1
|
Scutt CP. Model Species to Investigate the Origin of Flowers. Methods Mol Biol 2023; 2686:83-109. [PMID: 37540355 DOI: 10.1007/978-1-0716-3299-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The angiosperms, or flowering plants, arose at least 135 million years ago (Ma) and rapidly diversified to form over 300,000 species alive today. This group appears, however, to have separated from its closest living relatives, the extant gymnosperms, much earlier: over 300 Ma. Representatives of basally-diverging angiosperm lineages are of key importance to studies aimed at reconstructing the most recent common ancestor of living angiosperms, including its morphological, anatomical, eco-physiological and molecular aspects. Furthermore, evo-devo comparisons of angiosperms with living gymnosperms may help to determine how the many novel aspects of angiosperms, including those of the flower, first came about. This chapter reviews literature on the origin of angiosperms and focusses on basally-diverging angiosperms and gymnosperms that show advantages as potential experimental models, reviewing information and protocols for the use of these species in an evo-devo context. The final section suggests a means by which data from living and fossil groups could be integrated to better elucidate evolutionary events that took place on the long stem-lineage that apparently preceded the radiation of living angiosperms.
Collapse
Affiliation(s)
- Charles P Scutt
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France.
| |
Collapse
|
2
|
Choi BS, Choi SK, Kim NS, Choi IY. NBLAST: a graphical user interface-based two-way BLAST software with a dot plot viewer. Genomics Inform 2022; 20:e40. [PMID: 36239113 PMCID: PMC9576473 DOI: 10.5808/gi.21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
BLAST, a basic bioinformatics tool for searching local sequence similarity, has been one of the most widely used bioinformatics programs since its introduction in 1990. Users generally use the web-based NCBI-BLAST program for BLAST analysis. However, users with large sequence data are often faced with a problem of upload size limitation while using the web-based BLAST program. This proves inconvenient as scientists often want to run BLAST on their own data, such as transcriptome or whole genome sequences. To overcome this issue, we developed NBLAST, a graphical user interface-based BLAST program that employs a two-way system, allowing the use of input sequences either as "query" or "target" in the BLAST analysis. NBLAST is also equipped with a dot plot viewer, thus allowing researchers to create custom database for BLAST and run a dot plot similarity analysis within a single program. It is available to access to the NBLAST with http://nbitglobal.com/nblast.
Collapse
Affiliation(s)
| | - Seon Kang Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Soo Kim
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
| | - Ik-Young Choi
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Song Y, Gan Y, Liu L, Corlett RT. The floral transcriptome of Machilus yunnanensis, a tree in the magnoliid family Lauraceae. Comput Biol Chem 2018; 77:456-465. [DOI: 10.1016/j.compbiolchem.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
|
4
|
Coiro M, Barone Lumaga MR. Disentangling historical signal and pollinator selection on the micromorphology of flowers: an example from the floral epidermis of the Nymphaeaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:902-915. [PMID: 29869401 DOI: 10.1111/plb.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
The family Nymphaeaceae includes most of the diversity among the ANA-grade angiosperms. Among the species of this family, floral structures and pollination strategies vary. The genus Victoria, as well as subgenera Lotos and Hydrocallis in Nymphaea, present night-blooming, scented flowers pollinated by scarab beetles. Such similar pollination strategies have led to macromorphological similarities among the flowers of these species, which could be interpreted as homologies or convergences based on different phylogenetic hypotheses about the relationships of these groups. We employed scanning electron microscopy of floral epidermis for seven species of the Nymphaeaceae with contrasting pollination biology to identify the main characters of the floral organs and the potential homologous nature of the structures involved in pollinator attraction. Moreover, we used transmission electron microscopy to observe ultrastructure of papillate-conical epidermis in the stamen of Victoria cruziana. We then tested the phylogenetic or ecological distribution of these traits using both consensus network approaches and ancestral state reconstruction on fixed phylogenies. Our results show that the night-blooming flowers present different specialisations in their epidermis, with V. cruziana presenting the most elaborate floral anatomy. We also identify for the first time the presence of conical-papillate cells in the order Nymphaeales. The epidermal characters tend to reflect phylogenetic relationships more than convergence due to pollinator selection. These results point to an independent and parallel evolution of scarab pollination in Nymphaeaceae and demonstrate the promise of floral anatomy as a phylogenetic marker. Moreover, they indicate a degree of sophistication in the anatomical basis of cantharophilous flowers in the Nymphaeales that diverges from the most simplistic views of floral evolution in the angiosperms.
Collapse
Affiliation(s)
- M Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - M R Barone Lumaga
- Department of Biology, Orto Botanico, Università degli Studi di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
5
|
Chen Z, Rao P, Yang X, Su X, Zhao T, Gao K, Yang X, An X. A Global View of Transcriptome Dynamics During Male Floral Bud Development in Populus tomentosa. Sci Rep 2018; 8:722. [PMID: 29335419 PMCID: PMC5768756 DOI: 10.1038/s41598-017-18084-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/05/2017] [Indexed: 02/01/2023] Open
Abstract
To obtain a comprehensive overview of the dynamic transcriptome during male floral bud development in Populus tomentosa, high-throughput RNA-seq was conducted during eight flowering-related stages. Among the 109,212 de novo assembled unigenes, 6,959 were differentially expressed during the eight stages. The overrepresented classed of genes identified by Gene Ontology (GO) enrichment included 'response to environmental stimuli' and 'plant-type spore development'. One-third of the differentially expressed genes were transcription factors (TFs). Several genes and gene families were analyzed in depth, including MADS-box TFs, Squamosa promoter binding protein-like family, receptor-like kinases, FLOWERING LOCUS T/TERMINAL-FLOWER-LIKE 1 family, key genes involved in anther and tapetum development, as well as LEAFY, WUSCHEL and CONSTANS. The results provided new insights into the roles of these and other well known gene families during the annual flowering cycle. To explore the mechanisms regulating poplar flowering, a weighted gene co-expression network was constructed using 98 floral-related genes involved in flower meristem identity and flower development. Many modules of co-expressed genes and hub genes were identified, such as APETALA1 and HUA1. This work provides many new insights on the annual flowering cycle in a perennial plant, and a major new resource for plant biology and biotechnology.
Collapse
Affiliation(s)
- Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Pian Rao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoxing Su
- Berry Genomics Co., Ltd, Beijing, 100015, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
6
|
Chanderbali AS, Berger BA, Howarth DG, Soltis DE, Soltis PS. Evolution of floral diversity: genomics, genes and gamma. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0509. [PMID: 27994132 DOI: 10.1098/rstb.2015.0509] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/12/2022] Open
Abstract
A salient feature of flowering plant diversification is the emergence of a novel suite of floral features coinciding with the origin of the most species-rich lineage, Pentapetalae. Advances in phylogenetics, developmental genetics and genomics, including new analyses presented here, are helping to reconstruct the specific evolutionary steps involved in the evolution of this clade. The enormous floral diversity among Pentapetalae appears to be built on a highly conserved ground plan of five-parted (pentamerous) flowers with whorled phyllotaxis. By contrast, lability in the number and arrangement of component parts of the flower characterize the early-diverging eudicot lineages subtending Pentapetalae. The diversification of Pentapetalae also coincides closely with ancient hexaploidy, referred to as the gamma whole-genome triplication, for which the phylogenetic timing, mechanistic details and molecular evolutionary consequences are as yet not fully resolved. Transcription factors regulating floral development often persist in duplicate or triplicate in gamma-derived genomes, and both individual genes and whole transcriptional programmes exhibit a shift from broadly overlapping to tightly defined expression domains in Pentapetalae flowers. Investigations of these changes associated with the origin of Pentapetalae can lead to a more comprehensive understanding of what is arguably one of the most important evolutionary diversification events within terrestrial plants.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Brent A Berger
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Hui W, Yang Y, Wu G, Peng C, Chen X, Zayed MZ. Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L. Sci Rep 2017; 7:16421. [PMID: 29180629 PMCID: PMC5703882 DOI: 10.1038/s41598-017-16545-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023] Open
Abstract
The seeds of Jatropha curcas contain a high percentage of biodiesel. However, low seed yield which was limited by its poor female flowers was a bottleneck for its utilization. Here, we compared the transcriptomic profiles of five different samples during floral sex differentiation stages using Illumina Hiseq 4000. Our results showed that hundreds of differentially expressed genes (DEGs) were detected in floral sex initiation period, but thousands of DEGs were involved in the stamens and ovules development process. Moreover, the DEGs were mainly shown up-regulation in male floral initiation, but mainly down-regulation in female floral initiation. Male floral initiation was associated with the flavonoid biosynthesis pathway while female floral initiation was related to the phytohormone signal transduction pathway. Cytokinin (CTK) signaling triggered the initiation of female floral primordium, thereafter other phytohormones co-promoted the female floral development. In addition, the floral organ identity genes played important roles in floral sex differentiation process and displayed a general conservation of the ABCDE model in J. curcas. To the best of our knowledge, this data is the first comprehensive analysis of the underlying regulatory mechanism and the related genes during floral sex differentiation in J. curcas, which help in engineering high-yielding varieties of J. curcas.
Collapse
Affiliation(s)
- Wenkai Hui
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Yuantong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Changcao Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaoyang Chen
- National Engineering Laboratory for Forest Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Mohamed Zaky Zayed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, P.R. China.,Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Zini LM, Galati BG, Ferrucci MS. Perianth organs in Nymphaeaceae: comparative study on epidermal and structural characters. JOURNAL OF PLANT RESEARCH 2017; 130:1047-1060. [PMID: 28733783 DOI: 10.1007/s10265-017-0963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
The perianth organs of six species of Nymphaeaceae, representing Euryale, Nymphaea and Victoria, were studied on the basis of macroscopical, micromorphological, and anatomical characters. The aims were to determine whether perianth is differentiated among tepal whorls considering the presence of sepaloid and petaloid characters, and to evaluate the occurrence of both features in individual tepals. Selected perianth series were examined macroscopically, with light microscopy, and scanning electron microscopy. Osmophores were detected using neutral red and Sudan. In all tepals examined, stomata and hydropotes were present on the abaxial and adaxial surfaces. These are anomocytic or stephanocytic; hydropotes of irregular type are also present. The outer series of tepals display morpho-anatomical characters in most part related with photosynthetic and protective functions. Osmophore activity is very scarce and petaloid epidermal morphology is present only in N. lotus, thus allowing interpretation of this whorl as primarily sepaloid. The second series exhibits both petal-like and sepal-like characters; in N. amazonum and N. gardneriana sepaloid and petaloid group of cells are present on the abaxial surface of individual tepals. Therefore, this whorl is transitional between the outer and the innermost ones. Both the morpho-anatomy and presence of osmophore activity indicate that the innermost series is entirely petaloid. Inner tepals of E. ferox, N. alba, and V. cruziana share the presence of epidermal cells with predominantly smooth cuticle, whereas those of N. amazonum, N. gardneriana, and N. lotus share a cuticular ornamentation consisting of numerous papillae on each cell. Morphological characters of the perianth epidermis are in some respects congruent with the molecular phylogeny of Nymphaeaceae. Our results support the co-expression of sepaloidy and petaloidy within individual tepals and the mosaic model of perianth evolution proposed for the angiosperms.
Collapse
Affiliation(s)
- Lucía Melisa Zini
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Nordeste), Av. Sargento Cabral 2131, Corrientes, Argentina.
| | - Beatriz Gloria Galati
- Facultad de Agronomía, Depto. de Recursos Naturales y Ambiente, Cátedra de Botánica General, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Silvia Ferrucci
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Nordeste), Av. Sargento Cabral 2131, Corrientes, Argentina
| |
Collapse
|
9
|
Roberts WR, Roalson EH. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae). BMC Genomics 2017; 18:240. [PMID: 28320315 PMCID: PMC5359931 DOI: 10.1186/s12864-017-3623-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/11/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). RESULTS The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. CONCLUSIONS The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.
Collapse
Affiliation(s)
- Wade R. Roberts
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164-1030 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Eric H. Roalson
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164-1030 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| |
Collapse
|
10
|
Abstract
The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution.
Collapse
|
11
|
Chen F, Liu X, Yu C, Chen Y, Tang H, Zhang L. Water lilies as emerging models for Darwin's abominable mystery. HORTICULTURE RESEARCH 2017; 4:17051. [PMID: 28979789 PMCID: PMC5626932 DOI: 10.1038/hortres.2017.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 05/02/2023]
Abstract
Water lilies are not only highly favored aquatic ornamental plants with cultural and economic importance but they also occupy a critical evolutionary space that is crucial for understanding the origin and early evolutionary trajectory of flowering plants. The birth and rapid radiation of flowering plants has interested many scientists and was considered 'an abominable mystery' by Charles Darwin. In searching for the angiosperm evolutionary origin and its underlying mechanisms, the genome of Amborella has shed some light on the molecular features of one of the basal angiosperm lineages; however, little is known regarding the genetics and genomics of another basal angiosperm lineage, namely, the water lily. In this study, we reviewed current molecular research and note that water lily research has entered the genomic era. We propose that the genome of the water lily is critical for studying the contentious relationship of basal angiosperms and Darwin's 'abominable mystery'. Four pantropical water lilies, especially the recently sequenced Nymphaea colorata, have characteristics such as small size, rapid growth rate and numerous seeds and can act as the best model for understanding the origin of angiosperms. The water lily genome is also valuable for revealing the genetics of ornamental traits and will largely accelerate the molecular breeding of water lilies.
Collapse
Affiliation(s)
- Fei Chen
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Liu
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiwei Yu
- Zhejiang Humanities Landscape Co., LTD, Hangzhou 310030, China
| | - Yuchu Chen
- Zhejiang Humanities Landscape Co., LTD, Hangzhou 310030, China
| | - Haibao Tang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
- )
| |
Collapse
|
12
|
Niu S, Yuan H, Sun X, Porth I, Li Y, El-Kassaby YA, Li W. A transcriptomics investigation into pine reproductive organ development. THE NEW PHYTOLOGIST 2016; 209:1278-1289. [PMID: 26406997 DOI: 10.1111/nph.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed using RNA-seq. The results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to that of male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous. This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinrui Sun
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
13
|
Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasinghe V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J, Solomon L, Jaiswal P, Myburg AA, Strauss SH. The floral transcriptome of Eucalyptus grandis. THE NEW PHYTOLOGIST 2015; 206:1406-22. [PMID: 25353719 DOI: 10.1111/nph.13077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/13/2014] [Indexed: 05/20/2023]
Abstract
As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages, and compared these with transcriptomes of diverse vegetative tissues, including leaves, roots, and stems. A subset of 4807 genes (13% of protein-coding genes) were differentially expressed between floral buds of either stage and vegetative tissues. A similar proportion of genes were differentially expressed among all tissues. A total of 479 genes were differentially expressed between early and late stages of floral development. Gene function enrichment identified 158 gene ontology classes that were overrepresented in floral tissues, including 'pollen development' and 'aromatic compound biosynthetic process'. At least 40 floral-dominant genes lacked functional annotations and thus may be novel floral transcripts. We analyzed several genes and gene families in depth, including 49 putative biomarkers of floral development, the MADS-box transcription factors, 'S-domain'-receptor-like kinases, and selected gene family members with phosphatidylethanolamine-binding protein domains. Expanded MADS-box gene subfamilies in Eucalyptus grandis included SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), SEPALLATA (SEP) and SHORT VEGETATIVE PHASE (SVP) Arabidopsis thaliana homologs. These data provide a rich resource for functional and evolutionary analysis of genes controlling eucalypt floral development, and new tools for breeding and biotechnology.
Collapse
Affiliation(s)
- Kelly J Vining
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CP 116, 12602-810, São Paulo, Brazil
| | - Rebecca C Jones
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, 7001, TAS, Australia
| | - Amy Klocko
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Marcio Alves-Ferreira
- Laboratório de Genética Molecular Vegetal (LGMV), Departamento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, CCS 21949900, Rio de Janeiro, Brazil
| | - Charles A Hefer
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Vindhya Amarasinghe
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Palitha Dharmawardhana
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Martin Ranik
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - James Wesley-Smith
- Council for Scientific and Industrial Research, 1 Meiring Naude Rd, Pretoria, South Africa
| | - Luke Solomon
- Seed Technology Programme, Sappi Forests Shaw Research Center, Howick, 3290, South Africa
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alexander A Myburg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
14
|
Abstract
The flower itself, which comprises most of the evolutionary innovations of flowering plants, bears special significance for understanding the origin and diversification of angiosperms. The sudden origin of angiosperms in the fossil record poses unanswered questions on both the origins of flowering plants and their rapid spread and diversification. Central to these questions is the role that the flower, and floral diversity, played. Recent clarifications of angiosperm phylogeny provide the foundation for investigating evolutionary transitions in floral features and the underlying genetic mechanisms of stasis and change. The general features of floral diversity can best be addressed by considering key patterns of variation: an undifferentiated versus a differentiated perianth; elaboration of perianth organs in size and color; merosity of the flower; and phyllotaxy of floral organs. Various models of gene expression now explain the regulation of floral organization and floral organ identity; the best understood are the ABC(E) model and its modifications, but other gene systems are important in specific clades and require further study. Furthermore, the propensity for gene and genome duplications in angiosperms provides abundant raw material for novel floral features--emphasizing the importance of understanding the conservation and diversification of gene lineages and functions in studies of macroevolution.
Collapse
|
15
|
Rocheta M, Sobral R, Magalhães J, Amorim MI, Ribeiro T, Pinheiro M, Egas C, Morais-Cecílio L, Costa MMR. Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber. FRONTIERS IN PLANT SCIENCE 2014; 5:599. [PMID: 25414713 PMCID: PMC4222140 DOI: 10.3389/fpls.2014.00599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 05/03/2023]
Abstract
Monoecious species provide a comprehensive system to study the developmental programs underlying the establishment of female and male organs in unisexual flowers. However, molecular resources for most monoecious non-model species are limited, hampering our ability to study the molecular mechanisms involved in flower development of these species. The objective of this study was to identify differentially expressed genes during the development of male and female flowers of the monoecious species Quercus suber, an economically important Mediterranean tree. Total RNA was extracted from different developmental stages of Q. suber flowers. Non-normalized cDNA libraries of male and female flowers were generated using 454 pyrosequencing technology producing a total of 962,172 high-quality reads with an average length of 264 nucleotides. The assembly of the reads resulted in 14,488 contigs for female libraries and 10,438 contigs for male libraries. Comparative analysis of the transcriptomes revealed genes differentially expressed in early and late stages of development of female and male flowers, some of which have been shown to be involved in pollen development, in ovule formation and in flower development of other species with a monoecious, dioecious, or hermaphroditic sexual system. Moreover, we found differentially expressed genes that have not yet been characterized and others that have not been previously shown to be implicated in flower development. This transcriptomic analysis constitutes a major step toward the characterization of the molecular mechanisms involved in flower development in a monoecious tree with a potential contribution toward the knowledge of conserved developmental mechanisms in other species.
Collapse
Affiliation(s)
- Margarida Rocheta
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Rómulo Sobral
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Joana Magalhães
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
| | - Maria I. Amorim
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
| | - Teresa Ribeiro
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Miguel Pinheiro
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Conceição Egas
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Leonor Morais-Cecílio
- Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
- *Correspondence: Leonor Morais-Cecílio, Departamento de Recursos Naturais Ambiente e Território, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal e-mail:
| | - Maria M. R. Costa
- Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of MinhoBraga, Portugal
- Maria M. R. Costa, Centre for Biodiversity, Functional & Integrative Genomics, Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal e-mail:
| |
Collapse
|
16
|
Liu Z, Ma L, Nan Z, Wang Y. Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae). PLoS One 2013; 8:e57338. [PMID: 23437373 PMCID: PMC3578871 DOI: 10.1371/journal.pone.0057338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background Vicia sativa (the common vetch) possesses a predominant zygomorphic flower and belongs to the subfamily Papilionoideae, which is related to Arabidopsis thaliana in the eurosid II clade of the core eudicots. Each vetch flower consists of 21 concentrically arranged organs: the outermost five sepals, then five petals and ten stamens, and a single carpel in the center. Methodology/Principal Findings We explored the floral transcriptome to examine a genome-scale genetic model of the zygomorphic flower of vetch. mRNA was obtained from an equal mixture of six floral organs, leaves and roots. De novo assembly of the vetch transcriptome using Illumina paired-end technology produced 71,553 unigenes with an average length of 511 bp. We then compared the expression changes in the 71,553 unigenes in the eight independent organs through RNA-Seq Quantification analysis. We predominantly analyzed gene expression patterns specific to each floral organ and combinations of floral organs that corresponded to the traditional ABC model domains. Comparative analyses were performed in the floral transcriptomes of vetch and Arabidopsis, and genomes of vetch and Medicago truncatula. Conclusions/Significance Our comparative analysis of vetch and Arabidopsis showed that the vetch flowers conform to a strict ABC model. We analyzed the evolution and expression of the TCP gene family in vetch at a whole-genome level, and several unigenes specific to three different vetch petals, which might offer some clues toward elucidating the molecular mechanisms underlying floral zygomorphy. Our results provide the first insights into the genome-scale molecular regulatory network that controls the evolution and development of the zygomorphic flower in Papilionoideae.
Collapse
Affiliation(s)
- Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, School of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
- * E-mail: (ZL); (YW)
| | - Lichao Ma
- State Key Laboratory of Grassland Agro-ecosystems, School of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, School of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
- * E-mail: (ZL); (YW)
| |
Collapse
|
17
|
Vanneste K, Van de Peer Y, Maere S. Inference of genome duplications from age distributions revisited. Mol Biol Evol 2012; 30:177-90. [PMID: 22936721 DOI: 10.1093/molbev/mss214] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whole-genome duplications (WGDs), thought to facilitate evolutionary innovations and adaptations, have been uncovered in many phylogenetic lineages. WGDs are frequently inferred from duplicate age distributions, where they manifest themselves as peaks against a small-scale duplication background. However, the interpretation of duplicate age distributions is complicated by the use of K(S), the number of synonymous substitutions per synonymous site, as a proxy for the age of paralogs. Two particular concerns are the stochastic nature of synonymous substitutions leading to increasing uncertainty in K(S) with increasing age since duplication and K(S) saturation caused by the inability of evolutionary models to fully correct for the occurrence of multiple substitutions at the same site. K(S) stochasticity is expected to erode the signal of older WGDs, whereas K(S) saturation may lead to artificial peaks in the distribution. Here, we investigate the consequences of these effects on K(S)-based age distributions and WGD inference by simulating the evolution of duplicated sequences according to predefined real age distributions and re-estimating the corresponding K(S) distributions. We show that, although K(S) estimates can be used for WGD inference far beyond the commonly accepted K(S) threshold of 1, K(S) saturation effects can cause artificial peaks at higher ages. Moreover, K(S) stochasticity and saturation may lead to confounded peaks encompassing multiple WGD events and/or saturation artifacts. We argue that K(S) effects need to be properly accounted for when inferring WGDs from age distributions and that the failure to do so could lead to false inferences.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | | | | |
Collapse
|
18
|
Ma LC, Wang YR, Liu ZP. [Expression analysis of the Medicago truncatula floral specific expression genes]. YI CHUAN = HEREDITAS 2012; 34:621-634. [PMID: 22659435 DOI: 10.3724/sp.j.1005.2012.00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The expression of genes specific to floral organ is important for the floral organ formation and development in Medicago truncatula. Screening of the genes specifically expressed in M. truncatula flowers and comparing the expression patterns of their orthologous homologous genes among different model plants can provide novel insights into the functions of these genes in controlling the floral organ development in M. truncatula. According to the expression profile data of PISTILLATA (PI), we screened 97 genes specifically expressed in M. truncatula floral organs (ratio≥10 and Z≥7.9). Their homolog genes were also identified in Arabidopsis thaliana, soybean (Glycine max L.), Lotus japonicus, and rice (Oryza sativa L.). The results of comparing the gene expression levels, the gene expression patterns, and the gene functions among these species indicated that the expression variation of the orthologous homolog genes was small in the kindred species and was great in distant species. Furthermore, we compared the cis-acting regulatory elements of the genes, which had large expression variation among different plants. These results suggest that the great discrepancy of the orthologous homolog gene expression caused by the different character of cis-element in the promoter region.
Collapse
Affiliation(s)
- Li-Chao Ma
- College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou 730020, China.
| | | | | |
Collapse
|
19
|
Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci U S A 2010; 107:22570-5. [PMID: 21149731 DOI: 10.1073/pnas.1013395108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.
Collapse
|