells during long-term culturing. We successfully evaluated the rational minimum concentration of rapamycin for treatment of Pendred syndrome. Conclusion Our results suggest that low-dose rapamycin not only decreases acute symptoms but may prevent progression of hearing loss in Pendred syndrome patients. In vitro chronic disorder model of Pendred syndrome is established. The vulnerability observed during long-term culturing explains progression of PDS. Low-dose rapamycin relief the cell vulnerability observed in PDS patients. PDS iPSCs reveal a rational treatment strategy for chronic progressive hearing loss.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsubasa Saeki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chika Saegusa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tatsuo Matsunaga
- The Laboratory of Auditory Disorders and Division of Hearing and Balance Research, National Institute of Sensory Organs, National Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.,Medical Genetics Center, National Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Goto S, Kawaguchi Y, Sugita C, Ichinose M, Sugita M. P-class pentatricopeptide repeat protein PTSF1 is required for splicing of the plastid pre-tRNA(I) (le) in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:493-503. [PMID: 27117879 DOI: 10.1111/tpj.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are widely distributed in eukaryotes and are mostly localized in mitochondria or plastids. PPR proteins play essential roles in various RNA processing steps in organelles; however, the function of the majority of PPR proteins remains unknown. To examine the function of plastid PPR proteins, PpPPR_4 gene knock-out mutants were characterized in Physcomitrella patens. The knock-out mosses displayed severe growth retardation and reduced effective quantum yield of photosystem II. Immunoblot analysis showed that knock-out of PpPPR_4 resulted in a strongly reduced level of plastid-encoded proteins, such as photosystem II reaction center protein D1, the β subunit of ATP synthase, and the stromal enzyme, Rubisco. To further investigate whether knock-out of the PpPPR_4 gene affects plastid gene expression, we analyzed steady-state transcript levels of protein- and rRNA-coding genes by quantitative RT-PCR. This analysis showed that the level of many protein-coding transcripts increased in the mutants. In contrast, splicing of a spacer tRNA(I) (le) precursor encoded by the rrn operon was specifically impaired in the mutants, whereas the accumulation of other plastid tRNAs and rRNAs was not largely affected. Thus, the defect in tRNA(I) (le) splicing leads to a considerable reduction of mature tRNA(I) (le) , which may be accountable for the reduced protein level. An RNA mobility shift assay showed that the recombinant PpPPR_4 bound preferentially to domain III of the tRNA(I) (le) group-II intron. These results provide evidence that PpPPR_4 functions in RNA splicing of the tRNA(I) (le) intron, and hence PpPPR_4 was named plastid tRNA splicing factor 1 (PTSF1).
Collapse
Affiliation(s)
- Seiya Goto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
4
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Plant Cell Physiology and Molecular Biology, University of Bochum, Bochum, Germany
| | | |
Collapse
|
5
|
Ohtani S, Ichinose M, Tasaki E, Aoki Y, Komura Y, Sugita M. Targeted gene disruption identifies three PPR-DYW proteins involved in RNA editing for five editing sites of the moss mitochondrial transcripts. PLANT & CELL PHYSIOLOGY 2010; 51:1942-1949. [PMID: 20837503 DOI: 10.1093/pcp/pcq142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In plant organelles, RNA editing frequently occurs in many transcripts, but little is known about its molecular mechanism. Eleven RNA editing sites are present in the moss Physcomitrella patens mitochondria. Recently PpPPR_71, one member of 10 DYW-subclass pentatricopeptide repeat (PPR-DYW) proteins, has been identified as a site-specific recognition factor for RNA editing in the mitochondrial transcript. In this study, we disrupted three genes encoding a PPR-DYW protein-PpPPR_56, PpPPR_77, and PpPPR_91-to investigate whether they are involved in RNA editing. Transient expression of an N-terminal amino acid sequence fused to the green fluorescent protein (GFP) suggests that the three PPR-DYW proteins are targeted to mitochondria. Disruption of each gene by homologous recombination revealed that PpPPR_56 was involved in RNA editing at the nad3 and nad4 sites, PpPPR_77 at the cox2 and cox3 sites, and PpPPR_91 at the nad5-2 site in the mitochondrial transcripts. The nucleotide sequences surrounding the two editing sites targeted by a single PPR-DYW protein share 42 to 56% of their identities. Thus, moss PPR-DYW proteins seem to be site-specific factors for RNA editing in mitochondrial transcripts.
Collapse
Affiliation(s)
- Shotaro Ohtani
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Tasaki E, Hattori M, Sugita M. The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:560-70. [PMID: 20163555 DOI: 10.1111/j.1365-313x.2010.04175.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In most land plants RNA editing frequently occurs in many organelle transcripts, but little is known about the molecular mechanisms of the organelle RNA editing process. In this study, we have characterized the Physcomitrella patens PpPPR_71 gene that is required for RNA editing of the ccmFc transcript. This transcript harbors two RNA editing sites, ccmF-1 and ccmF-2, that are separated by 18 nucleotides. Complementary DNA sequence analysis of ccmFc suggested that RNA editing at the ccmF-1 site occurred before ccmF-2 editing. RNA editing of the ccmF-2 downstream site was specifically impaired by disruption of the PpPPR_71 gene that encodes a polypeptide with 17 pentatricopeptide repeat motifs and a C-terminal DYW domain. The recombinant PpPPR_71 protein expressed in Escherichia coli specifically bound to the 46-nucleotide sequence containing the ccmF-2 editing site. The binding affinity of the recombinant PpPPR_71 was strongest when using the edited RNA at ccmF-1. In addition, the DYW domain also binds to the surrounding ccmF-2 editing site. We conclude that PpPPR_71 is an RNA-binding protein that acts as a site recognition factor in mitochondrial RNA editing.
Collapse
Affiliation(s)
- Eiji Tasaki
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
7
|
|
8
|
Kabeya Y, Nakanishi H, Suzuki K, Ichikawa T, Kondou Y, Matsui M, Miyagishima SY. The YlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria. BMC PLANT BIOLOGY 2010; 10:57. [PMID: 20359373 PMCID: PMC2923531 DOI: 10.1186/1471-2229-10-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/02/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts. Although several components of the envelope division machinery have been identified and characterized, little is known about the molecular components/mechanisms underlying the change of the nucleoid structure. RESULTS In order to identify new factors that are involved in the chloroplast division, we isolated Arabidopsis thaliana chloroplast division mutants from a pool of random cDNA-overexpressed lines. We found that the overexpression of a previously uncharacterized gene (AtYLMG1-1) of cyanobacterial origin results in the formation of an irregular network of chloroplast nucleoids, along with a defect in chloroplast division. In contrast, knockdown of AtYLMG1-1 resulted in a concentration of the nucleoids into a few large structures, but did not affect chloroplast division. Immunofluorescence microscopy showed that AtYLMG1-1 localizes in small puncta on thylakoid membranes, to which a subset of nucleoids colocalize. In addition, in the cyanobacterium Synechococcus elongates, overexpression and deletion of ylmG also displayed defects in nucleoid structure and cell division. CONCLUSIONS These results suggest that the proper distribution of nucleoids requires the YlmG protein, and the mechanism is conserved between cyanobacteria and chloroplasts. Given that ylmG exists in a cell division gene cluster downstream of ftsZ in gram-positive bacteria and that ylmG overexpression impaired the chloroplast division, the nucleoid partitioning by YlmG might be related to chloroplast and cyanobacterial division processes.
Collapse
Affiliation(s)
- Yukihiro Kabeya
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiromitsu Nakanishi
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Suzuki
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanari Ichikawa
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Youichi Kondou
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin-ya Miyagishima
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Hattori M, Sugita M. A moss pentatricopeptide repeat protein binds to the 3' end of plastid clpP pre-mRNA and assists with mRNA maturation. FEBS J 2009; 276:5860-9. [PMID: 19740105 DOI: 10.1111/j.1742-4658.2009.07267.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute a large family in land plants and are required for various post-transcriptional steps associated with RNA in plant organelles. The moss Physcomitrella patens PPR protein, PpPPR_38, is a nuclear-encoded chloroplast protein and was previously shown to be involved in the maturation step of chloroplast clpP pre-mRNA. To understand precisely the molecular function of PpPPR_38, we prepared recombinant PpPPR_38 protein and characterized it in maturation steps of clpP pre-mRNA. In vitro RNA-binding assays showed that the recombinant protein strongly bound to the clpP-5'-rps12 intergenic region, which is highly AU-rich and includes an inverted repeat sequence potentially forming a stem-loop structure. Digestion of the bound RNA region by RNase V1 was significantly accelerated by the addition of the recombinant protein. This strongly suggests that the binding of PpPPR_38 facilitates the formation of a stable stem-loop structure. An in vitro degradation assay using chloroplast lysates gave rise to the possibility that the stable stem-loop structure formed by PpPPR_38 contributes the correct intergenic RNA cleavage and protection of mature clpP mRNA against 3' to 5' exoribonuclease. Because an RNA-binding assay also showed weak binding to the clpP first exon-intron region, PpPPR_38 is likely to be related to the splicing of clpP pre-mRNA. Taking together all of the above findings, we conclude that PpPPR_38 is necessary for several steps in the clpP mRNA maturation process.
Collapse
|