1
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
2
|
Veltsos P, Ridout KE, Toups MA, González-Martínez SC, Muyle A, Emery O, Rastas P, Hudzieczek V, Hobza R, Vyskot B, Marais GAB, Filatov DA, Pannell JR. Early Sex-Chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua. Genetics 2019; 212:815-835. [PMID: 31113811 PMCID: PMC6614902 DOI: 10.1534/genetics.119.302045] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about one-third of the Y chromosome, containing 568 transcripts and spanning 22.3 cM in the corresponding female map, has ceased recombining. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii, which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining ∼1 MYA. Patterns of gene expression within the nonrecombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| | - Kate E Ridout
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
- Department of Plant Sciences, University of Oxford, OX1 3RB, United Kingdom
- Department of Oncology, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
- Department of Integrative Biology, University of Texas, Austin, 78712 Texas
| | | | - Aline Muyle
- Laboratoire Biométrie et Biologie Évolutive (UMR 5558), CNRS/Université Lyon 1, 69100 Villeurbanne, France
| | - Olivier Emery
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| | - Pasi Rastas
- University of Helsinki, Institute of Biotechnology, 00014, Finland
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | | | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, OX1 3RB, United Kingdom
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| |
Collapse
|
3
|
Tarora K, Shudo A, Kawano S, Yasuda K, Ueno H, Matsumura H, Urasaki N. Development of plants resistant to Papaya leaf distortion mosaic virus by intergeneric hybridization between Carica papaya and Vasconcellea cundinamarcensis. BREEDING SCIENCE 2016; 66:734-741. [PMID: 28163589 PMCID: PMC5282761 DOI: 10.1270/jsbbs.16107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 05/06/2023]
Abstract
In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya. From the cross between C. papaya and V. cundinamarcensis, we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis. Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding.
Collapse
Affiliation(s)
- Kazuhiko Tarora
- Okinawa Prefectural Agricultural Research Center, 820 Makabe, Itoman, Okinawa 901-0336, Japan; Department of Bioscience and Textile Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Ayano Shudo
- Okinawa Prefectural Agricultural Research Center , 820 Makabe, Itoman, Okinawa 901-0336 , Japan
| | - Shinji Kawano
- Department of Agriculture, Forestry and Fisheries, Yaeyama Agriculture, Forestry and Fisheries Promotion Center , 438-1 Maezato, Ishigaki, Okinawa 907-002 , Japan
| | - Keiji Yasuda
- Okinawa Prefectural Forest Resources Research Center , 4605-5 Nago, Nago, Okinawa 905-0012 , Japan
| | - Hiroki Ueno
- Department of Bioscience and Textile Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan; Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Anno, Tsu, Mie 514-2392, Japan
| | - Hideo Matsumura
- Gene Research Center, Shinshu University , 3-15-1 Tokida, Ueda, Nagano 386-8567 , Japan
| | - Naoya Urasaki
- Okinawa Prefectural Agricultural Research Center , 820 Makabe, Itoman, Okinawa 901-0336 , Japan
| |
Collapse
|
4
|
Moore RC, Harkess AE, Weingartner LA. How to be a seXY plant model: A holistic view of sex-chromosome research. AMERICAN JOURNAL OF BOTANY 2016; 103:1379-1382. [PMID: 27370315 DOI: 10.3732/ajb.1600054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Richard C Moore
- Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056 USA
| | - Alex E Harkess
- University of Georgia, Department of Plant Biology, 120 Carlton St, Athens, Georgia 30602 USA
| | - Laura A Weingartner
- Indiana University, Department of Biology, 1001 E Third St., Bloomington, Indiana 47405 USA
| |
Collapse
|
5
|
Rockinger A, Sousa A, Carvalho FA, Renner SS. Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. AMERICAN JOURNAL OF BOTANY 2016; 103:1082-8. [PMID: 27234227 DOI: 10.3732/ajb.1600134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/03/2016] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Caricaceae include six genera and 34 species, among them papaya, a model species in plant sex chromosome research. The family was held to have a conserved karyotype with 2n = 18 chromosomes, an assumption based on few counts. We examined the karyotypes and genome size of species from all genera to test for possible cytogenetic variation. METHODS We used fluorescent in situ hybridization using standard telomere, 5S, and 45S rDNA probes. New and published data were combined with a phylogeny, molecular clock dating, and C values (available for ∼50% of the species) to reconstruct genome evolution. KEY RESULTS The African genus Cylicomorpha, which is sister to the remaining Caricaceae (all neotropical), has 2n = 18, as do the species in two other genera. A Mexican clade of five species that includes papaya, however, has 2n = 18 (papaya), 2n = 16 (Horovitzia cnidoscoloides), and 2n = 14 (Jarilla caudata and J. heterophylla; third Jarilla not counted), with the phylogeny indicating that the dysploidy events occurred ∼16.6 and ∼5.5 million years ago and that Jarilla underwent genome size doubling (∼450 to 830-920 Mbp/haploid genome). Pericentromeric interstitial telomere repeats occur in both Jarilla adjacent to 5S rDNA sites, and the variability of 5S rDNA sites across all genera is high. CONCLUSIONS On the basis of outgroup comparison, 2n = 18 is the ancestral number, and repeated chromosomal fusions with simultaneous genome size increase as a result of repetitive elements accumulating near centromeres characterize the papaya clade. These results have implications for ongoing genome assemblies in Caricaceae.
Collapse
Affiliation(s)
| | - Aretuza Sousa
- Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany
| | | | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany
| |
Collapse
|
6
|
Breeding Systems, Mating Systems, and Genomics of Gender Determination in Angiosperm Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2016. [DOI: 10.1007/7397_2016_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Abstract
Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.
Collapse
|
8
|
Comparative Analysis of Gene Expression by Microarray Analysis of Male and Female Flowers ofAsparagus officinalis. Biosci Biotechnol Biochem 2014; 77:1193-9. [DOI: 10.1271/bbb.120943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Crossman A, Charlesworth D. Breakdown of dioecy: models where males acquire cosexual functions. Evolution 2013; 68:426-40. [PMID: 24117375 DOI: 10.1111/evo.12283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/10/2013] [Indexed: 01/07/2023]
Abstract
We have reanalyzed models of the breakdown of dioecy involving modified males to investigate female frequencies in the resulting gynodioecious populations. We extend and simplify previous treatments to deal with biologically relevant factors including pollen limitation, partial selfing of modified males, and inbreeding depression, to highlight the different empirically detectable advantages that may be gained by modified males that can reproduce as cosexes (i.e., can produce some seeds); these include "inconstant males," which can sometimes display some female function. Males reproducing wholly or occasionally as cosexual phenotypes can gain the transmission advantage of selfing, if partial self-fertilization is possible, and from reproductive assurance when pollen is limiting. If, because of resource limitation, such cosexual phenotypes produce fewer ovules than females, their nonselfed ovules will require a lower pollen pool size for full seed-set, compared with females. We investigate the conditions for these benefits to allow modified males to invade dioecious populations. Sometimes, such invasion leads to replacement of dioecy by the cosexual type, but sometimes the breakdown populations remain sexually polymorphic. When competition occurs between genotypes in the pollen load on a flower, high female frequencies can arise when Y chromosome-bearing pollen competes poorly with X pollen.
Collapse
Affiliation(s)
- Allan Crossman
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Lab, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, United Kingdom
| | | |
Collapse
|
10
|
Abstract
It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
11
|
Abstract
X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Y(h) chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X.
Collapse
|
12
|
Weingartner LA, Moore RC. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems. Mol Biol Evol 2012; 29:3909-20. [PMID: 22855536 DOI: 10.1093/molbev/mss196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.
Collapse
|
13
|
A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. Mol Phylogenet Evol 2012; 65:46-53. [PMID: 22659516 DOI: 10.1016/j.ympev.2012.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 05/07/2012] [Accepted: 05/17/2012] [Indexed: 11/21/2022]
Abstract
Papaya (Carica papaya) is a crop of great economic importance, and the species was among the first plants to have its genome sequenced. However, there has never been a complete species-level phylogeny for the Caricaceae, and the crop's closest relatives are therefore unknown. We investigated the evolution of the Caricaceae based on sequences from all species and genera, the monospecific Carica, African Cylicomorpha with two species, South American Jacaratia and Vasconcellea with together c. 28 species, and Mexican/Guatemalan Jarilla and Horovitzia with four species. Most Caricaceae are trees or shrubs; the species of Jarilla, however, are herbaceous. We generated a matrix of 4711 nuclear and plastid DNA characters and used maximum likelihood (ML) and Bayesian analysis to infer species relationships, rooting trees on the Moringaceae. Divergence times were estimated under relaxed and strict molecular clocks, using different subsets of the data. Ancestral area reconstruction relied on a ML approach. The deepest split in the Caricaceae occurred during the Late Eocene, when the ancestor of the Neotropical clade arrived from Africa. In South America, major diversification events coincide with the Miocene northern Andean uplift and the initial phase of the tectonic collision between South America and Panama resulting in the Panamanian land bridge. Carica papaya is sister to Jarilla/Horovitzia, and all three diverged from South American Caricaceae in the Oligocene, 27 (22-33) Ma ago, coincident with the early stages of the formation of the Panamanian Isthmus. The discovery that C. papaya is closest to a clade of herbaceous or thin-stemmed species has implications for plant breeders who have so far tried to cross papaya only with woody highland papayas (Vasconcellea).
Collapse
|
14
|
Li J, Koski MH, Ashman TL. Functional characterization of gynodioecy in Fragaria vesca ssp. bracteata (Rosaceae). ANNALS OF BOTANY 2012; 109:545-52. [PMID: 22052984 PMCID: PMC3278295 DOI: 10.1093/aob/mcr279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/03/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species. METHODS We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs. KEY RESULTS Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high. CONCLUSIONS The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.
Collapse
Affiliation(s)
- Junmin Li
- Institute of Ecology, Taizhou University, Linhai 317000, China
| | - Matthew H. Koski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260-3929, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260-3929, USA
| |
Collapse
|
15
|
Onodera Y, Yonaha I, Masumo H, Tanaka A, Niikura S, Yamazaki S, Mikami T. Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. PLANT CELL REPORTS 2011; 30:965-971. [PMID: 21301852 DOI: 10.1007/s00299-010-0998-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 05/30/2023]
Abstract
Spinach is basically a dioecious species, with occasional monoecious plants in some populations. Sexual dimorphism in dioecious spinach plants is controlled by an allelic pair termed X and Y located on the short arm of the longest chromosome (x = 6). Ten AFLP markers, closely linked to the X/Y locus, were identified using bulked segregant analysis, four of which were revealed to co-segregate with Y in the present mapping population. We mapped the AFLP markers and two known male-specific DNAs to a 13.4 cM region encompassing the locus. These markers will be the basis for positional cloning of the sex-determination gene. We also showed that a single, incompletely dominant gene is responsible for the highly staminate monoecious character. The gene was found to be located at a distance of 4.3 cM from microsatellite marker SO4, which mapped 1.6 cM from the X/Y locus. This indicates that the monoecious gene seems not to be allelic to but closely linked to the X/Y gene pair. SO4 will enable breeders to efficiently select highly male monoecious plants for preferential use as the pollen parent for hybrid seed production.
Collapse
Affiliation(s)
- Yasuyuki Onodera
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Sapporo 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.
Collapse
Affiliation(s)
- Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA.
| | | | | |
Collapse
|
17
|
Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics 2010; 186:1425-33. [PMID: 20923978 DOI: 10.1534/genetics.110.122911] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry--one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana--share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes.
Collapse
|