1
|
Xing Y, Wang Y, Li X, Pang S. Digital microfluidics methods for nucleic acid detection: A mini review. BIOMICROFLUIDICS 2024; 18:021501. [PMID: 38456173 PMCID: PMC10917463 DOI: 10.1063/5.0180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Many serious infectious diseases have occurred throughout human history. Rapid and accurate detection as well as the isolation of infected individuals, through nucleic acid testing, are effective means of containing the spread of these viruses. However, traditional nucleic acid testing methods rely on complex machines and specialized personnel, making it difficult to achieve large-scale, high-throughput, and rapid detection. In recent years, digital microfluidics has emerged as a promising technology that integrates various fields, including electrokinetics, acoustics, optics, magnetism, and mechanics. By leveraging the advantages of these different technologies, digital microfluidic chips offer several benefits, such as high detection throughput, integration of multiple functions, low reagent consumption, and portability. This rapid and efficient testing is crucial in the timely detection and isolation of infected individuals to prevent the virus spread. Another advantage is the low reagent consumption of digital microfluidic chips. Compared to traditional methods, these chips require smaller volumes of reagents, resulting in cost savings and reduced waste. Furthermore, digital microfluidic chips are portable and can be easily integrated into point-of-care testing devices. This enables testing to be conducted in remote or resource-limited areas, where access to complex laboratory equipment may be limited. Onsite testing reduces the time and cost associated with sample transportation. In conclusion, bioassay technologies based on digital microfluidic principles have the potential to significantly improve infectious disease detection and control. By enabling rapid, high-throughput, and portable testing, these technologies enhance our ability to contain the spread of infectious diseases and effectively manage public health outbreaks.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, People’s Republic of China
| | - Yan Wang
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, People’s Republic of China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong 518000, Shenzhen, People’s Republic of China
| | - Shangran Pang
- Jinzhong Normal Junior College, 189 Guang'an Street, Yuci District, Jinzhong 030600, Shanxi Province, People’s Republic of China
| |
Collapse
|
2
|
Dallimore T, Goodson D, Batke S, Strode C. A potential global surveillance tool for effective, low-cost sampling of invasive Aedes mosquito eggs from tyres using adhesive tape. Parasit Vectors 2020; 13:91. [PMID: 32075683 PMCID: PMC7031899 DOI: 10.1186/s13071-020-3939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The international movement of used tyres is a major factor responsible for global introductions of Aedes invasive mosquitoes (AIMs) (Diptera: Culicidae) that are major disease vectors (e.g. dengue, Zika, chikungunya and yellow fever). Surveillance methods are restricted by expense, availability and efficiency to detect all life stages. Currently, no tested method exists to screen imported used tyres for eggs in diapause, the life stage most at risk from accidental introduction. Here we test the efficiency of adhesive tape as an affordable and readily available material to screen tyres for eggs, testing its effect on hatch rate, larval development, DNA amplification and structural damage on the egg surface. RESULTS We demonstrated that the properties of adhesive tape can influence pick up of dormant eggs attached to dry surfaces. Tapes with high levels of adhesion, such as duct tape, removed eggs with high levels of efficiency (97% ± 3.14). Egg numbers collected from cleaned used tyres were found to explain larval hatch rate success well, particularly in subsequent larval to adult emergence experiments. The strength of this relationship decreased when we tested dirty tyres. Damage to the exochorion was observed following scanning electron microscopy (SEM), possibly resulting in the high variance in the observed model. We found that five days was the optimal time for eggs to remain on all tested tapes for maximum return on hatch rate success. Tape type did not inhibit amplification of DNA of eggs from three, five or ten days of exposure. Using this DNA, genotyping of AIMs was possible using species-specific markers. CONCLUSIONS We demonstrated for the first time that adhesive tapes are effective at removing AIM eggs from tyres. We propose that this method could be a standardised tool for surveillance to provide public health authorities and researchers with an additional method to screen tyre cargo. We provide a screening protocol for this purpose. This method has a global applicability and in turn can lead to increased predictability of introductions and improve screening methods at high risk entry points.
Collapse
Affiliation(s)
- Thom Dallimore
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - David Goodson
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - Sven Batke
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - Clare Strode
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| |
Collapse
|
3
|
White SK, Lednicky JA, Okech BA, Morris JG, Dunford JC. Spondweni Virus in Field-Caught Culex quinquefasciatus Mosquitoes, Haiti, 2016. Emerg Infect Dis 2019; 24:1765-1767. [PMID: 30124422 PMCID: PMC6106418 DOI: 10.3201/eid2409.171957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spondweni virus (SPONV) and Zika virus cause similar diseases in humans. We detected SPONV outside of Africa from a pool of Culex mosquitoes collected in Haiti in 2016. This finding raises questions about the role of SPONV as a human pathogen in Haiti and other Caribbean countries.
Collapse
|
4
|
White SK, Mavian C, Salemi M, Morris JG, Elbadry MA, Okech BA, Lednicky JA, Dunford JC. A new "American" subgroup of African-lineage Chikungunya virus detected in and isolated from mosquitoes collected in Haiti, 2016. PLoS One 2018; 13:e0196857. [PMID: 29746539 PMCID: PMC5944945 DOI: 10.1371/journal.pone.0196857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) lineage, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016 Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with improved Ae. albopictus vector competence were not identified. Isolation of this newly identified lineage from Ae. albopictus is of concern, as this vector has a broader geographic range than Ae. aegypti, especially in temperate areas of North America, and stresses the importance for continued vector surveillance.
Collapse
Affiliation(s)
- Sarah Keller White
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - John Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - Bernard A. Okech
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
| | - James C. Dunford
- US Navy and Marine Corps Public Health Center, Portsmouth, Virginia, United States of America
| |
Collapse
|
5
|
Kothera L, Byrd B, Savage HM. Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1567-1572. [PMID: 28981691 PMCID: PMC6437760 DOI: 10.1093/jme/tjx125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ∼0.03 of a first-instar larva in a 60-µl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control.
Collapse
Affiliation(s)
- Linda Kothera
- Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521
| | - Brian Byrd
- Western Carolina University, CHHS 416, 3971 Little Savannah Road, Cullowhee, NC 28723 ()
| | - Harry M. Savage
- Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521
| |
Collapse
|
6
|
Pereira LPLA, Brito MCA, Araruna FB, de Andrade MS, Moraes DFC, Borges ACR, do Rêgo Barros Pires Leal ER. Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus. Parasitol Res 2017; 116:2057-2063. [PMID: 28560571 DOI: 10.1007/s00436-017-5484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/02/2017] [Indexed: 11/25/2022]
Abstract
Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.
Collapse
Affiliation(s)
- Luciana Patrícia Lima Alves Pereira
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil.
| | - Maria Cristiane Aranha Brito
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
| | - Felipe Bastos Araruna
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
- Universidade Federal do Piauí, Av. São Sebastião, S/N, Reis Velloso, Parnaíba, PI, 64202-020, Brazil
| | - Marcelo Souza de Andrade
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
- Laboratório de Estudos Genômicos e Histocompatibilidade-LEGH, Hospital Universitário da Universidade Federal do Maranhão, Rua Barão de Itapari, 227, Centro, São Luís, MA, 65020-070, Brazil
| | - Denise Fernandes Coutinho Moraes
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
| | - Antônio Carlos Romão Borges
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
| | - Emygdia Rosa do Rêgo Barros Pires Leal
- Programa de Pós-Gradução em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65065-545, Brazil
- Laboratório de Estudos Genômicos e Histocompatibilidade-LEGH, Hospital Universitário da Universidade Federal do Maranhão, Rua Barão de Itapari, 227, Centro, São Luís, MA, 65020-070, Brazil
| |
Collapse
|
7
|
Suter T, Flacio E, Fariña BF, Engeler L, Tonolla M, Müller P. First report of the invasive mosquito species Aedes koreicus in the Swiss-Italian border region. Parasit Vectors 2015. [PMID: 26223377 PMCID: PMC4520022 DOI: 10.1186/s13071-015-1010-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background In 2012 and 2013, an entomological survey of Aedes albopictus, the Asian tiger mosquito, was carried out in the border region of southern Switzerland and northern Italy, using ovitraps. In July 2013, besides A. albopictus already known to the region several unusual eggs were recovered. Findings A total of 548 seemingly different eggs were found within three communities: Chiasso (Switzerland), and Como and Brunate (Italy). Proteomic diagnostics based on matrix-assisted laser desorption/ionization mass-spectrometry (MALDI-TOF MS) and morphological identification of one reared adult revealed the presence of at least 18 A. (Finlaya) koreicus (Edwards, 1917) specimens. A. koreicus is a species native to Southeast Asia and is competent to transmit Japanese encephalitis and potentially other arboviruses, as well as the dog heartworm Dirofilaria immitis. While new to Switzerland, this invasive species has previously been reported from Belgium, north-eastern Italy and European Russia. Conclusions This is the first report of the introduction of this exotic mosquito species into Switzerland and Lombardy, Italy, suggesting the range of A. koreicus is expanding in Central Europe. As A. koreicus is competent to vector pathogens its establishment imposes a risk to public and veterinary health. From a technical point of view, the presence of A. koreicus alongside A. albopictus requires careful analysis and reliable diagnostics. As a diagnostic tool the use of the recently developed MALDI-TOF MS approach has proofed to be a very useful approach, particularly since hatching rates of A. koreicus seem to be low, making identification by classic morphology difficult, if not impossible.
Collapse
Affiliation(s)
- Tobias Suter
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Eleonora Flacio
- Gruppo cantonale di Lavoro Zanzare, Via Castello, 6952, Canobbio, Switzerland.
| | | | - Lukas Engeler
- Gruppo cantonale di Lavoro Zanzare, Via Castello, 6952, Canobbio, Switzerland.
| | - Mauro Tonolla
- Gruppo cantonale di Lavoro Zanzare, Via Castello, 6952, Canobbio, Switzerland. .,Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Via Mirasole 22a, 6501, Bellinzona, Switzerland.
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| |
Collapse
|
8
|
Das B, Patra AP, Das M, Mahapatra N, Tripathy H, Kar SK, Hazra RK. Vectorial capacity and genetic diversity of Anopheles annularis (Diptera: Culicidae) mosquitoes in Odisha, India from 2009 to 2011. Acta Trop 2014; 137:130-9. [PMID: 24820180 DOI: 10.1016/j.actatropica.2014.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
Anopheles annularis is one of the major vectors of malaria in Odisha, India. The present study was undertaken to determine the vectorial capacity and assess the genetic diversity of An. annularis collected from different endemic regions of Odisha. Mosquitoes were collected from thirteen endemic districts using standard entomological collection methods from 2009 to 2011. Sibling species of An. annularis were identified by PCR-RFLP and sequencing of D3 region of 28S ribosomal DNA (rDNA) region. Plasmodium falciparum (Pf) sporozoite rate and human blood fed percentage (HBF) were estimated by multiplex PCR using Pf and human specific primers. Genetic diversity of An. annularis was estimated by ISSR markers. Out of 1647 An. annularis collected, 1353 (82.15%) were collected by mechanical aspirators and 294 (17.85%) by light trap. 49 (2.97%) were positive for human blood and 18 (1.09%) were positive for Pf sporozoite. PCR-RFLP and sequencing analyses detected only An annularis A in the study areas. Overall genetic differentiation among An. annularis populations was moderate (FST=0.048) and showed significant correlation between genetic distance and geographic distance (r=0.882; P<0.05). Angul population proved to be genetically unique and was highly divergent FST>0.110) from other populations, suggesting low gene flow between them. The study indicated that only An. annularis A was found in Odisha with potential vectorial capacity that can play a major role in malaria transmission. ISSR markers proved to be useful molecular tools to evaluate genetic variability in An. annularis populations.
Collapse
|
9
|
Das B, Satapathy T, Kar SK, Hazra RK. Genetic structure and Wolbachia genotyping in naturally occurring populations of Aedes albopictus across contiguous landscapes of Orissa, India. PLoS One 2014; 9:e94094. [PMID: 24714653 PMCID: PMC3979767 DOI: 10.1371/journal.pone.0094094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Aedes albopictus has recently been implicated as a major vector in the emergence of dengue and chikungunya in several parts of India, like Orissa, which is gradually gaining endemicity for arboviral diseases. Ae. albopictus is further known to be naturally infected with Wolbachia (maternally inherited bacterium), which causes cytoplasmic incompatibility (CI) in mosquitoes leading to sperm-egg incompatibility inducing the death of embryo. Knowledge of genetic diversity of Ae. albopictus, along with revealing the type of Wolbachia infection in Ae. albopictus is important to explore the genetic and biological characteristics of Ae. albopictus, prior to exploring the uses of CI-based vector control strategies. In this study, we assessed the population genetic structure and the pattern of Wolbachia infection in Ae. albopictus mosquitoes of Orissa. Methods and Results Ae. albopictus mosquitoes were collected from 15 districts representing the four physiographical regions of Orissa from 2010–2012, analyzed for genetic variability at seven microsatellite loci and genotyped for Wolbachia strain detection using wsp gene primers. Most microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structure among all geographic populations (FST = 0.088). Genetic diversity was high (FST = 0.168) in Coastal Plains populations when compared with other populations, which was also evident from cluster analyses that showed most Coastal Plains populations consisted of a separate genetic cluster. Genotyping analyses revealed that Wolbachia-infected Ae. albopictus field populations of Orissa were mostly superinfected with wAlbA and wAlbB strains. Wolbachia superinfection was more pronounced in the Coastal Plain populations. Conclusion High genetic structure and Wolbachia superinfection, observed in the Coastal Plain populations of Orissa suggested it to be genetically and biologically more unique than other populations, and hence could influence their vectorial attributes. Such high genetic diversity observed among Coastal Plains populations could be attributed to multiple introductions of Ae. albopictus in this region.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Medical Entomology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Truptimayee Satapathy
- Department of Medical Entomology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Santanu K. Kar
- Department of Medical Entomology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Rupenangshu K. Hazra
- Department of Medical Entomology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
- * E-mail:
| |
Collapse
|
10
|
Das M, Das B, Patra AP, Tripathy HK, Mohapatra N, Kar SK, Hazra RK. Anopheles culicifacies sibling species in Odisha, eastern India: First appearance of Anopheles culicifacies E and its vectorial role in malaria transmission. Trop Med Int Health 2013; 18:810-21. [PMID: 23621708 DOI: 10.1111/tmi.12112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To identify the Anopheles culicifacies sibling species complex and study their vectorial role in malaria endemic regions of Odisha. METHODS Mosquitoes were collected from 6 malaria endemic districts using standard entomological collection methods. An. culicifacies sibling species were identified by multiplex polymerase chain reaction (PCR) using cytochrome oxidase subunit II (COII) region of mitochondrial DNA. Plasmodium falciparum (Pf) sporozoite rate and human blood fed percentage (HBF) were estimated by PCR using Pf- and human-specific primers. Sequencing and phylogenetic analysis were performed to confirm the type of sibling species of An. culicifacies found in Odisha. RESULTS Multiplex PCR detected An. culicifacies sibling species A, B, C, D and E in the malaria endemic regions of Odisha. An. culicifacies E was detected for the first time in Odisha, which was further confirmed by molecular phylogenetics. Highest sporozoite rate and HBF percentage were observed in An. culicifacies E in comparison with other sibling species. An. culicifacies E collected from Nawarangapur, Nuapara and Keonjhar district showed high HBF percentage and sporozoite rates. CONCLUSION An. culicifacies B was the most abundant species, followed by An. culicifacies C and E. High sporozoite rate and HBF of An. culicifacies E indicated that it plays an important role in malaria transmission in Odisha. Appropriate control measures against An. culicifacies E at an early stage are needed to prevent further malaria transmission in Odisha.
Collapse
Affiliation(s)
- Mumani Das
- Department of Medical Entomology, Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Das B, Das M, Dwibedi B, Kar SK, Hazra RK. Molecular investigations of dengue virus during outbreaks in Orissa state, Eastern India from 2010 to 2011. INFECTION GENETICS AND EVOLUTION 2013; 16:401-10. [PMID: 23523598 DOI: 10.1016/j.meegid.2013.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 11/26/2022]
Abstract
Dengue is one of the most important arboviral diseases in India. Orissa state in Eastern India reported the first dengue outbreak in 2010, followed by extensive outbreaks in 2011, affecting large number of people. Detailed entomological, serological and phylogenetic investigations were performed in mosquitoes and patients serum collected from dengue virus (DENV) affected areas of Orissa. The combination of DENV specific IgM capture-ELISA and reverse-transcription PCR (RT-PCR) detected high DENV positivity in serum samples. DENV was detected in mosquitoes reared from field caught pupae by RT-PCR, which confirmed the vertical transmission of DENV that may have an important role in the recurrence of dengue outbreaks. Phylogenetic analyses revealed the circulation of Indian lineage of DENV-2 (genotype-IV) and DENV-3 (genotype-III) in vectors and patients serum in Orissa from 2010 to 2011, DENV-2 being the prevailing serotype. Selection analyses within the C-prM region showed that the emergence of DENV-2 and DENV-3 in Orissa was constrained by purifying selection which suggested the role of ecological factors like mosquito density and behavior in the recurrent outbreaks. Aedes albopictus was found to be the most abundant vector in the areas surveyed, followed by Aedes aegypti. Indoor breeding spots (earthen pots) were most abundant, with high pupal productivity (38.50) and contributed maximum Aedes species in the affected areas. The DENV infection rate estimated by maximum likelihood estimate (MLE) was high for indoor breeding Aedes (4.87; 95% CI: 1.82, 10.78) in comparison to outdoor breeding Aedes (1.55; 95% CI: 0.09, 7.55). The high MLE in Ae. albopictus (4.72; 95% CI: 1.94, 9.80) in comparison to Ae. aegypti (1.55; 95% CI: 0.09, 7.54) indicated that Ae. albopictus was the main DENV vector responsible for the outbreaks. The results indicated the circulation of two virulent serotypes of DENV in Orissa, mainly by Ae. albopictus with the implication for implementation of intradomecile vector control measures to prevent the spread of dengue.
Collapse
Affiliation(s)
- Biswadeep Das
- Regional Medical Research Center, Bhubaneswar, Orissa 751023, India
| | | | | | | | | |
Collapse
|
12
|
Das B, Sahu A, Das M, Patra A, Dwibedi B, Kar SK, Hazra RK. Molecular investigations of chikungunya virus during outbreaks in Orissa, Eastern India in 2010. INFECTION GENETICS AND EVOLUTION 2012; 12:1094-101. [PMID: 22484761 DOI: 10.1016/j.meegid.2012.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 01/13/2023]
Abstract
Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by mosquitoes of genus Aedes, mainly Aedes aegypti and Aedes albopictus. The resurgence of CHIKV in different parts of India is a point of major public health concern. In 2010, chikungunya outbreaks with high epidemic magnitude were recorded in coastal areas of Orissa, Eastern India, affecting more than 15,000 people coupled with severe arthralgia and prolonged morbidites. Detailed entomological, serological and molecular investigation of this unprecendented outbreak was carried out by collecting and studying 1359 mosquito samples belonging to A. albopictus, A. aegypti, A. vittatus, A. edwardsii and Culex species and 220 patients serum from the affected areas. In this study, CHIKV specific IgM capture-ELISA and reverse-transcription PCR (RT-PCR) were done to detect recent infection of CHIKV in serum samples and adult mosquitoes collected from the affected areas. The high maximum likelihood estimate (MLE) (15.2) in A. albopictus mosquitoes indicated that it was the principal vector involved in transmission of CHIKV in Orissa. Phylogenetic analysis revealed that the CHIKV strains involved in the outbreak belonged to the Indian Ocean Lineage (IOL) group within the East, Central and South African (ECSA) genotype. Genetic characterization of envelope glycoprotein (E1 and E2) genes revealed that all the CHIKV isolates from Orissa had the E1-A226V mutation that enhances viral dissemination and transmissibility by A. albopictus mosquitoes along with E2-L210Q and E2-I211T mutations, which play an epistatic role with E1-A226V mutation in adaptation of CHIKV to A. albopictus by increasing its midgut infectivity, thereby favoring its vectorial capacity. Our results showed the involvement of A. albopictus vector in the recent outbreaks in Orissa and circulation of IOL strains of ECSA genotype of CHIKV with E1-A226V, E2-L210Q and E2-I211T mutations in vectors and patients serum.
Collapse
Affiliation(s)
- Biswadeep Das
- Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Orissa, India
| | | | | | | | | | | | | |
Collapse
|