1
|
Chen S, Wang Z, Dong G, Zhao H, Zhu Y, Liu Y, Yuan L, Jiang J, Liu X, Liu A, Yu Y. Characterization and Molecular Engineering of a N-Methyltransferase from Edible Nelumbo nucifera Leaves Involved in Nuciferine Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39365101 DOI: 10.1021/acs.jafc.4c04818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Lotus leaf, traditionally used as both edible tea and herbal medicine in Asia, contains nuciferine, a lipid-lowering and weight-loss compoud. The biosynthetic pathways of nuciferine in Nelumbo nucifera remain unclear. We characterized a specific N-methyltransferase, NnNMT, which had a novel function and catalyzed only nuciferine synthesis from the aporphine-type alkaloid N-nornuciferine. The expression profile of NnNMT was in agreement with BIA accumulation patterns in four tissues from three varieties, suggesting that NnNMT is involved in nucleiferine biosynthesis in Nelumbo nucifera. Protein engineering based on molecular docking and dynamic simulations revealed key residues (Y98, H208, F256, Y81, F329, G260, P76, and H80) crucial for NnNMT activity, with the F257A mutant showing increased efficiency. These findings enhance our understanding of aporphine alkaloid biosynthesis and support the development of lotus-based functional foods and medicinal applications.
Collapse
Affiliation(s)
- Sha Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhennan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | | | - Hedi Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546-0236, United States
| | - Jinzhu Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - XianJu Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - An Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yuetong Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
- Experimental management center, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong 030619, China
| |
Collapse
|
2
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
4
|
Tetrahydroisoquinoline N-methyltransferase from Methylotenera Is an Essential Enzyme for the Biodegradation of Berberine in Soil Water. Molecules 2022; 27:molecules27175442. [PMID: 36080208 PMCID: PMC9457531 DOI: 10.3390/molecules27175442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Berberine (BBR), a Chinese herbal medicine used in intestinal infection, has been applied as a botanical pesticide in the prevention of fungal disease in recent years. However, its degradation in the environment remains poorly understood. Here, we investigated BBR’s degradation in soil water from different sources accompanied by its effect on bacterial diversity. Our results indicated that BBR was only degraded in soil water, while it was stable in tap water, river water and aquaculture water. Bacterial amplicon results of these samples suggested that the degradation of BBR was closely related to the enrichment of Methylotenera. To reveal this special relationship, we used bioinformatics tools to make alignments between the whole genome of Methylotenera and the pathway of BBR’s degradation. An ortholog of Tetrahydroisoquinoline N-methyltransferase from plant was discovered only in Methylotenera that catalyzed a crucial step in BBR’s degradation pathway. In summary, our work indicated that Methylotenera was an essential bacterial genus in the degradation of BBR in the environment because of its Tetrahydroisoquinoline N-methyltransferase. This study provided new insights into BBR’s degradation in the environment, laying foundations for its application as a botanical pesticide.
Collapse
|
5
|
Hao DC, Li P, Xiao PG, He CN. Dissection of full-length transcriptome and metabolome of Dichocarpum (Ranunculaceae): implications in evolution of specialized metabolism of Ranunculales medicinal plants. PeerJ 2021; 9:e12428. [PMID: 34760397 PMCID: PMC8574218 DOI: 10.7717/peerj.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Several main families of Ranunculales are rich in alkaloids and other medicinal compounds; many species of these families are used in traditional and folk medicine. Dichocarpum is a representative medicinal genus of Ranunculaceae, but the genetic basis of its metabolic phenotype has not been investigated, which hinders its sustainable conservation and utilization. We use the third-generation high-throughput sequencing and metabolomic techniques to decipher the full-length transcriptomes and metabolomes of five Dichocarpum species endemic in China, and 71,598 non-redundant full-length transcripts were obtained, many of which are involved in defense, stress response and immunity, especially those participating in the biosynthesis of specialized metabolites such as benzylisoquinoline alkaloids (BIAs). Twenty-seven orthologs extracted from trancriptome datasets were concatenated to reconstruct the phylogenetic tree, which was verified by the clustering analysis based on the metabolomic profile and agreed with the Pearson correlation between gene expression patterns of Dichocarpum species. The phylogenomic analysis of phytometabolite biosynthesis genes, e.g., (S)-norcoclaurine synthase, methyltransferases, cytochrome p450 monooxygenases, berberine bridge enzyme and (S)-tetrahydroprotoberberine oxidase, revealed the evolutionary trajectories leading to the chemodiversity, especially that of protoberberine type, aporphine type and bis-BIA abundant in Dichocarpum and related genera. The biosynthesis pathways of these BIAs are proposed based on full-length transcriptomes and metabolomes of Dichocarpum. Within Ranunculales, the gene duplications are common, and a unique whole genome duplication is possible in Dichocarpum. The extensive correlations between metabolite content and gene expression support the co-evolution of various genes essential for the production of different specialized metabolites. Our study provides insights into the transcriptomic and metabolomic landscapes of Dichocarpum, which will assist further studies on genomics and application of Ranunculales plants.
Collapse
Affiliation(s)
| | - Pei Li
- Chinese Academy of Medical Sciences, Beijing, China
| | - Pei-Gen Xiao
- Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Nian He
- Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
In silico identification and structure function analysis of a putative coclaurine N-methyltransferase from Aristolochia fimbriata. Comput Biol Chem 2020; 85:107201. [DOI: 10.1016/j.compbiolchem.2020.107201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 11/22/2022]
|
7
|
Morris JS, Yu L, Facchini PJ. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. PHYTOCHEMISTRY 2020; 170:112193. [PMID: 31765874 DOI: 10.1016/j.phytochem.2019.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
N-methylation is a recurring feature in the biosynthesis of many plant specialized metabolites, including alkaloids. A crucial step in the conserved central pathway that provides intermediates for the biosynthesis of benzylisoquinoline alkaloids (BIAs) involves conversion of the secondary amine (S)-coclaurine into the tertiary amine (S)-N-methylcoclaurine by coclaurine N-methyltransferase (CNMT). Subsequent enzymatic steps yield the core intermediate (S)-reticuline, from which various branch pathways for the biosynthesis of major BIAs such as morphine, noscapine and sanguinarine diverge. An additional N-methylation yielding quaternary BIAs is catalyzed by reticuline N-methyltransferase (RNMT), such as in the branch pathway leading to the taxonomically widespread and ecologically significant alkaloid magnoflorine. Despite their functional differences, analysis of primary sequence information has been unable to accurately distinguish between CNMT-like and RNMT-like enzymes, necessitating laborious in vitro screening. Furthermore, despite a recent emphasis on structural characterization of BIA NMTs, the features and mechanisms underlying the CNMT-RNMT functional dichotomy were unknown. We report the identification of structural variants tightly correlated with function in known BIA NMTs and show through reciprocal mutagenesis that a single residue acts as a switch between CNMT- and RNMT-like functions. We use yeast in vivo screening to show that this discovery allows for accurate prediction of activity strictly from primary sequence information and, on this basis, improve the annotation of previously reported putative BIA NMTs. Our results highlight the unusually short mutational distance separating ancestral CNMT-like enzymes from more evolutionarily advanced RNMT-like enzymes, and thus help explain the widespread yet sporadic occurrence of quaternary BIAs in plants. While this is the first report of structural variants controlling mono-versus di-methylation activity among plant NMT enzymes, comparison with bacterial MT enzymes also suggests possible convergent evolution.
Collapse
Affiliation(s)
- Jeremy S Morris
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Lisa Yu
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
8
|
Identification and characterization of methyltransferases involved in benzylisoquinoline alkaloids biosynthesis from Stephania intermedia. Biotechnol Lett 2019; 42:461-469. [DOI: 10.1007/s10529-019-02785-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/14/2019] [Indexed: 12/25/2022]
|
9
|
Morris JS, Facchini PJ. Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. FRONTIERS IN PLANT SCIENCE 2019; 10:1058. [PMID: 31543888 PMCID: PMC6730481 DOI: 10.3389/fpls.2019.01058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 05/25/2023]
Abstract
O- and N-methylations are ubiquitous and recurring features in the biosynthesis of many specialized metabolites. Accordingly, the methyltransferase (MT) enzymes catalyzing these modifications are directly responsible for a substantial fraction of the vast chemodiversity observed in plants. Enabled by DNA sequencing and synthesizing technologies, recent studies have revealed and experimentally validated the trajectories of molecular evolution through which MTs, such as those biosynthesizing caffeine, emerge and shape plant chemistry. Despite these advances, the evolutionary origins of many other alkaloid MTs are still unclear. Focusing on benzylisoquinoline alkaloid (BIA)-producing plants such as opium poppy, we review the functional breadth of BIA N- and O-MT enzymes and their relationship with the chemical diversity of their host species. Drawing on recent structural studies, we discuss newfound insight regarding the molecular determinants of BIA MT function and highlight key hypotheses to be tested. We explore what is known and suspected concerning the evolutionary histories of BIA MTs and show that substantial advances in this domain are within reach. This new knowledge is expected to greatly enhance our conceptual understanding of the evolutionary origins of specialized metabolism.
Collapse
|
10
|
Lang DE, Morris JS, Rowley M, Torres MA, Maksimovich VA, Facchini PJ, Ng KKS. Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J Biol Chem 2019; 294:14482-14498. [PMID: 31395658 DOI: 10.1074/jbc.ra119.009214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse class of plant-specialized metabolites that have been particularly well-studied in the order Ranunculales. The N-methyltransferases (NMTs) in BIA biosynthesis can be divided into three groups according to substrate specificity and amino acid sequence. Here, we report the first crystal structures of enzyme complexes from the tetrahydroprotoberberine NMT (TNMT) subclass, specifically for GfTNMT from the yellow horned poppy (Glaucium flavum). GfTNMT was co-crystallized with the cofactor S-adenosyl-l-methionine (d min = 1.6 Å), the product S-adenosyl-l-homocysteine (d min = 1.8 Å), or in complex with S-adenosyl-l-homocysteine and (S)-cis-N-methylstylopine (d min = 1.8 Å). These structures reveal for the first time how a mostly hydrophobic L-shaped substrate recognition pocket selects for the (S)-cis configuration of the two central six-membered rings in protoberberine BIA compounds. Mutagenesis studies confirm and functionally define the roles of several highly-conserved residues within and near the GfTNMT-active site. The substrate specificity of TNMT enzymes appears to arise from the arrangement of subgroup-specific stereospecific recognition elements relative to catalytic elements that are more widely-conserved among all BIA NMTs. The binding mode of protoberberine compounds to GfTNMT appears to be similar to coclaurine NMT, with the isoquinoline rings buried deepest in the binding pocket. This binding mode differs from that of pavine NMT, in which the benzyl ring is bound more deeply than the isoquinoline rings. The insights into substrate recognition and catalysis provided here form a sound basis for the rational engineering of NMT enzymes for chemoenzymatic synthesis and metabolic engineering.
Collapse
Affiliation(s)
- Dean E Lang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jeremy S Morris
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Michael Rowley
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miguel A Torres
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Vook A Maksimovich
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Weber C, Opatz T. Bisbenzylisoquinoline Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2019; 81:1-114. [DOI: 10.1016/bs.alkal.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Petruczynik A, Misiurek J, Dyjach J, Kołsut M, Misiurek D, Waksmundzka-Hajnos M. Optimization of ion-exchange systems for isoquinoline alkaloids analysis in plant materials. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1485039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Justyna Misiurek
- Department of Inorganic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Justyna Dyjach
- Department of Inorganic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Mariola Kołsut
- Department of Inorganic Chemistry, Medical University of Lublin, Lublin, Poland
| | - Dorota Misiurek
- Botanical Garden of Maria Curie-Sklodowska University, Lublin, Poland
| | | |
Collapse
|
13
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine N-Methyltransferase. Angew Chem Int Ed Engl 2018; 57:10600-10604. [PMID: 29791083 PMCID: PMC6099451 DOI: 10.1002/anie.201805060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/03/2022]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites, which have been exploited to develop analgesics, antibiotics, antitumor agents, and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives.
Collapse
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
14
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine
N
‐Methyltransferase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
15
|
Morris JS, Groves RA, Hagel JM, Facchini PJ. An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. J Biol Chem 2018; 293:13364-13376. [PMID: 29929980 DOI: 10.1074/jbc.ra118.004067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Indexed: 01/24/2023] Open
Abstract
Phenylalkylamines, such as the plant compounds ephedrine and pseudoephedrine and the animal neurotransmitters dopamine and adrenaline, compose a large class of natural and synthetic molecules with important physiological functions and pharmaceutically valuable bioactivities. The final steps of ephedrine and pseudoephedrine biosynthesis in members of the plant genus Ephedra involve N-methylation of norephedrine and norpseudoephedrine, respectively. Here, using a plant transcriptome screen, we report the isolation and characterization of an N-methyltransferase (NMT) from Ephedra sinica able to catalyze the formation of (pseudo)ephedrine and other naturally occurring phenylalkylamines, including N-methylcathinone and N-methyl(pseudo)ephedrine. Phenylalkylamine N-methyltransferase (PaNMT) shares substantial amino acid sequence identity with enzymes of the NMT family involved in benzylisoquinoline alkaloid (BIA) metabolism in members of the higher plant order Ranunculales, which includes opium poppy (Papaver somniferum). PaNMT accepted a broad range of substrates with phenylalkylamine, tryptamine, β-carboline, tetrahydroisoquinoline, and BIA structural scaffolds, which is in contrast to the specificity for BIA substrates of NMT enzymes within the Ranunculales. PaNMT transcript levels were highest in young shoots of E. sinica, which corresponded to the location of NMT activity yielding (pseudo)ephedrine, N-methylcathinone, and N-methyl(pseudo)ephedrine, and with in planta accumulation of phenylalkylamines. Co-expression of recombinant genes encoding PaNMT and an ω-transaminase (PP2799) from Pseudomonas putida in Escherichia coli enabled the conversion of exogenous (R)-phenylacetylcarbinol (PAC) and (S)-PAC to ephedrine and pseudoephedrine, respectively. Our work further demonstrates the utility of plant biochemical genomics for the isolation of key enzymes that facilitate microbial engineering for the production of medicinally important metabolites.
Collapse
Affiliation(s)
- Jeremy S Morris
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ryan A Groves
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jillian M Hagel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
16
|
Hori K, Yamada Y, Purwanto R, Minakuchi Y, Toyoda A, Hirakawa H, Sato F. Mining of the Uncharacterized Cytochrome P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence. PLANT & CELL PHYSIOLOGY 2018; 59:222-233. [PMID: 29301019 PMCID: PMC5913652 DOI: 10.1093/pcp/pcx210] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/26/2017] [Indexed: 05/15/2023]
Abstract
Land plants produce specialized low molecular weight metabolites to adapt to various environmental stressors, such as UV radiation, pathogen infection, wounding and animal feeding damage. Due to the large variety of stresses, plants produce various chemicals, particularly plant species-specific alkaloids, through specialized biosynthetic pathways. In this study, using a draft genome sequence and querying known biosynthetic cytochrome P450 (P450) enzyme-encoding genes, we characterized the P450 genes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in California poppy (Eschscholzia californica), as P450s are key enzymes involved in the diversification of specialized metabolism. Our in silico studies showed that all identified enzyme-encoding genes involved in BIA biosynthesis were found in the draft genome sequence of approximately 489 Mb, which covered approximately 97% of the whole genome (502 Mb). Further analyses showed that some P450 families involved in BIA biosynthesis, i.e. the CYP80, CYP82 and CYP719 families, were more enriched in the genome of E. californica than in the genome of Arabidopsis thaliana, a plant that does not produce BIAs. CYP82 family genes were highly abundant, so we measured the expression of CYP82 genes with respect to alkaloid accumulation in different plant tissues and two cell lines whose BIA production differs to estimate the functions of the genes. Further characterization revealed two highly homologous P450s (CYP82P2 and CYP82P3) that exhibited 10-hydroxylase activities with different substrate specificities. Here, we discuss the evolution of the P450 genes and the potential for further genome mining of the genes encoding the enzymes involved in BIA biosynthesis.
Collapse
Affiliation(s)
- Kentaro Hori
- Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto, 606-8502 Japan
| | - Yasuyuki Yamada
- Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto, 606-8502 Japan
| | - Ratmoyo Purwanto
- Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto, 606-8502 Japan
| | - Yohei Minakuchi
- National Institute for Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Atsushi Toyoda
- National Institute for Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto, 606-8502 Japan
- Corresponding author: E-mail,
| |
Collapse
|
17
|
Purwanto R, Hori K, Yamada Y, Sato F. Unraveling Additional O-Methylation Steps in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica). PLANT & CELL PHYSIOLOGY 2017; 58:1528-1540. [PMID: 28922749 DOI: 10.1093/pcp/pcx093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 05/25/2023]
Abstract
California poppy (Eschscholzia californica), a member of the Papaveraceae family, produces many biologically active benzylisoquinoline alkaloids (BIAs), such as sanguinarine, macarpine and chelerythrine. Sanguinarine biosynthesis has been elucidated at the molecular level, and its biosynthetic genes have been isolated and used in synthetic biology approaches to produce BIAs in vitro. However, several genes involved in the biosynthesis of macarpine and chelerythrine have not yet been characterized. In this study, we report the isolation and characterization of a novel O-methyltransferase (OMT) involved in the biosynthesis of partially characterized BIAs, especially chelerythrine. A search of the RNA sequence database from NCBI and PhytoMetaSyn for the conserved OMT domain identified 68 new OMT-like sequences, of which the longest 22 sequences were selected based on sequence similarity. Based on their expression in cell lines with different macarpine/chelerythrine profiles, we selected three OMTs (G2, G3 and G11) for further characterization. G3 expression in Escherichia coli indicated O-methylation activity of the simple benzylisoquinolines, including reticuline and norreticuline, and the protoberberine scoulerine with dual regio-reactivities. G3 produced 7-O-methylated, 3'-O-methylated and dual O-methylated products from reticuline and norreticuline, and 9-O-methylated tetrahydrocolumbamine, 2-O-methylscoulerine and tetrahydropalmatine from scoulerine. Further enzymatic analyses suggested that G3 is a scoulerine-9-O-methyltransferase for the biosynthesis of chelerythrine in California poppy. In the present study, we discuss the physiological role of G3 in BIA biosynthesis.
Collapse
Affiliation(s)
- Ratmoyo Purwanto
- Laboratory of Molecular and Cellular Biology of Totipotency, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Kentaro Hori
- Laboratory of Molecular and Cellular Biology of Totipotency, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Yasuyuki Yamada
- Laboratory of Molecular and Cellular Biology of Totipotency, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Fumihiko Sato
- Laboratory of Molecular and Cellular Biology of Totipotency, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
19
|
Zuo Z, Zheng Y, Liang Z, Liu Y, Tang Q, Liu X, Zhao Z, Zeng J. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:397-410. [PMID: 27943430 DOI: 10.1002/rcm.7804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Tissue-specific metabolite profiling helps to find trace alkaloids masked during organ analysis, which contributes to understanding the alkaloid biosynthetic pathways in vivo and evaluating the quality of medical plants by morphology. As Macleaya cordata contains diverse types of benzylisoquinoline alkaloids (BIAs), the alkaloid metabolite profiling was carried out on various tissues of the root. METHODS Laser microdissection with fluorescence detection was used to recognize and dissect different tissues from the root of M. cordata. Ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was applied to analyze the trace alkaloids in tissues. These detected alkaloids were elucidated using their accurate molecular weights, MS/MS data, MS fragmentation patterns and the known biosynthetic pathways of BIAs. Finally, the distribution of alkaloids in dissected tissues and whole sections was mapped. RESULTS Forty-nine alkaloids were identified from five microdissected tissues, and 24 of them were detected for the first time in M. cordata. Some types of alkaloids occurred specifically in dissected tissues. More alkaloids were detected in the cork and xylem vascular bundles which emit strong fluorescence under fluorescence microscopy. Some of the screened alkaloids were intermediates in sanguinarine and chelerythrine biosynthetic pathways, and others were speculated to be involved in the new branches of biosynthetic pathways. CONCLUSIONS The integrated method is sensitive, specific and reliable for determining trace alkaloids, which is also a powerful tool for metabolite profiling of tissue-specific BIAs in situ. The present findings should contribute to a better understanding of the biosynthesis of BIAs in M. cordata root and provide scientific evidence for its quality evaluation based on morphological characteristics. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zi Zuo
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410005, China
| | - Yajie Zheng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yisong Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qi Tang
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiubin Liu
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Jianguo Zeng
- National and Provincial Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
20
|
Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 2016; 6:39256. [PMID: 27991536 PMCID: PMC5171800 DOI: 10.1038/srep39256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from four plant families yielded 33 assembled contigs with homology to characterized NCS genes. Predicted translation products generated from nine contigs consisted of two to five sequential repeats, each containing most of the sequence found in single-domain enzymes. Assembled contigs containing tandem domain repeats were detected only in members of the Papaveraceae family, including opium poppy (Papaver somniferum). Fourteen cDNAs were generated from 10 species, five of which encoded NCS orthologs with repeated domains. Functional analysis of corresponding recombinant proteins yielded six active NCS enzymes, including four containing either two, three or four repeated catalytic domains. Truncation of the first 25 N-terminal amino acids from the remaining polypeptides revealed two additional enzymes. Multiple catalytic domains correlated with a proportional increase in catalytic efficiency. Expression of NCS genes in Saccharomyces cereviseae also produced active enzymes. The metabolic conversion capacity of engineered yeast positively correlated with the number of repeated domains.
Collapse
|
21
|
Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJJ. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. ACS Synth Biol 2016; 5:1505-1518. [PMID: 27442619 DOI: 10.1021/acssynbio.6b00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.
Collapse
Affiliation(s)
- Lauren Narcross
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Leanne Bourgeois
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | | | - Euan Burton
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
22
|
Morris JS, Facchini PJ. Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy. J Biol Chem 2016; 291:23416-23427. [PMID: 27634038 DOI: 10.1074/jbc.m116.750893] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
Benzylisoquinoline alkaloids are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties associated with numerous structural scaffolds and diverse functional group modification. N-Methylation is one of the most common tailoring reactions, yielding tertiary and quaternary pathway intermediates and products. Two N-methyltransferases accepting (i) early 1-benzylisoquinoline intermediates possessing a secondary amine and leading to the key branch-point intermediate (S)-reticuline and (ii) downstream protoberberines containing a tertiary amine and forming quaternary intermediates destined for phthalideisoquinolines and antimicrobial benzo[c]phenanthridines were previously characterized. We report the isolation and characterization of a phylogenetically related yet functionally distinct N-methyltransferase (NMT) from opium poppy (Papaver somniferum) that primarily accepts 1-benzylisoquinoline and aporphine substrates possessing a tertiary amine. The preferred substrates were the R and S conformers of reticuline and the aporphine (S)-corytuberine, which are proposed intermediates in the biosynthesis of magnoflorine, a quaternary aporphine alkaloid common in plants. Suppression of the gene encoding reticuline N-methyltransferase (RNMT) using virus-induced gene silencing in opium poppy resulted in a significant decrease in magnoflorine accumulation and a concomitant increase in corytuberine levels in roots. RNMT transcript levels were also most abundant in roots, in contrast to the distribution of transcripts encoding other NMTs, which occur predominantly in aerial plant organs. The characterization of a third functionally unique NMT involved in benzylisoquinoline alkaloid metabolism will facilitate the establishment of structure-function relationships among a large group of related enzymes.
Collapse
Affiliation(s)
- Jeremy S Morris
- From the University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- From the University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Torres MA, Hoffarth E, Eugenio L, Savtchouk J, Chen X, Morris JS, Facchini PJ, Ng KKS. Structural and Functional Studies of Pavine N-Methyltransferase from Thalictrum flavum Reveal Novel Insights into Substrate Recognition and Catalytic Mechanism. J Biol Chem 2016; 291:23403-23415. [PMID: 27573242 DOI: 10.1074/jbc.m116.747261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are produced in a wide variety of plants and include many common analgesic, antitussive, and anticancer compounds. Several members of a distinct family of S-adenosylmethionine (SAM)-dependent N-methyltransferases (NMTs) play critical roles in BIA biosynthesis, but the molecular basis of substrate recognition and catalysis is not known for NMTs involved in BIA metabolism. To address this issue, the crystal structure of pavine NMT from Thalictrum flavum was solved using selenomethionine-substituted protein (dmin = 2.8 Å). Additional structures were determined for the native protein (dmin = 2.0 Å) as well as binary complexes with SAM (dmin = 2.3 Å) or the reaction product S-adenosylhomocysteine (dmin = 1.6 Å). The structure of a complex with S-adenosylhomocysteine and two molecules of tetrahydropapaverine (THP; one as the S conformer and a second in the R configuration) (dmin = 1.8 Å) revealed key features of substrate recognition. Pavine NMT converted racemic THP to laudanosine, but the enzyme showed a preference for (±)-pavine and (S)-reticuline as substrates. These structures suggest the involvement of highly conserved residues at the active site. Mutagenesis of three residues near the methyl group of SAM and the nitrogen atom of the alkaloid acceptor decreased enzyme activity without disrupting the structure of the protein. The binding site for THP provides a framework for understanding substrate specificity among numerous NMTs involved in the biosynthesis of BIAs and other specialized metabolites. This information will facilitate metabolic engineering efforts aimed at producing medicinally important compounds in heterologous systems, such as yeast.
Collapse
Affiliation(s)
- Miguel A Torres
- From the Department of Biological Sciences and.,Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Elesha Hoffarth
- From the Department of Biological Sciences and.,Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Luiz Eugenio
- From the Department of Biological Sciences and.,Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Julia Savtchouk
- From the Department of Biological Sciences and.,Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Xue Chen
- From the Department of Biological Sciences and
| | | | | | - Kenneth K-S Ng
- From the Department of Biological Sciences and .,Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. JOURNAL OF PLANT BIOLOGY 2016. [PMID: 0 DOI: 10.1007/s12374-016-0032-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
25
|
ALAGÖZ Y, GÜRKÖK T, PARMAKSIZ İ, ÜNVER T. Identification and sequence analysis of alkaloid biosynthesisgenes in Papaver section Oxytona. Turk J Biol 2016. [DOI: 10.3906/biy-1505-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Hagel JM, Morris JS, Lee EJ, Desgagné-Penix I, Bross CD, Chang L, Chen X, Farrow SC, Zhang Y, Soh J, Sensen CW, Facchini PJ. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC PLANT BIOLOGY 2015; 15:227. [PMID: 26384972 PMCID: PMC4575454 DOI: 10.1186/s12870-015-0596-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/15/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts. RESULTS In order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal ( www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings, highlighting many novel genes with potential involvement in the formation of one or more alkaloid types, including morphinan, aporphine, and phthalideisoquinoline alkaloids. Transcriptome resources were used to design and execute a case study of candidate N-methyltransferases (NMTs) from Glaucium flavum, which revealed predicted and novel enzyme activities. CONCLUSIONS This study establishes an essential resource for the isolation and discovery of 1) functional homologues and 2) entirely novel catalysts within BIA metabolism. Functional analysis of G. flavum NMTs demonstrated the utility of this resource and underscored the importance of empirical determination of proposed enzymatic function. Publically accessible, fully annotated, BLAST-accessible transcriptomes were not previously available for most species included in this report, despite the rich repertoire of bioactive alkaloids found in these plants and their importance to traditional medicine. The results presented herein provide essential sequence information and inform experimental design for the continued elucidation of BIA metabolism.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Jeremy S Morris
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Eun-Jeong Lee
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Isabel Desgagné-Penix
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Current address: Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada.
| | - Crystal D Bross
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Limei Chang
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Scott C Farrow
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Ye Zhang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Jung Soh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Christoph W Sensen
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Current address: Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria.
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
27
|
Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng 2015; 30:96-104. [PMID: 25981946 DOI: 10.1016/j.ymben.2015.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/25/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization.
Collapse
|
28
|
Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. THE PLANT CELL 2014; 26:3745-62. [PMID: 25228340 PMCID: PMC4213168 DOI: 10.1105/tpc.114.130534] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
Collapse
Affiliation(s)
- Matthew A Bedewitz
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | | | | | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yun-Soo Yeo
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Joseph Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
29
|
Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 2014; 10:837-44. [PMID: 25151135 PMCID: PMC4167936 DOI: 10.1038/nchembio.1613] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023]
Abstract
Opiates and related molecules are medically essential, but their production via field cultivation of opium poppy Papaver somniferum leads to supply inefficiencies and insecurity. As an alternative production strategy, we developed baker's yeast Saccharomyces cerevisiae as a microbial host for the transformation of opiates. Yeast strains engineered to express heterologous genes from P. somniferum and bacterium Pseudomonas putida M10 convert thebaine to codeine, morphine, hydromorphone, hydrocodone and oxycodone. We discovered a new biosynthetic branch to neopine and neomorphine, which diverted pathway flux from morphine and other target products. We optimized strain titer and specificity by titrating gene copy number, enhancing cosubstrate supply, applying a spatial engineering strategy and performing high-density fermentation, which resulted in total opioid titers up to 131 mg/l. This work is an important step toward total biosynthesis of valuable benzylisoquinoline alkaloid drug molecules and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for opioids.
Collapse
Affiliation(s)
- Kate Thodey
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Stephanie Galanie
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
30
|
Beaudoin GAW, Facchini PJ. Benzylisoquinoline alkaloid biosynthesis in opium poppy. PLANTA 2014; 240:19-32. [PMID: 24671624 DOI: 10.1007/s00425-014-2056-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 05/21/2023]
Abstract
Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.
Collapse
|
31
|
Zhao N, Wang G, Norris A, Chen X, Chen F. Studying Plant Secondary Metabolism in the Age of Genomics. CRITICAL REVIEWS IN PLANT SCIENCES 2013; 32:369-382. [PMID: 0 DOI: 10.1080/07352689.2013.789648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
32
|
Hagel JM, Facchini PJ. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. PLANT & CELL PHYSIOLOGY 2013; 54:647-72. [PMID: 23385146 DOI: 10.1093/pcp/pct020] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites with a long history of investigation. Although the ecophysiological functions of most BIAs are unknown, the medicinal properties of many compounds have been exploited for centuries. These include the narcotic analgesics codeine and morphine, the antimicrobial agents sanguinarine and berberine, and the antitussive and anticancer drug noscapine. BIA biosynthesis involves a restricted number of enzyme types that catalyze landmark coupling reactions and subsequent functional group modifications. A pathogenesis-related (PR)10/Bet v1 'Pictet-Spenglerase', several O-methyl-, N-methyl- and O-acetyltransferases, cytochromes P450, FAD-dependent oxidases, non-heme dioxygenases and NADPH-dependent reductases have been implicated in the multistep pathways leading to structurally diverse alkaloids. A small number of plant species, including opium poppy (Papaver somniferum) and other members of the Ranunculales, have emerged as model systems to study BIA metabolism. The expansion of resources to include a wider range of plant species is creating an opportunity to investigate previously uncharacterized BIA pathways. Contemporary knowledge of BIA metabolism reflects over a century of research coupled with the development of key innovations such as radioactive tracing, enzyme isolation and molecular cloning, and functional genomics approaches such as virus-induced gene silencing. Recently, the emergence of transcriptomics, proteomics and metabolomics has expedited the discovery of new BIA biosynthetic genes. The growing repository of BIA biosynthetic genes is providing the parts required to apply emerging synthetic biology platforms to the development of production systems in microbes as an alternative to plants as a commecial source of valuable BIAs.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
33
|
Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim YB, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensen CW. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 2013; 166:122-34. [PMID: 23602801 DOI: 10.1016/j.jbiotec.2013.04.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/27/2022]
Abstract
Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy. To investigate specialized metabolite biosynthesis in non-model plants we have established a data-mining framework, employing next-generation sequencing and computational algorithms, to construct and analyze the transcriptomes of 75 non-model plants that produce compounds of interest for biotechnological applications. After sequence assembly an extensive annotation approach was applied to assign functional information to over 800,000 putative transcripts. The annotation is based on direct searches against public databases, including RefSeq and InterPro. Gene Ontology (GO), Enzyme Commission (EC) annotations and associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps are also collected. As a proof-of-concept, the selection of biosynthetic gene candidates associated with six specialized metabolic pathways is described. A web-based BLAST server has been established to allow public access to assembled transcriptome databases for all 75 plant species of the PhytoMetaSyn Project (www.phytometasyn.ca).
Collapse
Affiliation(s)
- Mei Xiao
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tekleyohans DG, Lange S, Becker A. Virus-induced gene silencing of the alkaloid-producing basal eudicot model plant Eschscholzia californica (California Poppy). Methods Mol Biol 2013; 975:83-98. [PMID: 23386297 DOI: 10.1007/978-1-62703-278-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Eschscholzia californica (California poppy), a member of the basal eudicot family of the Papaveraceae, is an important species to study alkaloid biosynthesis and the effect of alkaloids on plant metabolism. More recently, it has also been developed as a model system to study the evolution of plant morphogenesis. While progress has been made towards establishing methods for generating genetically modified cell culture lines, transcriptome data and gene expression analysis, the stable transformation and subsequent regeneration of transgenic plants has proven extremely time consuming and difficult. Here, we describe in detail a method to transiently down regulate expression of a target gene by virus-induced gene silencing (VIGS) and the subsequent analysis of the VIGS treated plants. VIGS in E. californica allows for the study of gene function within 2 to 3 weeks after inoculation, and the method proves very efficient, enabling the rapid analysis of gene functions.
Collapse
|
35
|
Liscombe DK, Louie GV, Noel JP. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 2012; 29:1238-50. [PMID: 22850796 DOI: 10.1039/c2np20029e] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of a methyl moiety to a small chemical is a common transformation in the biosynthesis of natural products across all three domains of life. These methylation reactions are most often catalysed by S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTs). MTs are categorized based on the electron-rich, methyl accepting atom, usually O, N, C, or S. SAM-dependent natural product MTs (NPMTs) are responsible for the modification of a wide array of structurally distinct substrates, including signalling and host defense compounds, pigments, prosthetic groups, cofactors, cell membrane and cell wall components, and xenobiotics. Most notably, methylation modulates the bioavailability, bioactivity, and reactivity of acceptor molecules, and thus exerts a central role on the functional output of many metabolic pathways. Our current understanding of the structural enzymology of NPMTs groups these phylogenetically diverse enzymes into two MT-superfamily fold classes (class I and class III). Structural biology has also shed light on the catalytic mechanisms and molecular bases for substrate specificity for over fifty NPMTs. These biophysical-based approaches have contributed to our understanding of NPMT evolution, demonstrating how a widespread protein fold evolved to accommodate chemically diverse methyl acceptors and to catalyse disparate mechanisms suited to the physiochemical properties of the target substrates. This evolutionary diversity suggests that NPMTs may serve as starting points for generating new biocatalysts.
Collapse
Affiliation(s)
- David K Liscombe
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
36
|
Desgagné-Penix I, Farrow SC, Cram D, Nowak J, Facchini PJ. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. PLANT MOLECULAR BIOLOGY 2012; 79:295-313. [PMID: 22527754 DOI: 10.1007/s11103-012-9913-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 04/06/2012] [Indexed: 05/31/2023]
Abstract
Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.
Collapse
Affiliation(s)
- Isabel Desgagné-Penix
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
37
|
Farrow SC, Hagel JM, Facchini PJ. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. PHYTOCHEMISTRY 2012; 77:79-88. [PMID: 22424601 DOI: 10.1016/j.phytochem.2012.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/29/2011] [Accepted: 02/17/2012] [Indexed: 05/25/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.
Collapse
Affiliation(s)
- Scott C Farrow
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
38
|
Dang TTT, Onoyovwi A, Farrow SC, Facchini PJ. Biochemical Genomics for Gene Discovery in Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy and Related Species. Methods Enzymol 2012; 515:231-66. [DOI: 10.1016/b978-0-12-394290-6.00011-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Lee DU, Park JH, Wessjohann L, Schmidt J. Alkaloids from Papaver coreanum. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100601109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The alkaloid pattern of the endemic plant Papaver coreanum Nakai (Papaveraceae) was determined for the first time. Eight alkaloids could be identified by LC/ESIMS/MS and high-resolution mass spectrometry. Among them, protopine and allocryptopine represent the main components. Besides norsanguinarine, sanguinarine, dihydrosanguinarine, oxysanguinarine, lincangenine, and cryptopine, some other trace alkaloids were found whose structures remain unknown.
Collapse
Affiliation(s)
- Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Jong Hee Park
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Ludger Wessjohann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Jürgen Schmidt
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
40
|
Stöckigt J, Antonchick AP, Wu F, Waldmann H. Die Pictet-Spengler-Reaktion in der Natur und der organischen Chemie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008071] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Stöckigt J, Antonchick AP, Wu F, Waldmann H. The Pictet-Spengler reaction in nature and in organic chemistry. Angew Chem Int Ed Engl 2011; 50:8538-64. [PMID: 21830283 DOI: 10.1002/anie.201008071] [Citation(s) in RCA: 532] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 01/18/2023]
Abstract
Alkaloids are an important class of natural products that are widely distributed in nature and produced by a large variety of organisms. They have a wide spectrum of biological activity and for many years were used in folk medicine. These days, alkaloids also have numerous applications in medicine as therapeutic agents. The importance of these natural products in inspiring drug discovery programs is proven and, therefore, their continued synthesis is of significant interest. The condensation discovered by Pictet and Spengler is the most important method for the synthesis of alkaloid scaffolds. The power of this synthesis method has been convincingly proven in the construction of stereochemicaly and structurally complex alkaloids.
Collapse
Affiliation(s)
- Joachim Stöckigt
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | | | | | | |
Collapse
|
42
|
Weeks AM, Chang MCY. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 2011; 50:5404-18. [PMID: 21591680 DOI: 10.1021/bi200416g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and allows the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts to understand the relationship among sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform for elucidating the in vivo specificity and function of enzymes and reconstituting complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineering synthetic pathways in microbial hosts for chemical production.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | |
Collapse
|
43
|
Sawai S, Saito K. Triterpenoid biosynthesis and engineering in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:25. [PMID: 22639586 PMCID: PMC3355669 DOI: 10.3389/fpls.2011.00025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/16/2011] [Indexed: 05/18/2023]
Abstract
Triterpenoid saponins are a diverse group of natural products in plants and are considered defensive compounds against pathogenic microbes and herbivores. Because of their various beneficial properties for humans, saponins are used in wide-ranging applications in addition to medicinally. Saponin biosynthesis involves three key enzymes: oxidosqualene cyclases, which construct the basic triterpenoid skeletons; cytochrome P450 monooxygenases, which mediate oxidations; and uridine diphosphate-dependent glycosyltransferases, which catalyze glycosylations. The discovery of genes committed to saponin biosynthesis is important for the stable supply and biotechnological application of these compounds. Here, we review the identified genes involved in triterpenoid biosynthesis, summarize the recent advances in the biotechnological production of useful plant terpenoids, and discuss the bioengineering of plant triterpenoids.
Collapse
Affiliation(s)
| | - Kazuki Saito
- Plant Science Center, RIKENYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
- *Correspondence: Kazuki Saito, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. e-mail:
| |
Collapse
|
44
|
Zahn LM, Ma X, Altman NS, Zhang Q, Wall PK, Tian D, Gibas CJ, Gharaibeh R, Leebens-Mack JH, dePamphilis CW, Ma H. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies. Genome Biol 2010; 11:R101. [PMID: 20950453 PMCID: PMC3218657 DOI: 10.1186/gb-2010-11-10-r101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/03/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. RESULTS Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at preanthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. CONCLUSIONS Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots.
Collapse
Affiliation(s)
- Laura M Zahn
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: American Association for the Advancement of Science, 1200 New York Avenue NW, Washington DC 20005, USA
| | - Xuan Ma
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Intercollege Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Naomi S Altman
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Zhang
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: 2367 Setter Run Lane, State College, PA 16802, USA
| | - P Kerr Wall
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: BASF Plant Science, 26 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Donglan Tian
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - James H Leebens-Mack
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong Ma
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Intercollege Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
45
|
Di Stilio VS, Kumar RA, Oddone AM, Tolkin TR, Salles P, McCarty K. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS One 2010; 5:e12064. [PMID: 20706585 PMCID: PMC2919395 DOI: 10.1371/journal.pone.0012064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/15/2010] [Indexed: 12/21/2022] Open
Abstract
Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS) of a PHYTOENE DESATURASE ortholog (TdPDS) can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%, using tobacco rattle virus (TRV) vectors. The photobleached leaf phenotype of silenced plants significantly correlates with the down-regulation of endogenous TdPDS (P<0.05), as compared to controls. Floral silencing of PDS was achieved in the faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene AGAMOUS (AG) resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum. The evidence presented on floral silencing of orthologs of the marker gene PDS and the floral homeotic gene AG will enable a comparative approach to the study of the evolution of flower development in this group.
Collapse
Affiliation(s)
- Verónica S Di Stilio
- Department of Biology, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | |
Collapse
|
46
|
Yang L, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 2010; 27:1469-79. [DOI: 10.1039/c005378c] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|