1
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Lee YY, Guler M, Chigumba DN, Wang S, Mittal N, Miller C, Krummenacher B, Liu H, Cao L, Kannan A, Narayan K, Slocum ST, Roth BL, Gurevich A, Behsaz B, Kersten RD, Mohimani H. HypoRiPPAtlas as an Atlas of hypothetical natural products for mass spectrometry database search. Nat Commun 2023; 14:4219. [PMID: 37452020 PMCID: PMC10349150 DOI: 10.1038/s41467-023-39905-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Recent analyses of public microbial genomes have found over a million biosynthetic gene clusters, the natural products of the majority of which remain unknown. Additionally, GNPS harbors billions of mass spectra of natural products without known structures and biosynthetic genes. We bridge the gap between large-scale genome mining and mass spectral datasets for natural product discovery by developing HypoRiPPAtlas, an Atlas of hypothetical natural product structures, which is ready-to-use for in silico database search of tandem mass spectra. HypoRiPPAtlas is constructed by mining genomes using seq2ripp, a machine-learning tool for the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs). In HypoRiPPAtlas, we identify RiPPs in microbes and plants. HypoRiPPAtlas could be extended to other natural product classes in the future by implementing corresponding biosynthetic logic. This study paves the way for large-scale explorations of biosynthetic pathways and chemical structures of microbial and plant RiPP classes.
Collapse
Affiliation(s)
- Yi-Yuan Lee
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Cornell University, Ithaca, NY, 14850, USA
| | - Mustafa Guler
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shen Wang
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Neel Mittal
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | | | - Haodong Liu
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Liu Cao
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Aditya Kannan
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Alexey Gurevich
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Department of Computer Science, Saarland University, Saarbrücken, Germany
| | - Bahar Behsaz
- Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
Muhammad T, Houssen WE, Thomas L, Alexandru-Crivac CN, Gunasekera S, Jaspars M, Göransson U. Exploring the Limits of Cyanobactin Macrocyclase PatGmac: Cyclization of PawS-Derived Peptide Sunflower Trypsin Inhibitor-1 and Cyclotide Kalata B1. JOURNAL OF NATURAL PRODUCTS 2023; 86:566-573. [PMID: 36917740 PMCID: PMC10043927 DOI: 10.1021/acs.jnatprod.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.
Collapse
Affiliation(s)
- Taj Muhammad
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Wael E Houssen
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Louise Thomas
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Cristina-Nicoleta Alexandru-Crivac
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Marcel Jaspars
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
4
|
Abstract
Background Ribosomally-synthesized cyclic peptides are widely found in plants and exhibit useful bioactivities for humans. The identification of cyclic peptide sequences and their precursor proteins is facilitated by the growing number of sequenced genomes. While previous research largely focused on the chemical diversity of these peptides across various species, there is little attention to a broader range of potential peptides that are not chemically identified. Results A pioneering study was initiated to explore the genetic diversity of linusorbs, a group of cyclic peptides uniquely occurring in cultivated flax (Linum usitatissimum). Phylogenetic analysis clustered the 5 known linusorb precursor proteins into two clades and one singleton. Preliminary tBLASTn search of the published flax genome using the whole protein sequence as query could only retrieve its homologues within the same clade. This limitation was overcome using a profile-based mining strategy. After genome reannotation, a hidden Markov Model (HMM)-based approach identified 58 repeats homologous to the linusorb-embedded repeats in 8 novel proteins, implying that they share common ancestry with the linusorb-embedded repeats. Subsequently, we developed a customized profile composed of a random linusorb-like domain (LLD) flanked by 5 conserved sites and used it for string search of the proteome, which extracted 281 LLD-containing repeats (LLDRs) in 25 proteins. Comparative analysis of different repeat categories suggested that the 5 conserved flanking sites among the non-homologous repeats have undergone convergent evolution driven by functional selection. Conclusions The profile-based mining approach is suitable for analyzing repetitive sequences. The 25 LLDR proteins identified herein represent the potential diversity of cyclic peptides within the flax genome and lay a foundation for further studies on the functions and evolution of these protein tandem repeats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08735-x.
Collapse
|
5
|
Shim YY, Kim JH, Cho JY, Reaney MJT. Health benefits of flaxseed and its peptides (linusorbs). Crit Rev Food Sci Nutr 2022; 64:1845-1864. [PMID: 36193986 DOI: 10.1080/10408398.2022.2119363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhang CH, Shao XX, Wang XB, Shou LL, Liu YL, Xu ZG, Guo ZY. Development of a general bioluminescent activity assay for peptide ligases. FEBS J 2022; 289:5241-5258. [PMID: 35239242 DOI: 10.1111/febs.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag. After the inactive ligation version LgBiT protein was ligated with the low-affinity ligation version SmBiT tag by the expected peptide ligase(s), its luciferase activity would be restored and could be quantified sensitively according to the measured bioluminescence. In the present study, we first validated the bioluminescent activity assay using bacterial sortase A and plant-derived butelase-1. Subsequently, we screened novel peptide ligases from crude extracts of selected plants using two LgBiT-SmBiT ligation pairs. Among 80 common higher plants, we identified that five of them likely express asparaginyl endopeptidase-type peptide ligase and four of them likely express prolyl endopeptidase-type peptide ligase, suggesting that peptide ligases are not so rare in higher plants and more of them await discovery. The present bioluminescent activity assay is ultrasensitive, convenient for use, and resistant to protease interference, and thus would have wide applications for characterizing known peptide ligases or screening new ones from various sources in future studies.
Collapse
Affiliation(s)
- Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Zhang Z, Shi Q, Wang B, Ma A, Wang Y, Xue Q, Shen B, Hamaila H, Tang T, Qi X, Fernie AR, Luo J, Li X. Jujube metabolome selection determined the edible properties acquired during domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1116-1133. [PMID: 34862996 DOI: 10.1111/tpj.15617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 05/26/2023]
Abstract
Plants supply both food and medicinal compounds, which are ascribed to diverse metabolites produced by plants. However, studies on domestication-driven changes in the metabolome and genetic basis of bioactive molecules in perennial fruit trees are generally lacking. Here, we conducted multidimensional analyses revealing a singular domestication event involving the genomic and metabolomic selection of jujube trees (Ziziphus jujuba Mill.). The genomic selection for domesticated genes was highly enriched in metabolic pathways, including carbohydrates and specialized metabolism. Domesticated metabolome profiling indicated that 187 metabolites exhibited significant divergence as a result of directional selection. Malic acid was directly selected during domestication, and the simultaneous selection of specialized metabolites, including triterpenes, consequently lead to edible properties. Cyclopeptide alkaloids (CPAs) were specifically targeted for the divergence between dry and fresh cultivars. We identified 1080 significantly associated loci for 986 metabolites. Among them, 15 triterpenes were directly selected at six major loci, allowing the identification of a homologous cluster containing seven 2,3-oxidosqualene cyclases (OSCs). An OSC gene was found to contribute to the reduction in the content of triterpenes during domestication. The complete pathway for synthesizing ursolic acid was dissected by integration of the metabolome and transcriptome. Additionally, an N-methyltransferase involved in the biosynthesis of CPA and responsible for inter-cultivar content variation was identified. The present study promotes our understanding of the selection process of the global metabolome subsequent to fruit tree domestication and facilitates the genetic manipulation of specialized metabolites to enhance their edible traits.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| | - Qianqian Shi
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, 430070, China
| | - Aimin Ma
- Key Laboratory of Plant Molecular, Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongkang Wang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taigu, 030815, China
| | - Qingtun Xue
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| | - Bingqi Shen
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| | - Halina Hamaila
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, 430070, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular, Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Xingang Li
- College of Forestry, Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
8
|
Plant derived cyclic peptides. Biochem Soc Trans 2021; 49:1279-1285. [PMID: 34156400 PMCID: PMC8286818 DOI: 10.1042/bst20200881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Cyclic peptides are widespread throughout the plant kingdom, and display diverse sequences, structures and bioactivities. The potential applications attributed to these peptides and their unusual biosynthesis has captivated the attention of researchers for many years. Several gene sequences for plant cyclic peptides have been discovered over the last two decades but it is only recently that we are beginning to understand the intricacies associated with their biosynthesis. Recent studies have focussed on three main classes of plant derived cyclic peptides, namely orbitides, SFTI related peptides and cyclotides. In this mini-review, we discuss the expansion of the known sequence and structural diversity in these families, insights into the enzymes involved in the biosynthesis, the exciting applications which includes a cyclotide currently in clinical trials for the treatment of multiple sclerosis, and new production methods that are being developed to realise the potential of plant cyclic peptides as pharmaceutical or agricultural agents.
Collapse
|
9
|
Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021; 41:3096-3117. [PMID: 33599316 DOI: 10.1002/med.21792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA-approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jimin Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chunjin Fu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Jiang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Boping Zhou
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiufeng Ye
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Houshdar Tehrani MH, Gholibeikian M, Bamoniri A, Mirjalili BBF. Cancer Treatment by Caryophyllaceae-Type Cyclopeptides. Front Endocrinol (Lausanne) 2021; 11:600856. [PMID: 33519710 PMCID: PMC7841296 DOI: 10.3389/fendo.2020.600856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading diseases, which, in the most cases, ends with death and, thus, continues to be a major concern in human beings worldwide. The conventional anticancer agents used in the clinic often face resistance among many cancer diseases. Moreover, heavy financial costs preclude patients from continuing treatment. Bioactive peptides, active in several diverse areas against man's health problems, such as infection, pain, hypertension, and so on, show the potential to be effective in cancer treatment and may offer promise as better candidates for combating cancer. Cyclopeptides, of natural or synthetic origin, have several advantages over other drug molecules with low toxicity and low immunogenicity, and they are easily amenable to several changes in their sequences. Given their many demanded homologues, they have created new hope of discovering better compounds with desired properties in the field of challenging cancer diseases. Caryophyllaceae-type cyclopeptides show several biological activities, including cancer cytotoxicity. These cyclopeptides have been discovered in several plant families but mainly are from the Caryophyllaceae family. In this review, a summary of biological activities found for these cyclopeptides is given; the focus is on the anticancer findings of these peptides. Among these cyclopeptides, information about Dianthins (including Longicalycinin A), isolated from different species of Caryophyllaceae, as well as their synthetic analogues is detailed. Finally, by comparing their structures and cytotoxic activities, finding the common figures of these kinds of cyclopeptides as well as their possible future place in the clinic for cancer treatment is put forward.
Collapse
Affiliation(s)
| | | | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | |
Collapse
|
11
|
Fisher MF, Payne CD, Chetty T, Crayn D, Berkowitz O, Whelan J, Rosengren KJ, Mylne JS. The genetic origin of evolidine, the first cyclopeptide discovered in plants, and related orbitides. J Biol Chem 2020; 295:14510-14521. [PMID: 32817170 PMCID: PMC7573267 DOI: 10.1074/jbc.ra120.014781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cyclic peptides are reported to have antibacterial, antifungal, and other bioactivities. Orbitides are a class of cyclic peptides that are small, head-to-tail cyclized, composed of proteinogenic amino acids and lack disulfide bonds; they are also known in several genera of the plant family Rutaceae. Melicope xanthoxyloides is the Australian rain forest tree of the Rutaceae family in which evolidine, the first plant cyclic peptide, was discovered. Evolidine (cyclo-SFLPVNL) has subsequently been all but forgotten in the academic literature, so to redress this we used tandem MS and de novo transcriptomics to rediscover evolidine and decipher its biosynthetic origin from a short precursor just 48 residues in length. We also identified another six M. xanthoxyloides orbitides using the same techniques. These peptides have atypically diverse C termini consisting of residues not recognized by either of the known proteases plants use to macrocyclize peptides, suggesting new cyclizing enzymes await discovery. We examined the structure of two of the novel orbitides by NMR, finding one had a definable structure, whereas the other did not. Mining RNA-seq and whole genome sequencing data from other species of the Rutaceae family revealed that a large and diverse family of peptides is encoded by similar sequences across the family and demonstrates how powerful de novo transcriptomics can be at accelerating the discovery of new peptide families.
Collapse
Affiliation(s)
- Mark F Fisher
- The University of Western Australia, School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, Crawley, Australia
| | - Colton D Payne
- The University of Queensland, Faculty of Medicine, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Thaveshini Chetty
- The University of Western Australia, School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, Crawley, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, Queensland, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - K Johan Rosengren
- The University of Queensland, Faculty of Medicine, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, Crawley, Australia
| |
Collapse
|
12
|
Rubin GM, Ding Y. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides. J Ind Microbiol Biotechnol 2020; 47:659-674. [PMID: 32617877 PMCID: PMC7666021 DOI: 10.1007/s10295-020-02289-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) compose a large structurally and functionally diverse family of natural products. The biosynthesis system of RiPPs typically involves a precursor peptide comprising of a leader and core motif and nearby processing enzymes that recognize the leader and act on the core for producing modified peptides. Interest in RiPPs has increased substantially in recent years as improvements in genome mining techniques have dramatically improved access to these peptides and biochemical and engineering studies have supported their applications. A less understood, intriguing feature in the RiPPs biosynthesis is the precursor peptides of multiple RiPPs families produced by bacteria, fungi and plants carrying multiple core motifs, which we term "multicore". Herein, we present the prevalence of the multicore systems, their biosynthesis and engineering for applications.
Collapse
Affiliation(s)
- Garret M Rubin
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Fisher MF, Zhang J, Berkowitz O, Whelan J, Mylne JS. Cyclic Peptides in Seed of Annona muricata Are Ribosomally Synthesized. JOURNAL OF NATURAL PRODUCTS 2020; 83:1167-1173. [PMID: 32239926 DOI: 10.1021/acs.jnatprod.9b01209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small, cyclic peptides are reported to have many bioactivities. In bacteria and fungi, they can be made by nonribosomal peptide synthetases, but in plants they are exclusively ribosomal. Cyclic peptides from the Annona genus possess cytotoxic and anti-inflammatory activities, but their biosynthesis is unknown. The medicinal soursop plant, Annona muricata, contains annomuricatins A (cyclo-PGFVSA) and B (cyclo-PNAWLGT). Here, using de novo transcriptomics and tandem mass spectrometry, we identify a suite of short transcripts for precursor proteins for 10 validated annomuricatins, 9 of which are novel. In their precursors, annomuricatins are preceded by an absolutely conserved Glu and each peptide sequence has a conserved proto-C-terminal Pro, revealing parallels with the segetalin orbitides from the seed of Vaccaria hispanica, which are processed through ligation by a prolyl oligopeptidase in a transpeptidation reaction.
Collapse
Affiliation(s)
- Mark F Fisher
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jingjing Zhang
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Industrial Transformation Research Hub in Medicinal Agriculture, AgriBio building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Industrial Transformation Research Hub in Medicinal Agriculture, AgriBio building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
14
|
Zheng W, Zhou T, Li J, Jiang W, Zhang J, Xiao C, Wei D, Yang C, Xu R, Gong A, Zhang C, Bi Y. The Biosynthesis of Heterophyllin B in Pseudostellaria heterophylla From prePhHB-Encoded Precursor. FRONTIERS IN PLANT SCIENCE 2019; 10:1259. [PMID: 31749814 PMCID: PMC6842982 DOI: 10.3389/fpls.2019.01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Plant cyclic peptides (CPs) are a large group of small molecule metabolites found in a wide variety of plants, including traditional Chinese medicinal plants. However, the majority of plant CPs have not been studied for their biosynthetic mechanisms, including heterophyllin B (HB), which is one of the characteristic chemical components of Pseudostellaria heterophylla. Here, we screened the precursor gene (prePhHB) of HB in P. heterophylla and functionally identified its correctness in vivo and in vitro. First, we developed a new method to screen the precursors of HB from 16 candidate linear peptides. According to transcriptome sequencing data, we cloned the genes that encoded the HB precursor peptides and confirmed that the prePhHB-encoded precursor peptide could enzymatically synthesize HB. Next, we generated the transgenic tobacco that expressed prePhHB, and the results showed that HB was detected in transgenic tobacco. Moreover, we revealed that prePhHB gene expression is positively correlated with HB accumulation in P. heterophylla. Mutations in the prePhHB gene may influence the accumulation of HB in P. heterophylla. These results suggest that HB is ribosomally synthesized and posttranslationally modified peptide (RiPP) derived from the precursor gene prePhHB-encoded precursor peptide, and the core peptide sequence of HB is IFGGLPPP in P. heterophylla. This study developed a new idea for the rapid identification of Caryophyllaceae-type CP precursor peptides via RNA-sequencing data mining.
Collapse
Affiliation(s)
- Wei Zheng
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Zhou
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinqiang Zhang
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dequn Wei
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changgui Yang
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Xu
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anhui Gong
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Zhang
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yan Bi
- Experiment Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
15
|
Fisher MF, Payne CD, Rosengren KJ, Mylne JS. An Orbitide from Ratibida columnifera Seed Containing 16 Amino Acid Residues. JOURNAL OF NATURAL PRODUCTS 2019; 82:2152-2158. [PMID: 31392883 DOI: 10.1021/acs.jnatprod.9b00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclic peptides are abundant in plants and have attracted interest due to their bioactivity and potential as drug scaffolds. Orbitides are head-to-tail cyclic peptides that are ribosomally synthesized, post-translationally modified, and lack disulfide bonds. All known orbitides contain 5-12 amino acid residues. Here we describe PLP-53, a novel orbitide from the seed of Ratibida columnifera. PLP-53 consists of 16 amino acids, four residues larger than any known orbitide. NMR structural studies showed that, compared to previously characterized orbitides, PLP-53 is more flexible and, under the studied conditions, did not adopt a single ordered conformation based on analysis of NOEs and chemical shifts.
Collapse
Affiliation(s)
- Mark F Fisher
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - Colton D Payne
- Faculty of Medicine, School of Biomedical Sciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joshua S Mylne
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| |
Collapse
|
16
|
Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc Natl Acad Sci U S A 2018; 115:E10961-E10969. [PMID: 30373830 DOI: 10.1073/pnas.1813993115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.
Collapse
|
17
|
Burnett PGG, Young LW, Olivia CM, Jadhav PD, Okinyo-Owiti DP, Reaney MJT. Novel flax orbitide derived from genetic deletion. BMC PLANT BIOLOGY 2018; 18:90. [PMID: 29783946 PMCID: PMC5963108 DOI: 10.1186/s12870-018-1303-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Flaxseed orbitides are homodetic plant cyclic peptides arising from ribosomal synthesis and post-translation modification (N to C cyclization), and lacking cysteine double bonds (Nat Prod Rep 30:108-160, 2013). Screening for orbitide composition was conducted on the flax core collection (FCC) grown at both Saskatoon, Saskatchewan and Morden, Manitoba over three growing seasons (2009-2011). Two flax (Linum usitatissimum L.) accessions 'Hollandia' (CN 98056) and 'Z 11637' (CN 98150) produce neither [1-9-NαC]-linusorb B2 (3) nor [1-9-NαC]-linusorb B3 (1). Mass spectrometry was used to identify novel compounds and elucidate their structure. NMR spectroscopy was used to corroborate structural information. RESULTS Experimental findings indicated that these accessions produce a novel orbitide, identified in three oxidation states having quasimolecular ion peaks at m/z 1072.6 (18), 1088.6 (19), and 1104.6 (20) [M + H]+ corresponding to molecular formulae C57H86N9O9S, C57H86N9O10S, and C57H86N9O11S, respectively. The structure of 19 was confirmed unequivocally as [1-9-NαC]-OLIPPFFLI. PCR amplification and sequencing of the gene coding for 18, using primers developed for 3 and 1, identified the putative linear precursor protein of 18 as being comprised of the first three amino acid residues of 3 (MLI), four conserved amino acid residues of 3 and/or 1 (PPFF), and the last two residues of 1 (LI). CONCLUSION Comparison of gene sequencing data revealed that a 117 base pair deletion had occurred that resulted in truncation of both 3 and 1 to produce a sequence encoding for the novel orbitide precursor of 18. This observation suggests that repeat units of flax orbitide genes are conserved and suggests a novel mechanism for evolution of orbitide gene diversity. Orbitides 19 and 20 contain MetO and MetO2, respectively, and are not directly encoded, but are products of post-translation modification of Met present in 18 ([1-9-NαC]-MLIPPFFLI).
Collapse
Affiliation(s)
- Peta-Gaye Gillian Burnett
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Lester Warren Young
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Clara Marisa Olivia
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Pramodkumar Dinkar Jadhav
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Denis Paskal Okinyo-Owiti
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Martin John Tarsisius Reaney
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
18
|
James AM, Haywood J, Mylne JS. Macrocyclization by asparaginyl endopeptidases. THE NEW PHYTOLOGIST 2018; 218:923-928. [PMID: 28322452 DOI: 10.1111/nph.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/24/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 923 I. Introduction 923 II. Plant AEPs with macrocyclizing ability 924 III. Mechanism of macrocyclization by AEPs 925 IV. Conclusions 927 Acknowledgements 927 References 927 SUMMARY: Plant asparaginyl endopeptidases (AEPs) are important for the post-translational processing of seed storage proteins via cleavage of precursor proteins. Some AEPs also function as peptide bond-makers during the biosynthesis of several unrelated classes of cyclic peptides, namely the kalata-type cyclic peptides, PawS-Derived Peptides and cyclic knottins. These three families of gene-encoded peptides have different evolutionary origins, but all have recruited AEPs for their maturation. In the last few years, the field has advanced rapidly, with the biochemical characterization of three plant AEPs capable of peptide macrocyclization, and insights have been gained from the first AEP crystal structures, albeit mammalian ones. Although the biochemical studies have improved our understanding of the mechanism of action, the focus now is to understand what changes in AEP sequence and structure enable some plant AEPs to perform macrocyclization reactions.
Collapse
Affiliation(s)
- Amy M James
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
19
|
Ongpipattanakul C, Nair SK. Biosynthetic Proteases That Catalyze the Macrocyclization of Ribosomally Synthesized Linear Peptides. Biochemistry 2018; 57:3201-3209. [PMID: 29553721 DOI: 10.1021/acs.biochem.8b00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circular peptides have long been sought after as scaffolds for drug design as they demonstrate protein-like properties in the context of small, constrained peptides. Traditional routes toward the production of cyclic peptides rely on synthesis or semisynthetic methods, which restrict their use as platforms for the production of large, structurally diverse chemical libraries. Here, we discuss the biosynthetic routes toward the N-C macrocyclization of linear peptide precursors, specifically, those transformations that are catalyzed by peptidases. While canonical peptidases catalyze the proteolysis of linear peptides, the biosynthetic macrocyclases couple proteolytic cleavage with cyclization to produce macrocyclic compounds. In this Perspective, we explore the different structural features that impart on each of these biosynthetic proteases the distinct ability to perform macrocyclization and focus on their potential use in biotechnology.
Collapse
|
20
|
Fisher MF, Zhang J, Taylor NL, Howard MJ, Berkowitz O, Debowski AW, Behsaz B, Whelan J, Pevzner PA, Mylne JS. A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch. PLANT DIRECT 2018; 2:e00042. [PMID: 30417166 PMCID: PMC6223261 DOI: 10.1002/pld3.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Orbitides are cyclic ribosomally-synthesized and post-translationally modified peptides (RiPPs) from plants; they consist of standard amino acids arranged in an unbroken chain of peptide bonds. These cyclic peptides are stable and range in size and topologies making them potential scaffolds for peptide drugs; some display valuable biological activities. Recently two orbitides whose sequences were buried in those of seed storage albumin precursors were said to represent the first observable step in the evolution of larger and hydrophilic bicyclic peptides. Here, guided by transcriptome data, we investigated peptide extracts of 40 species specifically for the more hydrophobic orbitides and confirmed 44 peptides by tandem mass spectrometry, as well as obtaining solution structures for four of them by NMR. Acquiring transcriptomes from the phylogenetically important Corymboideae family confirmed the precursor genes for the peptides (called PawS1-Like or PawL1) are confined to the Asteroideae, a subfamily of the huge plant family Asteraceae. To be confined to the Asteroideae indicates these peptides arose during the Eocene epoch around 45 Mya. Unlike other orbitides, all PawL-derived Peptides contain an Asp residue, needed for processing by asparaginyl endopeptidase. This study has revealed what is likely to be a very large new family of orbitides, uniquely buried alongside albumin and processed by asparaginyl endopeptidase.
Collapse
Affiliation(s)
- Mark F. Fisher
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Jingjing Zhang
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Nicolas L. Taylor
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Mark J. Howard
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Aleksandra W. Debowski
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- Marshall Centre for Infectious Disease Research and TrainingSchool of Biomedical SciencesThe University of Western AustraliaCrawleyPerthWAAustralia
| | - Bahar Behsaz
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - James Whelan
- Department of Animal, Plant and Soil SciencesSchool of Life Sciences & ARC Centre of Excellence in Plant Energy BiologyAgriBioThe Centre for AgriBioscienceLa Trobe UniversityBundooraVic.Australia
| | - Pavel A. Pevzner
- Department of Computer Science & EngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Joshua S. Mylne
- School of Molecular SciencesThe University of Western Australia, CrawleyPerthWAAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawleyPerthWAAustralia
| |
Collapse
|
21
|
Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. Proc Natl Acad Sci U S A 2017; 114:6551-6556. [PMID: 28584123 DOI: 10.1073/pnas.1620499114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.
Collapse
|
22
|
Trevisan L, Sousa R, Bertolucci S, Rodrigues O. Tratamento alternativo em gatos acometidos por DITUIF. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc Natl Acad Sci U S A 2016; 113:3521-6. [PMID: 26979951 DOI: 10.1073/pnas.1522907113] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Production of ribosomally synthesized and posttranslationally modified peptides (RiPPs) has rarely been reported in fungi, even though organisms of this kingdom have a long history as a prolific source of natural products. Here we report an investigation of the phomopsins, antimitotic mycotoxins. We show that phomopsin is a fungal RiPP and demonstrate the widespread presence of a pathway for the biosynthesis of a family of fungal cyclic RiPPs, which we term dikaritins. We characterize PhomM as an S-adenosylmethionine-dependent α-N-methyltransferase that converts phomopsin A to an N,N-dimethylated congener (phomopsin E), and show that the methyltransferases involved in dikaritin biosynthesis have evolved differently and likely have broad substrate specificities. Genome mining studies identified eight previously unknown dikaritins in different strains, highlighting the untapped capacity of RiPP biosynthesis in fungi and setting the stage for investigating the biological activities and unknown biosynthetic transformations of this family of fungal natural products.
Collapse
|
24
|
Sardar D, Lin Z, Schmidt EW. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. ACTA ACUST UNITED AC 2015; 22:907-16. [PMID: 26165156 DOI: 10.1016/j.chembiol.2015.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/11/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Macrocyclases and other posttranslational enzymes afford derived peptides with improved properties for pharmaceutical and biotechnological applications. Here, we asked whether multiple posttranslational modifications could be simultaneously controlled and matched to rationally generate new peptide derivatives. We reconstituted the cyanobactin peptide natural products in vitro with up to five different posttranslational enzymes in a single tube. By manipulating the order of addition and identity of enzymes and exploiting their broad-substrate tolerance, we engineered the production of highly unnatural derivatives, including an N-C peptide macrocycle of 22 amino acids in length. In addition to engineering, this work better defines the macrocyclization mechanism, provides the first biochemical demonstration of Ser/Thr posttranslational prenylation, and is the first example of reconstitution of a native, multistep RiPP pathway with multiple enzymes in one pot. Overall, this work demonstrates how the modularity of posttranslational modification enzymes can be used to design and synthesize desirable peptide motifs.
Collapse
Affiliation(s)
- Debosmita Sardar
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Burnett PGG, Jadhav PD, Okinyo-Owiti DP, Poth AG, Reaney MJT. Glycine-containing flaxseed orbitides. JOURNAL OF NATURAL PRODUCTS 2015; 78:681-8. [PMID: 25781981 DOI: 10.1021/np5008558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Five new orbitides, cyclolinopeptides 21-25, were identified in flaxseed oil (Linum usitatissimum) extracts. Their HPLC-ESIMS quasimolecular ion peaks at m/z 1097.7 (21), 1115.6 (22), 1131.6 (23), 1018.6 (24), and 1034.6 (25) [M + H](+) corresponded to the molecular formulae C59H89N10O10, C58H87N10O10S, C58H87N10O11S, C53H80N9O9S, and C53H80N9O10S, respectively. Their structures were elucidated by extensive HPLC-ESIMS/MS analyses, and their presence was confirmed by precursor proteins identified in flax genomic DNA sequence data. The amino acid sequences of these orbitides were confirmed as [1-10-NαC]-GILVPPFFLI, [1-10-NαC]-GMLIPPFFVI, [1-10-NαC]-GOLIPPFFVI, [1-9-NαC]-GMLVFPLFI, and [1-9-NαC]-GOLVFPLFI for cyclolinopeptides 21-25, respectively. Previously reported orbitides, [1-9-NαC]-ILVPPFFLI (1), [1-9-NαC]-MLIPPFFVI (2), [1-9-NαC]-OLIPPFFVI (3), [1-8-NαC]-MLVFPLFI (7), and [1-8-NαC]-OLVFPLFI (8), were also present in flaxseed oil. The precursors of orbitides 21, 22, and 24 also produced orbitides 1, 2, and 7 by alternative cyclization. Cyclolinopeptides 3, 8, 23, and 25 contain MetO (O) and are not directly encoded, but are products of post-translational modification of the Met present in 2, 7, 22, and 24, respectively. Sufficient cyclolinopeptide 23 was isolated for characterization via 1D ((1)H and (13)C) and 2D (NOESY and HMBC) NMR spectroscopy. These compounds have been named as cyclolinopeptides U, V, W, X, and Y for 21, 22, 23, 24, and 25, respectively.
Collapse
Affiliation(s)
- Peta-Gaye G Burnett
- †Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Pramodkumar D Jadhav
- †Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Denis P Okinyo-Owiti
- †Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Aaron G Poth
- ‡Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin J T Reaney
- †Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- §Guangdong-Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
26
|
Belknap WR, McCue KF, Harden LA, Vensel WH, Bausher MG, Stover E. A family of small cyclic amphipathic peptides (SCAmpPs) genes in citrus. BMC Genomics 2015; 16:303. [PMID: 25887227 PMCID: PMC4409773 DOI: 10.1186/s12864-015-1486-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/25/2015] [Indexed: 01/20/2023] Open
Abstract
Background Citrus represents a crop of global importance both in economic impact and significance to nutrition. Citrus production worldwide is threatened by the disease Huanglongbing (HLB), caused by the phloem-limited pathogen Candidatus Liberibacter spp.. As a source of stable HLB-resistance has yet to be identified, there is considerable interest in characterization of novel disease-associated citrus genes. Results A gene family of Small Cyclic Amphipathic Peptides (SCAmpPs) in citrus is described. The citrus genomes contain 100–150 SCAmpPs genes, approximately 50 of which are represented in the citrus EST database. These genes encode small ~50 residue precursor proteins that are post-translationally processed, releasing 5–10 residue cyclic peptides. The structures of the SCAmpPs genes are highly conserved, with the small coding domains interrupted by a single intron and relatively extended untranslated regions. Some family members are very highly transcribed in specific citrus tissues, as determined by representation in tissue-specific cDNA libraries. Comparison of the ESTs of related SCAmpPs revealed an unexpected evolutionary profile, consistent with targeted mutagenesis of the predicted cyclic peptide domain. The SCAmpPs genes are displayed in clusters on the citrus chromosomes, with apparent association with receptor leucine-rich repeat protein arrays. This study focused on three SCAmpPs family members with high constitutive expression in citrus phloem. Unexpectedly high sequence conservation was observed in the promoter region of two phloem-expressed SCAmpPs that encode very distinct predicted cyclic products. The processed cyclic product of one of these phloem SCAmpPs was characterized by LC-MS-MS analysis of phloem tissue, revealing properties consistent with a K+ ionophore. Conclusions The SCAmpPs amino acid composition, protein structure, expression patterns, evolutionary profile and chromosomal distribution are consistent with designation as ribosomally synthesized defense-related peptides. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1486-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Kent F McCue
- USDA-ARS, Western Regional Research Center, Albany, CA, USA.
| | - Leslie A Harden
- USDA-ARS, Western Regional Research Center, Albany, CA, USA.
| | | | - Michael G Bausher
- USDA-ARS, U. S. Horticultural Research Laboratory, Fort Pierce, FL, USA.
| | - Ed Stover
- USDA-ARS, U. S. Horticultural Research Laboratory, Fort Pierce, FL, USA.
| |
Collapse
|
27
|
Abstract
Cyclic peptides are found in a diverse range of organisms and are characterized by their stability and role in defense. Why is only one class of cyclic peptides found in mammals? Possibly we have not looked hard enough for them, or the technologies needed to identify them are not fully developed. We also do not yet understand their intriguing biosynthesis from two separate gene products. Addressing these challenges will require the application of chemical tools and insights from other classes of cyclic peptides. Herein, we highlight recent developments in the characterization of theta defensins and describe the important role that chemistry has played in delineating their modes of action. Furthermore, we emphasize the potential of theta defensins as antimicrobial agents and scaffolds for peptide drug design.
Collapse
Affiliation(s)
- Anne C. Conibear
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD (Australia) http://www.imb.uq.edu.au/index.html?page=11695
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD (Australia) http://www.imb.uq.edu.au/index.html?page=11695
| |
Collapse
|
28
|
|
29
|
Umemura M, Nagano N, Koike H, Kawano J, Ishii T, Miyamura Y, Kikuchi M, Tamano K, Yu J, Shin-ya K, Machida M. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genet Biol 2014; 68:23-30. [DOI: 10.1016/j.fgb.2014.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 01/12/2023]
|
30
|
Craik DJ, Malik U. Cyclotide biosynthesis. Curr Opin Chem Biol 2013; 17:546-54. [PMID: 23809361 DOI: 10.1016/j.cbpa.2013.05.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Cyclotides are bioactive macrocyclic peptides from plants that are characterized by their exceptional stability and potential applications as protein engineering or drug design frameworks. Their stability arises from their unique cyclic cystine knot structure, which combines a head-to-tail cyclic peptide backbone with three conserved disulfide bonds having a knotted topology. Cyclotides are ribosomally synthesized by plants and expressed in a wide range of tissues, including leaves, flowers, stems and roots. Here we describe recent studies that have examined the biosynthesis of cyclotides and in particular the mechanism associated with post-translational backbone cyclization.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
31
|
Abstract
The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
32
|
McIntosh JA, Lin Z, Tianero MDB, Schmidt EW. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements. ACS Chem Biol 2013; 8:877-83. [PMID: 23411099 DOI: 10.1021/cb300614c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report 12 cyanobactin cyclic peptides, the aestuaramides, from the cultivated cyanobacterium Lyngbya aestuarii. We show that aestuaramides are synthesized enzymatically as reverse O-prenylated tyrosine ethers that subsequently undergo a Claisen rearrangement to produce forward C-prenylated tyrosine. These results reveal that a nonenzymatic Claisen rearrangement dictates isoprene regiochemistry in a natural system. They also reveal one of the mechanisms that organisms use to generate structurally diverse compound libraries starting from simple ribosomal peptide pathways (RiPPs).
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal
Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Zhenjian Lin
- Department of Medicinal
Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Ma. Diarey B. Tianero
- Department of Medicinal
Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, United
States
| | - Eric W. Schmidt
- Department of Medicinal
Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, United
States
| |
Collapse
|
33
|
Barber CJS, Pujara PT, Reed DW, Chiwocha S, Zhang H, Covello PS. The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae involves cyclization by a serine protease-like enzyme. J Biol Chem 2013; 288:12500-10. [PMID: 23486480 DOI: 10.1074/jbc.m112.437947] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Caryophyllaceae-type cyclic peptides (CPs) of 5-12 proteinogenic amino acids occur in 10 plant families. In Saponaria vaccaria (Caryophyllaceae), they have been shown to be formed from linear peptide precursors derived from ribosomal translation. There is also evidence for such precursors in other members of the Caryophyllaceae, Rutaceae, and Linaceae families. The biosynthesis of CP in the developing seeds of S. vaccaria was investigated with respect to the enzymes involved in precursor processing. Through biochemical assays with seed extracts and synthetic peptides, an enzyme named oligopeptidase 1 (OLP1) was found that catalyzes the cleavage of intermediates at the N terminus of the incipient CP. A second enzyme, peptide cyclase 1 (PCY1), which was separated chromatographically from OLP1, was found to act on the product of OLP1, giving rise to a cyclic peptide and concomitant removal of a C-terminal flanking sequence. PCY1 was partially purified, and using the methods of proteomics, a full-length cDNA clone encoding an enzyme matching the properties of PCY1 was obtained. The substrate specificity of purified recombinant PCY1, believed to be the first cloned plant enzyme whose function is peptide cyclization, was tested with synthetic peptides. The results are discussed in the light of CP biosynthetic systems of other organisms.
Collapse
Affiliation(s)
- Carla J S Barber
- National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1483] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Conibear AC, Rosengren KJ, Harvey PJ, Craik DJ. Structural characterization of the cyclic cystine ladder motif of θ-defensins. Biochemistry 2012; 51:9718-26. [PMID: 23148585 DOI: 10.1021/bi301363a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The θ-defensins are, to date, the only known ribosomally synthesized cyclic peptides in mammals, and they have promising antimicrobial bioactivities. The characteristic structural motif of the θ-defensins is the cyclic cystine ladder, comprising a cyclic peptide backbone and three parallel disulfide bonds. In contrast to the cyclic cystine knot, which characterizes the plant cyclotides, the cyclic cystine ladder has not been as well described as a structural motif. Here we report the solution structures and nuclear magnetic resonance relaxation properties in aqueous solution of three representative θ-defensins from different species. Our data suggest that the θ-defensins are more rigid and structurally defined than previously thought. In addition, all three θ-defensins were found to self-associate in aqueous solution in a concentration-dependent and reversible manner, a property that might have a role in their mechanism of action. The structural definition of the θ-defensins and the cyclic cystine ladder will help to guide exploitation of these molecules as structural frameworks for the design of peptide drugs.
Collapse
Affiliation(s)
- Anne C Conibear
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
36
|
Gui B, Shim YY, Datla RSS, Covello PS, Stone SL, Reaney MJT. Identification and quantification of cyclolinopeptides in five flaxseed cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8571-9. [PMID: 22897677 DOI: 10.1021/jf301847u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cyclolinopeptides are a group of naturally occurring hydrophobic cyclic peptides found in flaxseed and flax oil that have immunosuppressive activity. This study describes the measurement of flaxseed cyclolinopeptide concentrations using an internal standard HPLC method. In addition, the concentration of cyclolinopeptides in the seed of Canadian flax cultivars grown at two locations over two years is reported. The data are consistent with the formation of flaxseed cyclolinopeptides from two ribosome-derived precursors. Each precursor protein includes the sequences corresponding to three cyclolinopeptides from which those cyclolinopeptides are presumably derived by precursor processing. The concentrations of cyclolinopeptides C and E, which are encoded by the same gene sequence, are highly correlated, and the concentrations of cyclolinopeptides D, F, and G, which are encoded by a second gene sequence, are also highly correlated. The strong correlation between the cyclolinopeptides arising from the same gene may prove to be important in understanding how peptide concentration is controlled. Additional research may lead to approaches to improve flax either as a platform for peptide production or as a source of oil with improved drying properties and flavor.
Collapse
Affiliation(s)
- Bo Gui
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Circular proteins have now been discovered in all kingdoms of life and are characterized by their exceptional stability and the diversity of their biological activities, primarily in the realm of host defense functions. This thematic minireview series provides an overview of the distribution, evolution, activities, and biological synthesis of circular proteins. It also reviews approaches that biological chemists are taking to develop synthetic methods for making circular proteins in the laboratory. These approaches include solid-phase peptide synthesis based on an adaption of native chemical ligation technology and recombinant DNA approaches that are amenable to the in-cell production of cyclic peptide libraries. The thioester-mediated native chemical ligation approach mimics, to some extent, elements of the natural biosynthetic reaction, which, for disulfide-rich cyclic peptides, appears to involve asparaginyl endopeptidase-mediated processing from larger precursor proteins.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|