1
|
Marsella R, Ahrens K, Wilkes R. Studies Using Antibodies against Filaggrin and Filaggrin 2 in Canine Normal and Atopic Skin Biopsies. Animals (Basel) 2024; 14:478. [PMID: 38338121 PMCID: PMC10854974 DOI: 10.3390/ani14030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Filaggrin is important for the skin barrier and atopic dermatitis. Another filaggrin-like protein, filaggrin 2, has been described. We evaluated antibodies against both filaggrins in normal and atopic skin biopsies from dogs before and after allergen challenges (D0, D1, D3 and D10). Filaggrins expression was evaluated by immunohistochemistry and Western blot. We used PCR to investigate changes in filaggrin gene expression. Effects of group (p = 0.0134) and time (p = 0.0422) were shown for the intensity of filaggrin staining. Only an effect of group was found for filaggrin 2 (p = 0.0129). Atopic samples had higher intensity of staining than normal dogs [filaggrin on D3 (p = 0.0155) and filaggrin 2 on D3 (p = 0.0038) and D10 (p < 0.0001)]. Atopic samples showed increased epidermal thickness after allergen exposure (D3 vs. D0, p = 0.005), while normal dogs did not. In atopic samples, significant increased gene expression was found for filaggrin overtime but not for filaggrin 2. Western blot showed an increase in filaggrin 2 on D3. A small size band (15 kD) containing a filaggrin sequence was found in Western blots of atopic samples only. We conclude that atopic skin reacts to allergen exposure by proliferating and increasing filaggrin production but that it also has more extensive filaggrin degradation compared to normal skin.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (K.A.); (R.W.)
| | | | | |
Collapse
|
2
|
Colitti M, Stefanon B, Sandri M, Licastro D. Incubation of canine dermal fibroblasts with serum from dogs with atopic dermatitis activates extracellular matrix signalling and represses oxidative phosphorylation. Vet Res Commun 2023; 47:247-258. [PMID: 35665445 PMCID: PMC9873773 DOI: 10.1007/s11259-022-09947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
The aim of this study was to investigate the effects on gene expression in canine fibroblasts after incubation with a medium enriched with atopic dermatitis canine serum (CAD) compared with healthy canine serum (CTRL) and fetal bovine serum (FBS). Differential Expression and Pathway analysis (iDEP94) in R package (v0.92) was used to identify differentially expressed genes (DEGs) with a False Discovery Rate of 0.01. DEGs from fibroblasts incubated with CAD serum were significantly upregulated and enriched in the extracellular matrix (ECM) and focal adhesion signalling but downregulated in the oxidative phosphorylation pathway. Genes involved in profibrotic processes, such as TGFB1, INHBA, ERK1/2, and the downward regulated genes (collagens and integrins), were significantly upregulated after fibroblasts were exposed to CAD serum. The observed downregulation of genes involved in oxidative phosphorylation suggests metabolic dysregulation toward a myofibroblast phenotype responsible for fibrosis. No differences were found when comparing CTRL with FBS. The DEGs identified in fibroblasts incubated with CAD serum suggest activation of signalling pathways involved in gradual differentiation through a myofibroblast precursors that represent the onset of fibrosis. Molecular and metabolic knowledge of fibroblast changes can be used to identify biomarkers of the disease and new potential pharmacological targets.
Collapse
Affiliation(s)
- Monica Colitti
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Bruno Stefanon
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
| | - Misa Sandri
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | | |
Collapse
|
3
|
Ichthyosis in Dogs—Congenital Dermatologic Disorder. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The skin provides protective functions, such as thermoregulation, resorption, provision of immune responses, storage and sensory functions, which all play an important role in the internal stability of the organism. The skin has 3 major layers: the epidermis, the dermis and subcutis. The outermost protective layer of the epidermis, the stratum corneum, consists of 20 to 30 overlapping layers of anucleate cells, the corneocytes. Ichthyosis is an autosomal recessive congenital skin disease, in which the corneocytes form defects that appear like individual steps of the stratum corneum. Ichthyosis is characterized by excessive scaling over the entire body surface and is not curable; the symptoms can only be alleviated. Several genetic variants have been identified in specific dog breeds: PNPLA1 in the Golden Retrievers, SLC27A4 in the Great Danes, NIPAL4 in the American Bulldogs, TGM1 in the Jack Russel Terriers, ASPRV1 in the German Shepherds, which cause different forms of nonepidermolytic ichthyosis and KRT10 in the Norfolk Terriers, which causes epidermolytic ichthyosis. When classifying breeds of dogs predisposed to ichthyosis, it is necessary to determine the presence of defective genes in the genome of the individual animals involved in mating.
Collapse
|
4
|
Kobayashi T, Imanishi I. Epithelial-immune crosstalk with the skin microbiota in homeostasis and atopic dermatitis - a mini review. Vet Dermatol 2021; 32:533-e147. [PMID: 34378246 DOI: 10.1111/vde.13007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
The skin is a complex and dynamic ecosystem, wherein epithelial cells, immune cells and the skin microbiota actively interact and maintain barrier integrity and functional immunity. Skin microbes actively tune the functions of the resident immune cells. Dysbiosis - alterations in the resident microbiota - leads to the dysregulation of host immunity. Microbiome analyses in humans and dogs with atopic dermatitis (AD) have shown shifts in microbial diversity, and in particular, an increased proportion of staphylococci. Monogenic diseases that manifest AD-like symptoms provide insights into the pathogenesis of AD and the mechanisms of dysbiosis, from both the epithelial and immunological perspectives. The symbiotic relationships between the host and microbiota must be maintained constitutively. Detailed mechanisms of how host immunity regulates commensal bacteria in the steady state have been reported. The skin harbours multiple tissue-resident immune cells, including both innate and adaptive immune cells. Recent studies have highlighted the fundamental role of innate lymphoid cells (ILCs) in the maintenance of barrier functions and tissue homeostasis. ILCs directly respond to tissue-derived signals and are instrumental in barrier immunity. Epithelial cells produce alarmins such as thymic stromal lymphopoietin (TSLP) and interleukins (IL)-33 and IL-25, all of which activate group 2 ILCs (ILC2s), which produce type 2 cytokines, such as IL-5 and IL-13, boosting type 2 immune reactions. Dysregulation of the epithelial-ILC crosstalk results in allergic inflammation. This review highlights our understanding of the active interactions between the host epithelial and immune cells, and microbiota, providing a foundation for novel therapeutic strategies for inflammatory skin diseases.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ichiro Imanishi
- Laboratory of Microbiology, Kitasato University School of Medicine, 1-15-1, Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
5
|
Marsella R. Advances in our understanding of canine atopic dermatitis. Vet Dermatol 2021; 32:547-e151. [PMID: 33891338 DOI: 10.1111/vde.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Canine atopic dermatitis (cAD) is a genetically inherited clinical syndrome that encompasses a diversity of mechanisms and can have a variety of triggers. Development of clinical disease is the result of genetic factors and environmental conditions, which shape the resulting immunological response. Clinical disease becomes evident once a threshold of inflammatory response is achieved. Skin barrier impairment plays a role in promoting cutaneous dysbiosis and increased allergen penetration. Keratinocytes shape the response of dendritic cells and subsequent lymphocytic response. Thymic stromal lymphopoietin is one of the links between the damaged skin barrier and the modulation of a T-helper (Th)2 response. It is still unclear whether mutations in skin barrier genes exist in atopic dogs, as they do in humans, or whether the observed alterations are purely secondary to inflammation. A dysregulated immune response with increased Th2, Th17 and CD4+ CD25+ regulatory T cells has been reported. A variety of cytokines [interleukin(IL)-31, IL-34, Macrophage migration inhibitory factor] are proposed as potential biomarkers and treatment targets because they are increased in the serum of atopic dogs when compared to controls, although a correlation between serum levels of these factors and severity of disease is not always present. The main issue with many published studies is that atopic dogs are always only compared to normal controls. Thus, it is unclear whether the changes that we find are truly a signature of cAD or merely a manifestation of nonspecific broad inflammatory responses. Studies considering comparison with other inflammatory diseases different from cAD are urgently needed to correctly identify what is specific to this complicated syndrome.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| |
Collapse
|
6
|
Abstract
Human filaggrin (FLG) plays a key role in epidermal barrier function, and loss-of-function mutations of its gene are primarily responsible for the development of human atopic dermatitis (AD). FLG expression is also reduced in the epidermis of atopic patients, due to the transcriptional effect of Th2 type cytokines. Canine atopic dermatitis (CAD) is a prevalent skin disease that shares many clinical and pathogenic features with its human homologue. The aim of this review is discuss current knowledge on canine filaggrin (Flg) in both healthy and atopic dogs, as compared to the human protein. Although the molecular structures of the two proteins, as deduced from the sequences of their gene, are different, their sites of expression and their proteolytic processing in the normal epidermis are similar. Concerning the expression of Flg in CAD, conflicting results have been published at the mRNA level and little accurate information is available at the protein level. It derives from a large precursor, named profilaggrin (proFLG), formed by several FLG units and stored in keratohyalin granules of the stratum granulosum. Canine and human proFLG sequences display little amino acid similarity (33% as shown using the Basic Local Alignment Search Tool (BLAST)) except at the level of the S100 homologous part of the N-terminus (75%). Genetic studies in the dog are at an early stage and are limited by the variety of breeds and the small number of cases included. Many questions remain unanswered about the involvement of Flg in CAD pathogenesis.
Collapse
Affiliation(s)
- Daniel Combarros
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Marie-Christine Cadiergues
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France.,Université de Toulouse, ENVT, Toulouse, France
| | - Michel Simon
- UDEAR, Université de Toulouse, INSERM UPS, Toulouse, France
| |
Collapse
|
7
|
Pin D, Pendaries V, Keita Alassane S, Froment C, Amalric N, Cadiergues MC, Serre G, Haftek M, Vidémont E, Simon M. Refined Immunochemical Characterization in Healthy Dog Skin of the Epidermal Cornification Proteins, Filaggrin, and Corneodesmosin. J Histochem Cytochem 2018; 67:85-97. [PMID: 30199656 DOI: 10.1369/0022155418798807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filaggrin (FLG) and corneodesmosin (CDSN) are two key proteins of the human epidermis. FLG loss-of-function mutations are the strongest genetic risk factors for human atopic dermatitis. Studies of the epidermal distribution of canine FLG and CDSN are limited. Our aim was to better characterize the distribution of FLG and CDSN in canine skin. Using immunohistochemistry on beagle skin, we screened a series of monoclonal antibodies (mAbs) specific for human FLG and CDSN. The cross-reactive mAbs were further used using immunoelectron microscopy and Western blotting. The structure of canine CDSN and FLG was determined using publicly available databases. In the epidermis, four anti-FLG mAbs stained keratohyalin granules in the granular keratinocytes and corneocyte matrix of the lower cornified layer. In urea-extracts of dog epidermis, several bands corresponding to proFLG and FLG monomers were detected. One anti-CDSN mAb stained the cytoplasm of granular keratinocytes and cells of both the inner root sheath and medulla of hair follicles. Dog CDSN was located in lamellar bodies, in the extracellular parts of desmosomes and in corneodesmosomes. A protein of 52 kDa was immunodetected. Genomic DNA analysis revealed that the amino acid sequence and structure of canine and human CDSN were highly similar.
Collapse
Affiliation(s)
- Didier Pin
- University of Lyon, VetAgro Sup, UP Interaction Cellules Environnement, Marcy l'Etoile, France
| | | | | | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale, University of Toulouse, CNRS, UPS, Toulouse, France
| | | | - Marie-Christine Cadiergues
- UDEAR, INSERM, University of Toulouse, Toulouse, France.,Department of Dermatology, Department of Clinical Sciences, National Veterinary School of Toulouse, Toulouse, France
| | - Guy Serre
- UDEAR, INSERM, University of Toulouse, Toulouse, France
| | | | - Emilie Vidémont
- University of Lyon, VetAgro Sup, UP Interaction Cellules Environnement, Marcy l'Etoile, France
| | - Michel Simon
- UDEAR, INSERM, University of Toulouse, Toulouse, France
| |
Collapse
|
8
|
Fanton N, Santoro D, Cornegliani L, Marsella R. Increased filaggrin-metabolizing enzyme activity in atopic skin: a pilot study using a canine model of atopic dermatitis. Vet Dermatol 2017; 28:479-e111. [DOI: 10.1111/vde.12443] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Fanton
- Clinica Veterinaria San Siro; via Lampugnano 99 Milano 20151 Italy
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16 Ave. Gainesville FL 32610 USA
| | | | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16 Ave. Gainesville FL 32610 USA
| |
Collapse
|
9
|
Romero V, Hosomichi K, Nakaoka H, Shibata H, Inoue I. Structure and evolution of the filaggrin gene repeated region in primates. BMC Evol Biol 2017; 17:10. [PMID: 28077068 PMCID: PMC5225520 DOI: 10.1186/s12862-016-0851-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The evolutionary dynamics of repeat sequences is quite complex, with some duplicates never having differentiated from each other. Two models can explain the complex evolutionary process for repeated genes-concerted and birth-and-death, of which the latter is driven by duplications maintained by selection. Copy number variations caused by random duplications and losses in repeat regions may modulate molecular pathways and therefore affect phenotypic characteristics in a population, resulting in individuals that are able to adapt to new environments. In this study, we investigated the filaggrin gene (FLG), which codes for filaggrin-an important component of the outer layers of mammalian skin-and contains tandem repeats that exhibit copy number variation between and within species. To examine which model best fits the evolutionary pathway for the complete tandem repeats within a single exon of FLG, we determined the repeat sequences in crab-eating macaque (Macaca fascicularis), orangutan (Pongo abelii), gorilla (Gorilla gorilla), and chimpanzee (Pan troglodytes) and compared these with the sequence in human (Homo sapiens). RESULTS In this study we compared concerted and birth-and-death evolution models, commonly used for gene copies. We found that there is high nucleotide diversity between filaggrin repeat regions, which fits the birth-and-death model. Phylogenetic analyses also suggested that independent duplication events created the repeat sequences in crab-eating macaques and orangutans, while different duplication and loss events created the repeats in gorillas, chimpanzees, and humans. Comparison of the repeat sequences detected purifying selection within species and lineage-specific duplications across species. We also found variation in the length of the repeated region within species such as chimpanzee and crab-eating macaque. CONCLUSIONS We conclude that the copy number variation in the repeat sequences of FLG between primates may be a consequence of species-specific divergence and expansion.
Collapse
Affiliation(s)
- Vanessa Romero
- Department of Genetics, School of Life Sciences, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan.,Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Kazuyoshi Hosomichi
- Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan.,Present address: Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirofumi Nakaoka
- Department of Genetics, School of Life Sciences, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan.,Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ituro Inoue
- Department of Genetics, School of Life Sciences, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan. .,Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan.
| |
Collapse
|
10
|
Strasser B, Mlitz V, Fischer H, Tschachler E, Eckhart L. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins. Exp Dermatol 2016; 24:365-9. [PMID: 25739514 PMCID: PMC4437054 DOI: 10.1111/exd.12681] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Santoro D, Marsella R, Pucheu-Haston CM, Eisenschenk MNC, Nuttall T, Bizikova P. Review: Pathogenesis of canine atopic dermatitis: skin barrier and host-micro-organism interaction. Vet Dermatol 2015; 26:84-e25. [DOI: 10.1111/vde.12197] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32610 USA
| | - Cherie M. Pucheu-Haston
- Department of Veterinary Clinical Sciences; School of Veterinary Medicine; Louisiana State University; 1909 Skip Bertman Drive Baton Rouge LA 70803 USA
| | | | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies; Easter Bush Veterinary Centre; University of Edinburgh; Roslin EH25 9RG UK
| | - Petra Bizikova
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; 1060 William Moore Drive Raleigh NC 27606 USA
| |
Collapse
|
12
|
Affiliation(s)
- Stephen Shaw
- UK VetDerm16 Talbot StreetWhitwickLeicestershireLE67 5AWUK
| |
Collapse
|
13
|
Santoro D, Marsella R, Ahrens K, Graves TK, Bunick D. Altered mRNA and protein expression of filaggrin in the skin of a canine animal model for atopic dermatitis. Vet Dermatol 2013; 24:329-36, e73. [DOI: 10.1111/vde.12031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Domenico Santoro
- Department of Veterinary Clinical Medicine; University of Illinois at Urbana-Champaign; 1008 W Hazelwood Drive; Urbana; IL; 61802; USA
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; University of Florida; 2015 SW 16th Avenue; Gainesville; FL 32615; USA
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences; University of Florida; 2015 SW 16th Avenue; Gainesville; FL 32615; USA
| | - Thomas K. Graves
- Department of Veterinary Clinical Medicine; University of Illinois at Urbana-Champaign; 1008 W Hazelwood Drive; Urbana; IL; 61802; USA
| | - David Bunick
- Department of Veterinary Biosciences; University of Illinois at Urbana-Champaign; 2001 South Lincoln Avenue; Urbana; IL 60802; USA
| |
Collapse
|
14
|
Kobayashi T, Enomoto K, Wang YH, Yoon JS, Okamura R, Ide K, Ohyama M, Nishiyama T, Iwasaki T, Nishifuji K. Epidermal structure created by canine hair follicle keratinocytes enriched with bulge cells in a three-dimensional skin equivalent modelin vitro: implications for regenerative therapy of canine epidermis. Vet Dermatol 2013; 24:77-83.e19-20. [DOI: 10.1111/j.1365-3164.2012.01097.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|