1
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
2
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
3
|
Panchal A, Maurya J, Seni S, Singh RK, Prasad M. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107823. [PMID: 37327647 DOI: 10.1016/j.plaphy.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Different environmental cues lead to changes in physiology, biochemistry and molecular status of plant's growth. Till date, various genes have been accounted for their role in regulating plant development and response to abiotic stress. Excluding genes that code for a functional protein in a cell, a large chunk of the eukaryotic transcriptome consists of non-coding RNAs (ncRNAs) which lack protein coding capacity but are still functional. Recent advancements in Next Generation Sequencing (NGS) technology have led to the unearthing of different types of small and large non-coding RNAs in plants. Non-coding RNAs are broadly categorised into housekeeping ncRNAs and regulatory ncRNAs which work at transcriptional, post-transcriptional and epigenetic levels. Diverse ncRNAs play different regulatory roles in nearly all biological processes including growth, development and response to changing environments. This response can be perceived and counteracted by plants using diverse evolutionarily conserved ncRNAs like miRNAs, siRNAs and lncRNAs to participate in complex molecular regimes by activating gene-ncRNA-mRNA regulatory modules to perform the downstream function. Here, we review the current understanding with a focus on recent advancements in the functional studies of the regulatory ncRNAs at the nexus of abiotic stresses and development. Also, the potential roles of ncRNAs in imparting abiotic stress tolerance and yield improvement in crop plants are also discussed with their future prospects.
Collapse
Affiliation(s)
- Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jyoti Maurya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
4
|
Rego ECS, Pinheiro TDM, Fonseca FCDA, Gomes TG, Costa EDC, Bastos LS, Alves GSC, Cotta MG, Amorim EP, Ferreira CF, Togawa RC, Costa MMDC, Grynberg P, Miller RNG. Characterization of microRNAs and Target Genes in Musa acuminata subsp. burmannicoides, var. Calcutta 4 during Interaction with Pseudocercospora musae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1473. [PMID: 37050099 PMCID: PMC10097032 DOI: 10.3390/plants12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.
Collapse
Affiliation(s)
| | | | | | - Taísa Godoy Gomes
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Erica de Castro Costa
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Lucas Santos Bastos
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | - Michelle Guitton Cotta
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Marcos Mota Do Carmo Costa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
5
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
6
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
7
|
Ding B, Xia R, Lin Q, Gurung V, Sagawa JM, Stanley LE, Strobel M, Diggle PK, Meyers BC, Yuan YW. Developmental Genetics of Corolla Tube Formation: Role of the tasiRNA- ARF Pathway and a Conceptual Model. THE PLANT CELL 2020; 32:3452-3468. [PMID: 32917737 PMCID: PMC7610285 DOI: 10.1105/tpc.18.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 05/08/2023]
Abstract
Over 80,000 angiosperm species produce flowers with petals fused into a corolla tube. The corolla tube contributes to the tremendous diversity of flower morphology and plays a critical role in plant reproduction, yet it remains one of the least understood plant structures from a developmental genetics perspective. Through mutant analyses and transgenic experiments, we show that the tasiRNA-ARF pathway is required for corolla tube formation in the monkeyflower species Mimulus lewisii Loss-of-function mutations in the M. lewisii orthologs of ARGONAUTE7 and SUPPRESSOR OF GENE SILENCING3 cause a dramatic decrease in abundance of TAS3-derived small RNAs and a moderate upregulation of AUXIN RESPONSE FACTOR3 (ARF3) and ARF4, which lead to inhibition of lateral expansion of the bases of petal primordia and complete arrest of the upward growth of the interprimordial regions, resulting in unfused corollas. Using the DR5 auxin-responsive promoter, we discovered that auxin signaling is continuous along the petal primordium base and the interprimordial region during the critical stage of corolla tube formation in the wild type, similar to the spatial pattern of MlARF4 expression. Auxin response is much weaker and more restricted in the mutant. Furthermore, exogenous application of a polar auxin transport inhibitor to wild-type floral apices disrupted petal fusion. Together, these results suggest a new conceptual model highlighting the central role of auxin-directed synchronized growth of the petal primordium base and the interprimordial region in corolla tube formation.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Janelle M Sagawa
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Matthew Strobel
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
8
|
Kwon J, Kasai A, Maoka T, Masuta C, Sano T, Nakahara KS. RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant. Virol J 2020; 17:149. [PMID: 33032637 PMCID: PMC7542965 DOI: 10.1186/s12985-020-01414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.
Collapse
Affiliation(s)
- Joon Kwon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Tetsuo Maoka
- Division of Agro-Environmental Research, Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan. .,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
9
|
Jeyaraj A, Elango T, Li X, Guo G. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Camellia sinensis (L.) O. Kuntze]. RNA Biol 2020; 17:1365-1382. [PMID: 32478595 PMCID: PMC7549669 DOI: 10.1080/15476286.2020.1774987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs play a central role in responses to biotic stressors through their interactions with their target mRNAs. Tea plant (Camellia sinensis L.), an important beverage crop, is vulnerable to tea geometrid and anthracnose disease that causes considerable crop loss and tea production worldwide. Sustainable production of tea in the current scenario to biotic factors is major challenges. To overcome the problem of biotic stresses, high-throughput sequencing (HTS) with bioinformatics analyses has been used as an effective approach for the identification of stress-responsive miRNAs and their regulatory functions in tea plant. These stress-responsive miRNAs can be utilized for miRNA-mediated gene silencing to enhance stress tolerance in tea plant. Therefore, this review summarizes the current understanding of miRNAs regulatory functions in tea plant responding to Ectropis oblique and Colletotrichum gloeosporioides attacks for future miRNA research. Also, it highlights the utilization of miRNA-mediated gene silencing strategies for developing biotic stress-tolerant tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Tamilnadu, India
| | - Tamilselvi Elango
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P.R. China
| |
Collapse
|
10
|
Yu L, Zhou L, Liu W, Huang P, Jiang R, Tang Z, Cheng P, Zeng J. Identification of drought resistant miRNA in Macleaya cordata by high-throughput sequencing. Arch Biochem Biophys 2020; 684:108300. [PMID: 32057760 DOI: 10.1016/j.abb.2020.108300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022]
Abstract
Drought is one of the most serious factors affecting crop yields in the world. Macleaya cordata (Willd.) is a draught-tolerant medicinal plant that has been proposed as a pioneer crop to be cultivated in arid areas. However, the exact molecular mechanisms through which M. cordata responds to draught stress remain elusive. In recent years, microRNA (miRNAs) in plants have been associated with stress response. Based on these findings, the current study aimed to shed light on the potential regulatory roles of miRNAs in the draught tolerance of M. cordata by employing high-throughput RNA sequencing and degradation sequencing. Six M. cordata plants were randomly divided into two equal experiment groups, including one draught group and one control group. High-throughput sequencing of the M. cordata samples led to the identification of 895 miRNAs, of which 18 showed significantly different expression levels between the two groups. PsRobot analysis and degradation sequencing predicted the differential miRNAs to target 59 and 36 genes, respectively. Functional analysis showed that 38 of the predicted genes could be implicated in the modulation of stress response. Four miRNAs and eight target genes were selected for quantitative real-time polymerase chain reaction (qRT-PCR) validation. The expression trend of each miRNA analyzed by qRT-PCR was consistent with that determined by sequencing, and was negatively correlated with those of its target genes. The results of our current study supported the involvement of miRNAs in the draught tolerance of M. cordata and could pave the way for further investigation into the related regulatory mechanisms.
Collapse
Affiliation(s)
- Linlan Yu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Li Zhou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Center of Analytic Service, Hunan Agriculture University, 410208, Changsha, China.
| | - Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Ruolan Jiang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | | | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
11
|
Discovery and Profiling of microRNAs at the Critical Period of Sex Differentiation in Xanthoceras sorbifolium Bunge. FORESTS 2019. [DOI: 10.3390/f10121141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research Highlights: The critical period of sex differentiation in Xanthoceras sorbifolium was investigated. Multiple microRNAs (miRNAs) were identified to influence female and male flower development, with some complementary functions. Background and Objectives: Xanthoceras sorbifolium Bunge is widely cultivated owing to its multipurpose usefulness. However, as a monoecious plant, the low female–male flowers ratio and consequent low seed yield are the main bottlenecks for industrial-scale development of seed utilization. MiRNAs play crucial regulatory roles in flower development and sex differentiation; therefore, we evaluated the roles of miRNAs in the critical period of sex differentiation in X. sorbifolium. Materials and Methods: Four small RNA libraries for female and male flower buds of the critical period of sex differentiation were constructed from paraffin-embedded sections. The miRNAs were characterized by high-throughput sequencing, and differentially expressed miRNAs were validated by reverse transcription-quantitative polymerase chain reaction. Results: There were obvious differences in male and female pistil and stamen flower buds, with elongated inflorescence and clear separation of flower buds marking the critical period of sex differentiation. A total of 1619 conserved miRNAs (belonging to 34 families) and 219 novel miRNAs were identified. Among these, 162 conserved and 14 novel miRNAs exhibited significant differential expression in the four libraries, and 1677 putative target genes of 112 differentially expressed miRNAs were predicted. These target genes were involved in diverse developmental and metabolic processes, including 17 miRNAs directly associated with flower and gametophyte development, mainly associated with carbohydrate metabolism and glycan biosynthesis and metabolism pathways. Some miRNA functions were confirmed, and others were found to be complemented. Conclusions: Multiple miRNAs closely related to sex differentiation in X. sorbifolium were identified. The theoretical framework presented herein might guide sex ratio regulation to enhance seed yield.
Collapse
|
12
|
Solomon CU, Drea S. Besides and Beyond Flowering: Other roles of EuAP2 Genes in Plant Development. Genes (Basel) 2019; 10:genes10120994. [PMID: 31805740 PMCID: PMC6947164 DOI: 10.3390/genes10120994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
EuAP2 genes are well-known for their role in flower development, a legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu 441107, Nigeria
- Correspondence:
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
13
|
Liu T, Tang J, Chen L, Zeng J, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Differential expression of miRNAs and their targets in wax-deficient rapeseed. Sci Rep 2019; 9:12201. [PMID: 31434948 PMCID: PMC6704058 DOI: 10.1038/s41598-019-48439-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022] Open
Abstract
The cuticle of a plant, composed of cutin and wax, is the outermost hydrophobic layer covering the epidermis of all its aerial organs, protecting it from many abiotic and biotic stresses. The biosynthesis and regulation pathways of wax components have been well studied, whereas there are fewer reports on the small RNA-involved post-transcriptional regulation of wax biosynthesis in plants, particularly in Brassica napus. Previously, we conducted a study on a glossy mutant of rapeseed, and we assumed that there was a dominant repressor to inhibit the expression of wax-related genes. To verify this hypothesis and investigate the function of small RNAs in wax biosynthesis in B. napus, we constructed four small RNA libraries from the stem epidermis of wax-deficient mutant and wild-type plants for sequencing. Subsequently, 43,840,451 clean reads were generated and 24 nt sequences represented the dominant percentage. In total, 300 unique known miRNAs were identified and eight of them showed differential expression. In addition, the expression levels of six novel miRNAs were altered. Surprisingly, we found that four up-regulated miRNAs in the wax-deficient plants, bna-miR408b-5p, bna-miR165b-5p, bna-miR160a-3p, and bna-miR398-5p, were all complementary strands of their corresponding mature strands. Stem-loop qRT-PCR verified that the expression of bna-miR165a-5p was increased in the mutant stems, while its putative target, BnaA06g40560D (CYP96A2), was down-regulated. In addition, the expression of bna-miR827a was detected to be down-regulated in glossy mutant. 5' RACE experimental data showed that bna-miR827a cleaves three NITROGEN LIMITATION ADAPTATION (NLA) genes (BnaC08g45940D, BnaA10g01450D and BnaC05g01480D). The down-regulation of bna-miR827a resulted in decreased cleavage on its targets, and led to the up-regulation of its targets, especially BnaA10g01450D gene. These results showed that bna-miR165a-5p might participate in wax biosynthesis process by regulating its putative target BnaA06g40560D (CYP96A2). The expression levels of a phosphate (Pi)-related miRNA, bna-miR827a, and its target genes were affected in wax-deficient rapeseeds. These results will promote the study of post-transcriptional regulation mechanisms of wax biosynthesis in B. napus and provide new directions for further research.
Collapse
Affiliation(s)
- Tingting Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingquan Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiayue Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
14
|
De la Rosa C, Covarrubias AA, Reyes JL. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. PLANT, CELL & ENVIRONMENT 2019; 42:133-144. [PMID: 29626361 DOI: 10.1111/pce.13209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.
Collapse
Affiliation(s)
- Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra Alicia Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
15
|
Rigoglio NN, Matias GDSS, Miglino MA, Mess AM, Jacob JCF, Smith LC. Morphological characteristics of mule conceptuses during early development. Anim Reprod 2018; 15:1214-1222. [PMID: 34221135 PMCID: PMC8203116 DOI: 10.21451/1984-3143-ar2017-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hybrids between species are often infertile and extremely rare among mammals. Mules, i.e.
crossing between the horse and the donkey, on the other hand are very common in agricultural
and leisure practices due to their enhanced post-natal physical characteristics that is
believed to occur for outbreeding or hybrid vigor. Since no reports are availableon the effects
of hybrid vigor during early development, this study focused on characterizing the intrauterine
development of mule conceptuses during critical embryo-to-fetus transition period. Nine
embryos and fetuses of early gestation, obtained after artificial insemination and transcervical
flushing, were evaluated by means of gross anatomy and histology and compared to data available
for the equine. We found that some events, such as C-shape turning, apearence of branchial
archs, limb and tail buds, formation of primary and secondary brain vesicles, heart compartmentalization,
and development of somites, occurred slightly earlier in the mule. Nonetheless, no major
differences were observed in other developmental features, suggesting similarities between
the mule and the horse development. In conclusion, these data suggest that the effect of hybrid
vigor is present during intrauterine development in the mule, at least with regard to its maternal
parent.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Brazil
| | - Andrea Maria Mess
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Brazil
| | - Julio Cesar Ferraz Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, Brazil
| | - Lawrence Charles Smith
- Department of Veterinary Biomedicine, Centre de recherche en reproduction et fertilité, Faculty of Veterinary Medicine, University of Montreal, QC J2S 2M2, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
Wang Y, Shi C, Yang T, Zhao L, Chen J, Zhang N, Ren Y, Tang G, Cui D, Chen F. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Sci Rep 2018; 8:13854. [PMID: 30218081 PMCID: PMC6138641 DOI: 10.1038/s41598-018-31870-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
High-throughput sequencing was employed to investigate the expression of miRNAs and their target genes in superior and inferior seeds of Aikang 58. Small RNA sequencing revealed 620 conserved and 64 novel miRNAs in superior grains, and 623 conserved and 66 novel miRNAs in inferior grains. Among these, 97 known miRNAs, and eight novel miRNAs showed differential expression between the superior and inferior seeds. Degradome sequencing revealed at least 140 candidate target genes associated with 35 miRNA families during the development of superior and inferior seeds. GO and KEGG pathway analysis showed that the differentially expressed miRNAs, both conserved and novel, were likely involved in hormone production, carbohydrate metabolic pathways, and cell division. We validated eight known and four novel grain development-related miRNAs and their target genes by quantitative real-time polymerase chain reaction to ensure the reliability of small RNA and degradome-seq results. Of these, miR160 and miR165/166 were knocked down in Arabidopsis using short-tandem target mimic (STTM160 and STTM165/166) technology, which confirmed their roles in seed development. Specifically, STTM160 showed significantly smaller grain size, lower grain weight, shorter siliques length, shorter plant height, and more serrated leaves, whereas STTM165/166 showed decreased seed number, disabled siliques, and curled upward leaves.
Collapse
Affiliation(s)
- Yongyan Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chaonan Shi
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tianxiao Yang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Jianhui Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guiliang Tang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
17
|
Small RNA and mRNA Profiling of Arabidopsis in Response to Phytophthora Infection and PAMP Treatment. Methods Mol Biol 2018; 1578:273-283. [PMID: 28220433 DOI: 10.1007/978-1-4939-6859-6_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Small non-coding RNAs (smRNAs) regulate gene expression at both transcriptional and post-transcriptional levels. Well known for their roles in development, smRNAs have emerged as important regulators of plant immunity. Upon pathogen perception, accumulation of specific smRNAs are found to be altered, presumably as a host defense response. Therefore, identification of differentially accumulated smRNAs and their target genes would provide important insight into the regulation mechanism of immune responses. Here, we describe the detailed experimental procedure using Illumina sequencing to analyze the expression profiles of smRNAs and mRNAs in Arabidopsis. We focus on a newly developed pathosystem using Phytophthora capsici as the pathogen and include the treatment of Arabidopsis leaves with pathogen-associated molecular patterns (PAMPs) of Phytophthora.
Collapse
|
18
|
Gupta N, Zahra S, Singh A, Kumar S. PVsiRNAdb: a database for plant exclusive virus-derived small interfering RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5126495. [PMID: 30307523 PMCID: PMC6181178 DOI: 10.1093/database/bay105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022]
Abstract
Ribonucleic acids (RNA) interference mechanism has been proved to be an important regulator of both transcriptional and post-transcription controls of gene expression during biotic and abiotic stresses in plants. Virus-derived small interfering RNAs (vsiRNAs) are established components of the RNA silencing mechanism for incurring anti-viral resistance in plants. Some databases like siRNAdb, HIVsirDB and VIRsiRNAdb are available online pertaining to siRNAs as well as vsiRNAs generated during viral infection in humans; however, currently there is a lack of repository for plant exclusive vsiRNAs. We have developed `PVsiRNAdb (http://www.nipgr.res.in/PVsiRNAdb)', a manually curated plant-exclusive database harboring information related to vsiRNAs found in different virus-infected plants collected by exhaustive data mining of published literature so far. This database contains a total of 322 214 entries and 282 549 unique sequences of vsiRNAs. In PVsiRNAdb, detailed and comprehensive information is available for each vsiRNA sequence. Apart from the core information consisting of plant, tissue, virus name and vsiRNA sequence, additional information of each vsiRNAs (map position, length, coordinates, strand information and predicted structure) may be of high utility to the user. Different types of search and browse modules with three different tools namely BLAST, Smith-Waterman Align and Mapping are provided at PVsiRNAdb. Thus, this database being one of its kind will surely be of much use to molecular biologists for exploring the complex viral genetics and genomics, viral-host interactions and beneficial to the scientific community and can prove to be very advantageous in the field of agriculture for producing viral resistance transgenic crops.
Collapse
Affiliation(s)
- Nikita Gupta
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
19
|
Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, Wei C. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Sci Rep 2017; 7:13634. [PMID: 29051614 PMCID: PMC5648755 DOI: 10.1038/s41598-017-13692-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 12/02/2022] Open
Abstract
The tea plant (Camellia sinensis L.) is vulnerable to the geometrid Ectropis oblique; although microRNAs (miRNAs) are important for plant growth, development and stress response, the function of miRNAs in the response of C. sinensis to stress from E. oblique is unclear. To identify E. oblique stress-responsive miRNAs and their target genes in tea plant, three small RNA libraries were constructed from leaves subjected to mechanical wounding (MW), geometrid attack (GA) and from healthy control (CK) leaves. Using high-throughput sequencing, 130 known miRNAs and 512 novel miRNAs were identified; of these, differential expression under GA stress was observed for 36 known and 139 novel miRNAs. Furthermore, 169 GA-responsive and 173 MW-responsive miRNAs were detected by miRNA microarray. The expression patterns of six GA-responsive miRNAs were validated by qRT-PCR. Several target genes for these miRNAs encode various transcription factors, including ethylene-responsive transcription factors and squamosa promoter-binding-like proteins, which suggests that these miRNAs may regulate stress-responsive transcriptional processes in tea plant. The present findings provide novel insights into miRNA-mediated regulatory mechanisms underlying the response to GA stress, and also offer valuable information for development of pest resistance using RNA interference-based strategies in tea plants.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Mingzhu Shangguan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China.
| |
Collapse
|
20
|
Wang M, Deng Y, Shao F, Liu M, Pang Y, Li C, Lu S. ARGONAUTE Genes in Salvia miltiorrhiza: Identification, Characterization, and Genetic Transformation. Methods Mol Biol 2017; 1640:173-189. [PMID: 28608342 DOI: 10.1007/978-1-4939-7165-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Small RNA-mediated gene silencing is a vital regulatory mechanism in eukaryotes that requires ARGONAUTE (AGO) proteins. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant. Therefore, it is important to characterize S. miltiorrhiza AGO family genes as they may be involved in multiple metabolic pathways. This chapter introduces the detailed protocol for SmAGO gene prediction and molecular cloning. In addition, an Agrobacterium-mediated genetic transformation method for S. miltiorrhiza is presented. These methodologies can be used to functionally study SmAGO genes as well as other genes of interest in S. miltiorrhiza.
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yongqi Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Yoshikawa M, Iki T, Numa H, Miyashita K, Meshi T, Ishikawa M. A Short Open Reading Frame Encompassing the MicroRNA173 Target Site Plays a Role in trans-Acting Small Interfering RNA Biogenesis. PLANT PHYSIOLOGY 2016; 171:359-68. [PMID: 26966170 PMCID: PMC4854708 DOI: 10.1104/pp.16.00148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 05/18/2023]
Abstract
trans-Acting small interfering RNAs (tasiRNAs) participate in the regulation of organ morphogenesis and determination of developmental timing in plants by down-regulating target genes through mRNA cleavage. The production of tasiRNAs is triggered by microRNA173 (miR173) and other specific microRNA-mediated cleavage of 5'-capped and 3'-polyadenylated primary TAS transcripts (pri-TASs). Although pri-TASs are not thought to encode functional proteins, they contain multiple short open reading frames (ORFs). For example, the primary TAS2 transcript (pri-TAS2) contains 11 short ORFs, and the third ORF from the 5' terminus (ORF3) encompasses the miR173 target site. Here, we show that nonsense mutations in ORF3 of pri-TAS2 upstream of the miR173 recognition site suppress tasiRNA accumulation and that ORF3 is translated in vitro. Glycerol gradient centrifugation analysis of Arabidopsis (Arabidopsis thaliana) plant extracts revealed that pri-TAS2 and its miR173-cleaved 5' and 3' fragments are fractionated together in the polysome fractions. These and previous results suggest that the 3' fragment of pri-TAS2, which is a source of tasiRNAs, forms a huge complex containing SGS3, miR173-programmed AGO1 RNA-induced silencing complex, the 5' fragment, and ribosomes. This complex overaccumulated, moderately accumulated, and did not accumulate in rdr6, sde5, and sgs3 mutants, respectively. The sgs3 sde5 and rdr6 sde5 double mutants showed phenotypes similar to those of sgs3 and sde5 single mutants, respectively, with regard to the TAS2-related RNA accumulation, suggesting that the complex is formed in an SGS3-dependent manner, somehow modified and stabilized by SDE5, and becomes competent for RDR6 action. Ribosomes in this complex likely play an important role in this process.
Collapse
Affiliation(s)
- Manabu Yoshikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| | - Taichiro Iki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| | - Hisataka Numa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| | - Kyoko Miyashita
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| | - Tetsuo Meshi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| | - Masayuki Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (M.Y., T.I., K.M., T.M., M.I.);Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan (M.Y.); andAgrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai Tsukuba, Ibaraki 305-8602, Japan (H.N.)
| |
Collapse
|
22
|
Structural Dynamics of Human Argonaute2 and Its Interaction with siRNAs Designed to Target Mutant tdp43. Adv Bioinformatics 2016; 2016:8792814. [PMID: 27110240 PMCID: PMC4824133 DOI: 10.1155/2016/8792814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
The human Argonaute2 protein (Ago2) is a key player in RNA interference pathway and small RNA recognition by Ago2 is the crucial step in siRNA mediated gene silencing mechanism. The present study highlights the structural and functional dynamics of human Ago2 and the interaction mechanism of Ago2 with a set of seven siRNAs for the first time. The human Ago2 protein adopts two conformations such as “open” and “close” during the simulation of 25 ns. One of the domains named as PAZ, which is responsible for anchoring the 3′-end of siRNA guide strand, is observed as a highly flexible region. The interaction between Ago2 and siRNA, analyzed using a set of siRNAs (targeting at positions 128, 251, 341, 383, 537, 1113, and 1115 of mRNA) designed to target tdp43 mutants causing Amyotrophic Lateral Sclerosis (ALS) disease, revealed the stable and strong recognition of siRNA by the Ago2 protein during dynamics. Among the studied siRNAs, the siRNA341 is identified as a potent siRNA to recognize Ago2 and hence could be used further as a possible siRNA candidate to target the mutant tdp43 protein for the treatment of ALS patients.
Collapse
|
23
|
Song Y, Ci D, Tian M, Zhang D. Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1477-92. [PMID: 26712827 DOI: 10.1093/jxb/erv543] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA methylation plays important roles in responses to environmental stimuli. However, in perennial plants, the roles of DNA methylation in stress-specific adaptions to different abiotic stresses remain unclear. Here, we present a systematic, comparative analysis of the methylome and gene expression in poplar under cold, osmotic, heat, and salt stress conditions from 3h to 24h. Comparison of the stress responses revealed different patterns of cytosine methylation in response to the four abiotic stresses. We isolated and sequenced 1376 stress-specific differentially methylated regions (SDMRs); annotation revealed that these SDMRs represent 1123 genes encoding proteins, 16 miRNA genes, and 17 long non-coding RNA (lncRNA) genes. The SDMR162 region, consisting of Psi-MIR396e and PsiLNCRNA00268512, is regulated by epigenetic pathways and we speculate that PsiLNCRNA00268512 regulates miR396e levels by acting as a target mimic. The ratios of methylated cytosine declined to ~35.1% after 1 month of recovery from abiotic stress and to ~15.3% after 6 months. Among methylated miRNA genes, only expression of the methylation-regulated gene MIRNA6445a showed long-term stability. Our data provide a strong basis for future work and improve our understanding of the effect of epigenetic regulation of non-coding RNA expression, which will enable in-depth functional analysis.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Min Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| |
Collapse
|
24
|
Guo R, Deng Y, Huang Z, Chen X, XuHan X, Lai Z. Identification of miRNAs Affecting the Establishment of Brassica Alboglabra Seedling. FRONTIERS IN PLANT SCIENCE 2016; 7:1760. [PMID: 28018366 PMCID: PMC5147431 DOI: 10.3389/fpls.2016.01760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are important for plant development including seed formation, dormancy, and germination, as well as seedling establishment. The Brassica vegetable seedling establishment stage influences the development of high quality seedlings, but also affects the nutrient content of sprouts. Chinese kale (Brassica alboglabra) seedlings at different growth stages were used to construct two small-RNA (sRNA) libraries. We comprehensively analyzed the miRNAs in 2- and 9-day-old seedlings. An average of 11,722,490 clean reads were generated after removing low-quality reads and adapter contaminants. The results revealed that 37.65 and 26.69% of the sRNAs in 2- and 9-day-old seedlings, respectively, were 24 nt long. In total, 254 known mature miRNA sequences from 228 miRNA families and 343 novel miRNAs were identified. Of these miRNAs, 224 were differentially expressed between the two analyzed libraries. The most abundant miRNAs identified by sequence homology were miR156, miR167, and miR157, each with more than 100,000 sequenced reads. Compared with the expression levels in 2-day-old seedlings, MiR8154 and miR390 were the most up- and down-regulated miRNAs respectively in 9-day-old seedlings. Gene ontology enrichment analysis of the differentially expressed-miRNA target genes affecting biological processes revealed that most genes were in the "regulation of transcription" category. Additionally, the expression patterns of some miRNAs and target genes were validated by quantitative real-time polymerase chain reaction. We determined that development-associated miRNAs (e.g., bal-miR156/157/159/166/167/172/396), were highly-expressed during seedling-establishment stage, as were stress-related (bal-miR408) and metabolism-related (bal-miR826) miRNAs. Combined with the low level of targets SPL9 and AP2, it was concluded that miR156-SPL9 and miR172-AP modules play key roles during the B. alboglabra seedling establishment stage.
Collapse
Affiliation(s)
- Rongfang Guo
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanping Deng
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongkai Huang
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaodong Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xu XuHan
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institut de la Recherche Interdisciplinaire de ToulouseToulouse, France
- *Correspondence: Xu XuHan
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Zhongxiong Lai
| |
Collapse
|
25
|
Shah P, Choi SW, Kim HJ, Cho SK, Bhang YJ, Ryu MY, Thulstrup PW, Bjerrum MJ, Yang SW. Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs. Nucleic Acids Res 2015; 44:e57. [PMID: 26681688 PMCID: PMC4824086 DOI: 10.1093/nar/gkv1377] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines.
Collapse
Affiliation(s)
- Pratik Shah
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Suk Won Choi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Ho-Jin Kim
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Seok Keun Cho
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Yong-Joo Bhang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Moon Young Ryu
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Morten Jannik Bjerrum
- Seoulin Bioscience Co. Ltd. 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seong Wook Yang
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Korea
| |
Collapse
|
26
|
Curtin SJ, Michno JM, Campbell BW, Gil-Humanes J, Mathioni SM, Hammond R, Gutierrez-Gonzalez JJ, Donohue RC, Kantar MB, Eamens AL, Meyers BC, Voytas DF, Stupar RM. MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants. G3 (BETHESDA, MD.) 2015; 6:423-33. [PMID: 26681515 PMCID: PMC4751560 DOI: 10.1534/g3.115.022137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023]
Abstract
Small nonprotein-coding microRNAs (miRNAs) are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1) is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21-22 nucleotides in length. Zinc finger nucleases (ZFNs) were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s) in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development.
Collapse
Affiliation(s)
- Shaun J Curtin
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Jean-Michel Michno
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108
| | - Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108
| | - Javier Gil-Humanes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455 Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sandra M Mathioni
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711
| | - Reza Hammond
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711
| | | | - Ryan C Donohue
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108
| | - Michael B Kantar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108
| | - Andrew L Eamens
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455 Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
27
|
Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus. Sci Rep 2015; 5:15346. [PMID: 26481091 PMCID: PMC4612314 DOI: 10.1038/srep15346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023] Open
Abstract
Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.
Collapse
|
28
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
29
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
30
|
Song Y, Tian M, Ci D, Zhang D. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1891-905. [PMID: 25617468 PMCID: PMC4669551 DOI: 10.1093/jxb/eru531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/15/2014] [Accepted: 12/10/2014] [Indexed: 05/22/2023]
Abstract
Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Min Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| |
Collapse
|
31
|
Wang M, Wu B, Chen C, Lu S. Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:256-70. [PMID: 25040236 DOI: 10.1111/jipb.12239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/03/2014] [Indexed: 05/11/2023]
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in plants. However, little is known about lncRNAs in Panax ginseng C. A. Meyer, an economically significant medicinal plant species. A total of 3,688 mRNA-like non-coding RNAs (mlncRNAs), a class of lncRNAs, were identified in P. ginseng. Approximately 40% of the identified mlncRNAs were processed into small RNAs, implying their regulatory roles via small RNA-mediated mechanisms. Eleven miRNA-generating mlncRNAs also produced siRNAs, suggesting the coordinated production of miRNAs and siRNAs in P. ginseng. The mlncRNA-derived small RNAs might be 21-, 22-, or 24-nt phased and could be generated from both or only one strand of mlncRNAs, or from super long hairpin structures. A full-length mlncRNA, termed MAR (multiple-function-associated mlncRNA), was cloned. It generated the most abundant siRNAs. The MAR siRNAs were predominantly 24-nt and some of them were distributed in a phased pattern. A total of 228 targets were predicted for 71 MAR siRNAs. Degradome sequencing validated 68 predicted targets involved in diverse metabolic pathways, suggesting the significance of MAR in P. ginseng. Consistently, MAR was detected in all tissues analyzed and responded to methyl jasmonate (MeJA) treatment. It sheds light on the function of mlncRNAs in plants.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression Regulation, Plant
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Panax/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | | | | | | |
Collapse
|
32
|
Speth C, Laubinger S. Rapid and parallel quantification of small and large RNA species. Methods Mol Biol 2014; 1158:93-106. [PMID: 24792046 DOI: 10.1007/978-1-4939-0700-7_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantitative real-time PCR (qRT-PCR) is a common technique for mRNA quantification. Several methods have been developed in the past few years in order to adapt qRT-PCR also for small non-coding RNAs (sRNA). We here provide a simple and sensitive protocol that allows quantification of mRNAs, selected sRNAs, and long non-coding RNAs (lncRNA) in one cDNA sample by qRT-PCR.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | | |
Collapse
|
33
|
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1379-89. [PMID: 25387135 DOI: 10.1094/mpmi-06-14-0190-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.
Collapse
|
34
|
Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 2014; 15:457. [PMID: 25248950 PMCID: PMC4212123 DOI: 10.1186/s13059-014-0457-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Legume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking. RESULTS In the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions. Genome mapping and a computational pipeline identify 416 miRNA candidates, including known and novel variants of 78 miRNA families present in miRBase. Stringent criteria of pre-miRNA prediction yield 52 new mtr-miRNAs, including 27 miRtrons. Analyzing miRNA precursor polymorphisms in 26 M. truncatula ecotypes identifies higher sequence polymorphism in conserved rather than Medicago-specific miRNA precursors. An average of 19 targets, mainly involved in environmental responses and signalling, is predicted per novel miRNA. We identify miRNAs responsive to bacterial and fungal pathogens or symbionts as well as their related Nod and Myc-LCO symbiotic signals. Network analyses reveal modules of new and conserved co-expressed miRNAs that regulate distinct sets of targets, highlighting potential miRNA-regulated biological pathways relevant to pathogenic and symbiotic interactions. CONCLUSIONS We identify 52 novel genuine miRNAs and large plasticity of the root miRNAome in response to the environment, and also in response to purified Myc/Nod signaling molecules. The new miRNAs identified and their sequence variation across M. truncatula ecotypes may be crucial to understand the adaptation of root growth to the soil environment, notably in the agriculturally important legume crops.
Collapse
|
35
|
Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, Chen X, Ma W. Roles of small RNAs in soybean defense against Phytophthora sojae infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:928-40. [PMID: 24944042 PMCID: PMC5137376 DOI: 10.1111/tpj.12590] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/11/2012] [Accepted: 06/11/2014] [Indexed: 05/06/2023]
Abstract
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat-inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding-leucine rich repeat proteins and genes encoding pentatricopeptide repeat-containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense-associated genes in soybean during Phytophthora infection.
Collapse
Affiliation(s)
- James Wong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| | - Lei Gao
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Lingang New City, Shanghai 201306 China
| | - Jixian Zhai
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Siwaret Arikit
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Yu
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shuyi Duan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Department of Plant Pathology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Vicky Chan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Qin Xiong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Department of Plant Pathology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Jun Yan
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Shengben Li
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Blake C. Meyers
- Department of Computer Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Lingang New City, Shanghai 201306 China
| | - Xuemei Chen
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
36
|
Tsai HL, Li YH, Hsieh WP, Lin MC, Ahn JH, Wu SH. HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. THE PLANT CELL 2014; 26:2858-72. [PMID: 25052717 PMCID: PMC4145119 DOI: 10.1105/tpc.114.126722] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/17/2014] [Accepted: 07/01/2014] [Indexed: 05/21/2023]
Abstract
Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we examined whether optimal photomorphogenesis in Arabidopsis thaliana requires the proper biogenesis of small regulatory RNAs that play pivotal roles in the posttranscriptional regulation of gene expression. Arabidopsis carrying a mutation in HUA ENHANCER1 (HEN1), required for stabilization of small regulatory RNAs, showed defects in multiple aspects of photomorphogenic and skotomorphogenic development. HEN1 negatively regulated Arabidopsis photomorphogenesis. Light-activated HEN1 expression depended on the photoreceptors phytochrome A (phyA), phyB, cryptochrome 1 (cry1), and cry2 and key transcriptional regulators ELONGATED HYPOCOTYL5 (HY5) and HY5-HOMOLOG. We also demonstrate the involvement of the small regulatory RNAs miR157d and miR319 in modulating the expression of a positive regulator, HY5, and negative regulators TEOSINTE BRANCHED1, CYCLOIDEA AND PCF family proteins, respectively, for optimal photomorphogenic development in Arabidopsis.
Collapse
Affiliation(s)
- Huang-Lung Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hang Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Ping Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ji Hoon Ahn
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seongbuk-Gu, Seoul 136-701, Korea
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
37
|
Yu M, Carver BF, Yan L. TamiR1123 originated from a family of miniature inverted-repeat transposable elements (MITE) including one inserted in the Vrn-A1a promoter in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:117-23. [PMID: 24388522 DOI: 10.1016/j.plantsci.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 05/25/2023]
Abstract
More than half of spring wheat cultivars have a dominant Vrn-A1a allele that has an insertion of a miniature inverted-repeat transposable element (MITE) in its promoter. In this study, we found that the MITE present in the Vrn-A1a gene (MITE_VRN) is a nearly perfect palindrome and it can form highly stable hairpin loops when expressed as RNA. MITE_VRN also possessed sequences of a microRNA in Triticum aestivum (TamiR1123). The P(32) labeled TamiR1123 probe detected two RNA molecules on a small RNA gel blot, one expected for MITE_VRN, and the other expected for TamiR1123. These results demonstrated that MITE_VRN was expressed as RNAs and TamiR1123 was originated from the MITE_VRN family. The isogenic line TDD carrying the dominant Vrn-A1a allele with MITE_VRN showed higher TamiR1123 and Vrn-A1a transcript levels than the isogenic line TDE carrying the recessive vrn-A1a allele without MITE_VRN. TamiR1123 were greatly up-regulated by plant age but slightly down-regulated by low temperature and short days. These findings have pointed to alternative regulatory mechanisms for plant development governed by Vrn-A1a in spring wheat.
Collapse
Affiliation(s)
- Ming Yu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
38
|
Li Y, Varala K, Hudson ME. A survey of the small RNA population during far-red light-induced apical hook opening. FRONTIERS IN PLANT SCIENCE 2014; 5:156. [PMID: 24808898 PMCID: PMC4010784 DOI: 10.3389/fpls.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/04/2014] [Indexed: 05/20/2023]
Abstract
Photomorphogenesis is a mechanism employed by plants to regulate their architecture and developmental program in response to light conditions. As they emerge into light for the first time, dark-grown seedlings employ a rapid and finely-controlled photomorphogenic signaling network. Small RNAs have increasingly been revealed to play an important role in regulating multiple aspects of plant development, by modulating the stability of mRNAs. The rapid alteration of the mRNA transcriptome is a known hallmark of the de-etiolation response, thus we investigated the small RNA transcriptome during this process in specific seedling tissues. Here we describe a survey of the small RNA expression profile in four tissues of etiolated soybean seedlings, the cotyledons, hypocotyl and the convex and concave sides of the apical hook. We also investigate how this profile responds to a 1-h far-red light treatment. Our data suggests that miRNAs show a different global profile between these tissues and treatments, suggesting a possible role for tissue- and treatment-specific expression in the differential morphology of the seedling on de-etiolation. Further evidence for the role of miRNA in light-regulated development is given by the de-etiolation responses of a hypomorphic ago1 mutant, which displays reduced and delayed photomorphogenic responses in apical hook and cotyledon angle to far-red light.
Collapse
Affiliation(s)
- Ying Li
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kranthi Varala
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Matthew E. Hudson
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Energy Biosciences Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- *Correspondence: Matthew E. Hudson, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 34 National Soybean Res Ctr., 1101 West Peabody Drive, Urbana, IL 61801, USA e-mail:
| |
Collapse
|
39
|
Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. ScientificWorldJournal 2013; 2013:924153. [PMID: 24302881 PMCID: PMC3835848 DOI: 10.1155/2013/924153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022] Open
Abstract
PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.
Collapse
|
40
|
Li Z, Zhou X. Small RNA biology: from fundamental studies to applications. SCIENCE CHINA. LIFE SCIENCES 2013; 56:1059-1062. [PMID: 23943246 DOI: 10.1007/s11427-013-4535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | |
Collapse
|
41
|
Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. THE PLANT CELL 2013; 25:4166-82. [PMID: 24096344 PMCID: PMC3877805 DOI: 10.1105/tpc.113.116251] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 05/16/2023]
Abstract
cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.
Collapse
Affiliation(s)
- Mehdi Jabnoune
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - David Secco
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Cécile Lecampion
- Laboratory of Plant Genetics and Biophysics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Commissariat à l’Energie Atomique, Institute of Environmental Biology and Biotechnology, Aix Marseille University, Faculty of Sciences, Luminy, Marseille F-13009, France
| | - Christophe Robaglia
- Laboratory of Plant Genetics and Biophysics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Commissariat à l’Energie Atomique, Institute of Environmental Biology and Biotechnology, Aix Marseille University, Faculty of Sciences, Luminy, Marseille F-13009, France
| | - Qingyao Shu
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
42
|
Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH. Translational landscape of photomorphogenic Arabidopsis. THE PLANT CELL 2013; 25:3699-710. [PMID: 24179124 PMCID: PMC3877810 DOI: 10.1105/tpc.113.114769] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 05/19/2023]
Abstract
Translational control plays a vital role in regulating gene expression. To decipher the molecular basis of translational regulation in photomorphogenic Arabidopsis thaliana, we adopted a ribosome profiling method to map the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in the dark and after light exposure. We found that, in Arabidopsis, a translating ribosome protects an ~30-nucleotide region and moves in three-nucleotide periodicity, characteristics also observed in Saccharomyces cerevisiae and mammals. Light enhanced the translation of genes involved in the organization and function of chloroplasts. Upstream open reading frames initiated by ATG but not CTG mediated translational repression of the downstream main open reading frame. Also, we observed widespread translational repression of microRNA target genes in both light- and dark-grown Arabidopsis seedlings. This genome-wide characterization of transcripts undergoing translation at the nucleotide-resolution level reveals that a combination of multiple translational mechanisms orchestrates and fine-tunes the translation of diverse transcripts in plants with environmental responsiveness.
Collapse
Affiliation(s)
- Ming-Jung Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hsien Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Jing-Fen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsung-Ying Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Huang-Lung Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
- Address correspondence to
| |
Collapse
|
43
|
Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2013; 13:140. [PMID: 24060047 PMCID: PMC4015866 DOI: 10.1186/1471-2229-13-140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. RESULTS Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. CONCLUSIONS We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality.
Collapse
Affiliation(s)
- Fanrong Meng
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Ketao Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lulu Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaohui Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
44
|
Mechanistic insights into small RNA recognition and modification by the HEN1 methyltransferase. Biochem J 2013; 453:281-90. [PMID: 23621770 DOI: 10.1042/bj20121699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The HEN1 methyltransferase from Arabidopsis thaliana modifies the 3'-terminal nucleotides of small regulatory RNAs. Although it is one of the best characterized members of the 2'-O-methyltransferase family, many aspects of its interactions with the cofactor and substrate RNA remained unresolved. To better understand the substrate interactions and contributions of individual steps during HEN1 catalysis, we studied the binding and methylation kinetics of the enzyme using a series of unmethylated, hemimethylated and doubly methylated miRNA and siRNA substrates. The present study shows that HEN1 specifically binds double-stranded unmethylated or hemimethylated miR173/miR173* substrates with a subnanomolar affinity in a cofactor-dependent manner. Kinetic studies under single turnover and pre-steady state conditions in combination with isotope partitioning analysis showed that the binary HEN1-miRNA/miRNA* complex is catalytically competent; however, successive methylation of the two strands in a RNA duplex occurs in a non-processive (distributive) manner. We also find that the observed moderate methylation strand preference is largely exerted at the RNA-binding step and is fairly independent of the nature of the 3'-terminal nucleobase, but shows some dependency on proximal nucleotide mispairs. The results of the present study thus provide novel insights into the mechanism of RNA recognition and modification by a representative small RNA 2'-O-methyltransferase.
Collapse
|
45
|
Song Y, Ma K, Ci D, Zhang Z, Zhang D. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa). PLoS One 2013; 8:e62681. [PMID: 23667507 PMCID: PMC3646847 DOI: 10.1371/journal.pone.0062681] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs). The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+) transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Kaifeng Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Zhiyi Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
46
|
Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, Thomas EN, Slotkin RK. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. PLANT PHYSIOLOGY 2013; 162:116-31. [PMID: 23542151 PMCID: PMC3641197 DOI: 10.1104/pp.113.216481] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/28/2013] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.
Collapse
|
47
|
Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 2013; 41:4699-708. [PMID: 23482394 PMCID: PMC3632135 DOI: 10.1093/nar/gkt152] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Institut des Sciences du Végétal, CNRS UPR 2355, SPS Saclay Plant Sciences, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Huang D, Koh C, Feurtado JA, Tsang EWT, Cutler AJ. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 2013; 14:140. [PMID: 23448243 PMCID: PMC3602245 DOI: 10.1186/1471-2164-14-140] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are 20–21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) – especially in seeds. Results Using next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo. Conclusions Large numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, miR167, miR158 and miR166 are the major contributors to the network controlling seed development and maturation through their pivotal roles in plant development. miR156 may regulate the developmental transition to germination.
Collapse
Affiliation(s)
- Daiqing Huang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon S7N 0W9, Canada
| | | | | | | | | |
Collapse
|
49
|
Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma W. Oomycete pathogens encode RNA silencing suppressors. Nat Genet 2013; 45:330-3. [PMID: 23377181 DOI: 10.1038/ng.2525] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022]
Abstract
Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.
Collapse
Affiliation(s)
- Yongli Qiao
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jada B, Soitamo AJ, Lehto K. Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC PLANT BIOLOGY 2013; 13:8. [PMID: 23297695 PMCID: PMC3562197 DOI: 10.1186/1471-2229-13-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA silencing affects a broad range of regulatory processes in all eukaryotes ranging from chromatin structure maintenance to transcriptional and translational regulation and longevity of the mRNAs. Particularly in plants, it functions as the major defense mechanism against viruses. To counter-act this defense, plant viruses produce suppressors of RNA silencing (Viral suppressors of RNA silencing, VSRSs), which are essential for viruses to invade their specific host plants. Interactions of these VSRSs with the hosts' silencing pathways, and their direct and indirect interference with different cellular regulatory networks constitute one of the main lines of the molecular virus-host interactions. Here we have used a microarray approach to study the effects of the Potato virus X Potexvirus (PVX)-specific P25 VSRS protein on the transcript profile of tobacco plants, when expressed as a transgene in these plants. RESULTS The expression of the PVX-specific P25 silencing suppressor in transgenic tobacco plants caused significant up-regulation of 1350 transcripts, but down-regulation of only five transcripts in the leaves, and up- and down-regulation of 51 and 13 transcripts, respectively, in the flowers of these plants, as compared to the wild type control plants. Most of the changes occurred in the transcripts related to biotic and abiotic stresses, transcription regulation, signaling, metabolic pathways and cell wall modifications, and many of them appeared to be induced through up-regulation of the signaling pathways regulated by ethylene, jasmonic acid and salicylic acid. Correlations of these alterations with the protein profile and related biological functions were analyzed. Surprisingly, they did not cause significant alterations in the protein profile, and caused only very mild alteration in the phenotype of the P25-expressing transgenic plants. CONCLUSION Expression of the PVX-specific P25 VSRS protein causes major alterations in the transcriptome of the leaves of transgenic tobacco plants, but very little of any effects in the young flowers of the same plants. The fairly stable protein profile in the leaves and lack of any major changes in the plant phenotype indicate that the complicated interplay and interactions between different regulatory levels are able to maintain homeostasis in the plants.
Collapse
Affiliation(s)
- Balaji Jada
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Arto J Soitamo
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| | - Kirsi Lehto
- Department of Biochemistry and Food Chemistry, Laboratory of Molecular Plant Biology, University of Turku, Itäinen pitkäkatu 4B, 6. floor, PharmaCity, FI-20520, Finland
| |
Collapse
|