1
|
Miličić I, Mikuš M, Vrbanić A, Kalafatić D. The Role of Gene Expression in Stress Urinary Incontinence: An Integrative Review of Evidence. Medicina (B Aires) 2023; 59:medicina59040700. [PMID: 37109658 PMCID: PMC10142382 DOI: 10.3390/medicina59040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Stress urinary incontinence (SUI) is defined as unintentional urine leakage occurring as a consequence of increased intraabdominal pressure due to absent or weak musculus detrusor contractility. It affects postmenopausal women more often than premenopausal and is associated with quality of life (QoL) deterioration. The complex SUI etiology is generally perceived as multifactorial; however, the overall impact of environmental and genetic influences is deficiently understood. In this research report, we have disclosed the upregulation of 15 genes and the downregulation of 2 genes in the genetic etiology of SUI according to the accessible scientific literature. The analytical methods used for the analysis of gene expression in the studies investigated were immunohistochemistry, immunofluorescence staining, PCR, and Western blot. In order to facilitate the interpretation of the results, we have used GeneMania, a potent software which describes genetic expression, co-expression, co-localization, and protein domain similarity. The importance of this review on the genetic pathophysiology of SUI lies in determining susceptibility for targeted genetic therapy, detecting clinical biomarkers, and other possible therapeutic advances. The prevention of SUI with the timely recognition of genetic factors may be important for avoiding invasive operative urogynecological methods.
Collapse
Affiliation(s)
- Iva Miličić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Mislav Mikuš
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Adam Vrbanić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
- Medical School, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
2
|
Isali I, Mahran A, Khalifa AO, Sheyn D, Neudecker M, Qureshi A, Conroy B, Schumacher FR, Hijaz AK, El-Nashar SA. Gene expression in stress urinary incontinence: a systematic review. Int Urogynecol J 2019; 31:1-14. [PMID: 31312847 DOI: 10.1007/s00192-019-04025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023]
Abstract
INTRODUCTION A contribution of genetic factors to the development of stress urinary incontinence (SUI) is broadly acknowledged. This study aimed to: (1) provide insight into the genetic pathogenesis of SUI by gathering and synthesizing the available data from studies evaluating differential gene expression in SUI patients and (2) identify possible novel therapeutic targets and leads. METHODS A systematic literature search was conducted through September 2017 for the concepts of genetics and SUI. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in SUI were performed using GeneMANIA software. RESULTS Of 3019 studies, 4 were included in the final analysis. A total of 13 genes were identified as being differentially expressed in SUI patients. Eleven genes were overexpressed: skin-derived antileukoproteinase (SKALP/elafin), collagen type XVII alpha 1 chain (COL17A1), plakophilin 1 (PKP1), keratin 16 (KRT16), decorin (DCN), biglycan (BGN), protein bicaudal D homolog 2 (BICD2), growth factor receptor-bound protein 2 (GRB2), signal transducer and activator of transcription 3 (STAT3), apolipoprotein E (APOE), and Golgi SNAP receptor complex member 1 (GOSR1), while two genes were underexpressed: fibromodulin (FMOD) and glucocerebrosidase (GBA). GeneMANIA revealed that these genes are involved in intermediate filament cytoskeleton and extracellular matrix organization. CONCLUSION Many genes are involved in the pathogenesis of SUI. Furthermore, whole-genome studies are warranted to identify these genetic connections. This study lays the groundwork for future research and the development of novel therapies and SUI biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Amr Mahran
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Urology, Assiut University, Assiut, Egypt
| | - Ahmad O Khalifa
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Urology, Menoufia University, Menoufia, Egypt
| | - David Sheyn
- Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mandy Neudecker
- Core Library, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Arshna Qureshi
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Britt Conroy
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Adonis K Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sherif A El-Nashar
- Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
3
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
4
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant cause of global morbidity and mortality. Previous studies have shown that COPD aggregates in families, suggesting a genetic predisposition to airflow obstruction. Many candidate genes have been assessed, but the data are often conflicting. We review the genetic factors that predispose smokers to COPD and highlight the future role of genomic scans in identifying novel susceptibility genes.
Collapse
Affiliation(s)
- D A Lomas
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|