1
|
Morice CK, Yammine L, Yoon J, Lane SD, Schmitz JM, Kosten TR, De La Garza R, Verrico CD. Comorbid alcohol use and post-traumatic stress disorders: Pharmacotherapy with aldehyde dehydrogenase 2 inhibitors versus current agents. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110506. [PMID: 34995723 DOI: 10.1016/j.pnpbp.2021.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
The increased risk of alcohol use disorder (AUD) in individuals with post-traumatic stress disorder (PTSD) is well-documented. Compared to individuals with PTSD or AUD alone, those with co-existing PTSD and AUD exhibit greater symptom severity, poorer quality of life, and poorer treatment outcomes. Although the treatment of comorbid AUD is vital for the effective management of PTSD, there is a lack of evidence on how to best treat comorbid PTSD and AUD, and currently, there are no FDA-approved treatments for the PTSD-AUD comorbidity. The objective of this manuscript is to review the evidence of a promising target for treating the AUD-PTSD comorbidity. First, we summarize the epidemiological evidence and review the completed clinical studies that have tested pharmacotherapeutic approaches for co-existing AUD and PTSD. Next, we summarize the shared pathological factors between AUD and PTSD. We conclude by providing a rationale for selectively inhibiting aldehyde dehydrogenase-2 as a potential target to treat comorbid AUD in persons with PTSD.
Collapse
Affiliation(s)
- Claire K Morice
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America
| | - Luba Yammine
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Jin Yoon
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Scott D Lane
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Joy M Schmitz
- University of Texas Health Science Center at Houston, McGovern Medical School, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, Behavioral and Biomedical Sciences Building, 1941 East Road, Houston, TX 77054, United States of America
| | - Thomas R Kosten
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pharmacology & Chemical Biology, One Baylor Plaza, BCM330, Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Neuroscience, One Baylor Plaza, S640, Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pathology & Immunology, One Baylor Plaza, BCM315, Houston, TX 77030, United States of America
| | - Richard De La Garza
- University of California Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90024, United States of America
| | - Christopher D Verrico
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1977 Butler Blvd., Houston, TX 77030, United States of America; Baylor College of Medicine, Department of Pharmacology & Chemical Biology, One Baylor Plaza, BCM330, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Orrico A, Martí-Prats L, Cano-Cebrián MJ, Granero L, Polache A, Zornoza T. Pre-Clinical Studies with D-Penicillamine as a Novel Pharmacological Strategy to Treat Alcoholism: Updated Evidences. Front Behav Neurosci 2017; 11:37. [PMID: 28326026 PMCID: PMC5339308 DOI: 10.3389/fnbeh.2017.00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/21/2017] [Indexed: 11/29/2022] Open
Abstract
Ethanol, as other drugs of abuse, is able to activate the ventral tegmental area dopamine (VTA-DA) neurons leading to positively motivational alcohol-seeking behavior and use, and, ultimately to ethanol addiction. In the last decades, the involvement of brain-derived acetaldehyde (ACD) in the ethanol actions in the mesolimbic pathway has been widely demonstrated. Consistent published results have provided a mechanistic support to the use of ACD inactivating agents to block the motivational and reinforcing properties of ethanol. Hence, in the last years, several pre-clinical studies have been performed in order to analyze the effects of the sequestering ACD agents in the prevention of ethanol relapse-like drinking behavior as well as in chronic alcohol consumption. In this sense, one of the most explored interventions has been the administration of D-Penicillamine (DP). These pre-clinical studies, that we critically summarize in this article, are considered a critical step for the potential development of a novel pharmacotherapeutic strategy for alcohol addiction treatment that could improve the outcomes of current ones. Thus, on one hand, several experimental findings provide the rationale for using DP as a novel therapeutic intervention alone and/or in combination to prevent relapse into alcohol seeking and consumption. On the other hand, its effectiveness in reducing voluntary ethanol consumption in long-term experienced animals still remains unclear. Finally, this drug offers the additional advantage that has already been approved for use in humans, hence it could be easily implemented as a new therapeutic intervention for relapse prevention in alcoholism.
Collapse
Affiliation(s)
- Alejandro Orrico
- Área de Investigación en Vacunas, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) Valencia, Spain
| | | | - María J Cano-Cebrián
- Department of Pharmacy and Pharmacy Technology and Parasitology, University of Valencia Valencia, Spain
| | - Luis Granero
- Department of Pharmacy and Pharmacy Technology and Parasitology, University of Valencia Valencia, Spain
| | - Ana Polache
- Department of Pharmacy and Pharmacy Technology and Parasitology, University of Valencia Valencia, Spain
| | - Teodoro Zornoza
- Department of Pharmacy and Pharmacy Technology and Parasitology, University of Valencia Valencia, Spain
| |
Collapse
|
4
|
Bell RL, Rodd ZA, Engleman EA, Toalston JE, McBride WJ. Scheduled access alcohol drinking by alcohol-preferring (P) and high-alcohol-drinking (HAD) rats: modeling adolescent and adult binge-like drinking. Alcohol 2014; 48:225-34. [PMID: 24290311 DOI: 10.1016/j.alcohol.2013.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023]
Abstract
Binge alcohol drinking continues to be a public health concern among today's youth and young adults. Moreover, an early onset of alcohol use, which usually takes the form of binge drinking, is associated with a greater risk for developing alcohol use disorders. Given this, it is important to examine this behavior in rat models of alcohol abuse and dependence. Toward that end, the objective of this article is to review findings on binge-like drinking by selectively bred alcohol-preferring (P) and high-alcohol-drinking (HAD) lines of rats. As reviewed elsewhere in this special issue, the P line meets all, and the HAD line meets most, of the proposed criteria for an animal model of alcoholism. One model of binge drinking is scheduled ethanol access during the dark cycle, which has been used by our laboratory for over 20 years. Our laboratory has also adopted a protocol involving the concurrent presentation of multiple ethanol concentrations. When this protocol is combined with limited access, ethanol intake is maximized yielding blood ethanol levels (BELs) in excess, sometimes greatly in excess, of 80 mg%. By extending these procedures to include multiple scheduled ethanol access sessions during the dark cycle for 5 consecutive days/week, P and HAD rats consume in 3 or 4 h as much as, if not more than, the amount usually consumed in a 24 h period. Under certain conditions, using the multiple scheduled access procedure, BELs exceeding 200 mg% can be achieved on a daily basis. An overview of findings from studies with other selectively bred, inbred, and outbred rats places these findings in the context of the existing literature. Overall, the findings support the use of P and HAD rats as animal models to study binge-like alcohol drinking and reveal that scheduled access procedures will significantly increase ethanol intake by other rat lines and strains as well.
Collapse
Affiliation(s)
- Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zachary A Rodd
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie E Toalston
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Orrico A, Martí-Prats L, Cano-Cebrián MJ, Granero L, Polache A, Zornoza T. Improved effect of the combination naltrexone/D-penicillamine in the prevention of alcohol relapse-like drinking in rats. J Psychopharmacol 2014; 28:76-81. [PMID: 24306132 DOI: 10.1177/0269881113515063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Opioid antagonists are licensed drugs for treating alcohol use disorders; nonetheless, clinical studies have evidenced their limited effectiveness. Preclinical findings indicate that opioid receptor (OR) antagonists, such as naltrexone (NTX), reduce the alcohol deprivation effect (ADE). However, a detailed analysis of published data shows the existence of a delayed increase in ethanol consumption after continuous OR blockade, a phenomenon originally called as 'delayed ADE'. We have recently reported that D-penicillamine (DP) is able to prevent ADE through a mechanism dependent on the inactivation of acetaldehyde, the main metabolite of ethanol. Hypothetically, OR activation would be triggered by acetaldehyde after ethanol consumption. Hence, we conjecture that the combination of NTX and DP, due to their distinct but complementary mechanisms to impede OR activation, may be more efficacious in the prevention of the ADE and, specifically, the 'delayed ADE'. Herein, we compare the effects of the combination NTX/DP (NTX: 2×5 mg/kg SC injection daily/DP: SC infusion (0.25 mg/h)) versus NTX on the ADE in long-term ethanol-experienced rats. As expected, NTX-treated animals displayed a delayed ADE. However, NTX/DP treatment prevented this delayed effect. Our present data indicate that this combination therapy shows an adequate anti-relapse preclinical efficacy being able to overcome the preclinical limitations of NTX alone.
Collapse
Affiliation(s)
- Alejandro Orrico
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
7
|
Wen RT, Zhang M, Qin WJ, Liu Q, Wang WP, Lawrence AJ, Zhang HT, Liang JH. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol Clin Exp Res 2012; 36:2157-67. [PMID: 22671516 DOI: 10.1111/j.1530-0277.2012.01845.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 03/15/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol dependence is a complex psychiatric disorder demanding development of novel pharmacotherapies. Because the cyclic adenosine monophosphate (cAMP) signaling cascade has been implicated in mediating behavioral responses to alcohol, key components in this cascade may serve as potential treatment targets. Phosphodiesterase-4 (PDE4), an enzyme that specifically catalyzes the hydrolysis of cAMP, represents a key point in regulating intracellular cAMP levels. Thus, it was of interest to determine whether PDE4 was involved in the regulation of alcohol use and abuse. METHODS Male Fawn-Hooded (FH/Wjd) rats were tested for 5% (v/v) ethanol (EtOH) and 10% (w/v) sucrose operant oral self-administration following treatment with the selective PDE4 inhibitor rolipram (0.0125, 0.025, or 0.05 mg/kg, subcutaneous [s.c.]); rolipram at higher doses (0.05, 0.1, and 0.2 mg/kg, s.c.) was tested to determine its impact on the intake of EtOH, sucrose, or water using the 2-bottle choice drinking paradigm. Subsequent open-field testing was performed to evaluate the influence of higher doses of rolipram on locomotor activity. RESULTS Acute administration of rolipram dose-dependently reduced operant self-administration of 5% EtOH, but had no effect on 10% sucrose responding. Time-course assessment revealed significant decreases in EtOH consumption after rolipram (0.1, 0.2 mg/kg) treatment in continuous- and intermittent access to EtOH at 5% or 10%, respectively. Moreover, chronic rolipram treatment time-dependently decreased 5% EtOH consumption and preference during treatment days and after the termination of rolipram administration. Rolipram at the highest doses (0.1 and 0.2 mg/kg) did decrease locomotor activity, but the effect lasted only 10 and 20 minutes, respectively, which did not likely alter long-term EtOH drinking. CONCLUSIONS These results suggest that PDE4 plays a role in alcohol seeking and consumption behavior. Drugs interfering with PDE4 may be a potential pharmacotherapy for alcohol dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Beer promotes high levels of alcohol intake in adolescent and adult alcohol-preferring rats. Alcohol 2011; 45:485-98. [PMID: 21621951 DOI: 10.1016/j.alcohol.2010.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that high levels of alcohol consumption can be obtained in laboratory rats by using beer as a test solution. The present study extended these observations to examine the intake of beer and equivalent dilute ethanol solutions with an inbred line of alcohol-preferring P rats. In Experiment 1, male adolescent P rats and age-matched Wistar rats had access to either beer or equivalent ethanol solutions for 1h daily in a custom-built lickometer apparatus. In subsequent experiments, adolescent (Experiment 2) and adult (Experiment 3) male P rats were given continuous 24-h home cage access to beer or dilute ethanol solutions, with concomitant access to lab chow and water. In each experiment, the alcohol content of the beer and dilute ethanol solutions was gradually increased from 0.4, 1.4, 2.4, 3.4, 4.4, 5 to 10% EtOH (vol/vol). All three experiments showed a major augmentation of alcohol intake when rats were given beer compared with equivalent ethanol solutions. In Experiment 1, the overall intake of beer was higher in P rats compared with Wistar rats, but no strain difference was found during the 1-h sessions with plain ethanol consumption. Experiment 1 also showed that an alcohol deprivation effect was more readily obtained in rats with a history of consuming beer rather than plain ethanol solutions. In Experiments 2 and 3, voluntary beer intake in P rats represented ethanol intake of 10-15 g/kg/day, among the highest reported in any study with rats. This excessive consumption was most apparent in adolescent rats. Beer consumption markedly exceeded plain ethanol intake in these experiments except at the highest alcohol concentration (10%) tested. The advantage of using beer rather than dilute ethanol solutions in both selected and nonselected rat strains is therefore confirmed. Our findings encourage the use of beer with alcohol-preferring rats in future research that seeks to obtain high levels of alcohol self-administration.
Collapse
|
9
|
Polymorphisms in mitochondrial genes encoding complex I subunits are maternal factors of voluntary alcohol consumption in the rat. Pharmacogenet Genomics 2009; 19:528-37. [PMID: 19494790 DOI: 10.1097/fpc.0b013e32832dc12a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Alcohol is detoxified in the liver by oxidizing enzymes that require nicotinamide adenine dinucleotide (NAD+) such that, in the rat, the availability of NAD+ contributes to control voluntary ethanol intake. The UChA and UChB lines of Wistar rats drink low and high amounts of ethanol respectively and differ in the capacity of their mitochondria to oxidize NADH into NAD+. This function resides in complex I of the respiratory chain and its variation is linked to genes transmitted through the maternal line. The aim of this study was to identify the genetic basis for the difference in the reoxidation of NADH in these nondrinker (UChA) and drinker (UChB) rats. METHODS Seven mitochondrial genes and two chromosome X genes encoding complex I subunits from rats of both lineages were amplified from liver DNA and sequenced. RESULTS The UChA and UChB rat lines differ in their Nd2, Nd4, Nd5 and Nd6 mitochondrial genes and in the encoded proteins. Most noteworthy are ND2 and ND4 whose amino acid variations lead to changes in three-dimensional structure models. The ND2 proteins also differ in the number of predicted transmembrane domains. The Nd1 and Nd3 genes have silent substitutions, whereas Nd4L and the exonic sequences of the nuclear genes Ndufa1 and Ndufb11 show no differences between the UChA and UChB lines. CONCLUSION Amino acid variations in four complex I subunits encoded in the mitochondrial genome may contribute to explain the differences between UChA and UChB rats in their capacity to reoxidize NADH and in their alcohol intake, suggesting that mitochondrial genes may constitute maternal factors of alcoholism.
Collapse
|
10
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
11
|
Abstract
Despite the generally held view that alcohol is an unspecific pharmacological agent, recent molecular pharmacology studies demonstrated that alcohol has only a few known primary targets. These are the NMDA, GABA(A), glycine, 5-hydroxytryptamine 3 (serotonin) and nicotinic ACh receptors as well as L-type Ca(2+) channels and G-protein-activated inwardly rectifying K(+) channels. Following this first hit of alcohol on specific targets in the brain, a second wave of indirect effects on a variety of neurotransmitter/neuropeptide systems is initiated that leads subsequently to the typical acute behavioural effects of alcohol, ranging from disinhibition to sedation and even hypnosis, with increasing concentrations of alcohol. Besides these acute pharmacodynamic aspects of alcohol, we discuss the neurochemical substrates that are involved in the initiation and maintenance phase of an alcohol drinking behaviour. Finally, addictive behaviour towards alcohol as measured by alcohol-seeking and relapse behaviour is reviewed in the context of specific neurotransmitter/neuropeptide systems and their signalling pathways. The activity of the mesolimbic dopaminergic system plays a crucial role during the initiation phase of alcohol consumption. Following long-term, chronic alcohol consumption virtually all brain neurotransmission seems to be affected, making it difficult to define which of the systems contributes the most to the transition from controlled to compulsive alcohol use. However, compulsive alcohol drinking is characterized by a decrease in the function of the reward neurocircuitry and a recruitment of antireward/stress mechanisms comes into place, with a hypertrophic corticotropin-releasing factor system and a hyperfunctional glutamatergic system being the most important ones.
Collapse
|
12
|
Vengeliene V, Heidbreder CA, Spanagel R. The effects of lamotrigine on alcohol seeking and relapse. Neuropharmacology 2007; 53:951-7. [PMID: 17976664 DOI: 10.1016/j.neuropharm.2007.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 09/06/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
13
|
Beaugé LA, DiPolo R. Sidedness of the ATP-Na+-K+ interactions with the Na+ pump in squid axons. Methods Mol Biol 1979; 829:125-44. [PMID: 222318 DOI: 10.1007/978-1-61779-458-2_7] [Citation(s) in RCA: 169] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.
Collapse
|