1
|
Casula M, Marchetti D, Trevisan L, Pezzoli L, Bellini M, Patrone S, Zingarelli A, Gotta F, Iascone M, Mandich P. Genetics architecture of spontaneous coronary artery dissection in an Italian cohort. Front Cardiovasc Med 2024; 11:1486273. [PMID: 39654947 PMCID: PMC11625805 DOI: 10.3389/fcvm.2024.1486273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Spontaneous coronary artery dissection (SCAD) is a relevant non-atherosclerotic cause of acute coronary syndrome with a complex genetic architecture. Recent discoveries have highlighted the potential role of miRNAs and protein-coding genes involved in the processing of small RNAs in the pathogenesis of SCAD. Furthermore, there may be a connection between SCAD and the increased cardiovascular risk observed in fragile X premutation carriers as well as a correlation with pathogenetic variants in genes encoding for collagen and extracellular matrix, which are related to connective tissue disorders (CTDs). In our cohort of 15 Italian SCAD patients, a total of 37 rare variants were identified in 34 genes using whole exome sequencing (WES) and TRIO-WES analysis when both parents were available. Three likely pathogenic/pathogenetic variants were found in genes previously associated with SCAD and CTDs (COL3A1, COL1A2, and SMAD3) and 26 variants of uncertain significance in genes previously associated with SCAD and CTDs. TRIO-WES analysis revealed 7 de novo variants, 1 of which was found in a potential novel candidate gene (DROSHA). In addition, a premutation allele of 55 ± 2 CGG repeats in the promoter of the FMR1 gene was identified in two related SCAD patients by test for CGG-repeat expansions in the 5'-UTR of the FMR1 gene. Our findings suggest various potential mechanisms such as mRNA toxicity, miRNA regulation, alteration of collagen, and the extracellular matrix architecture, all of which could disrupt vascular homeostasis, and finally, WES and TRIO-WES have proven to be the most powerful approaches for characterizing the genetic background of SCAD.
Collapse
Affiliation(s)
- Marta Casula
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Daniela Marchetti
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Lucia Trevisan
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Matteo Bellini
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Serena Patrone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Antonio Zingarelli
- Cardiological Unit, Ospedale Policlinico IRCSS San Martino, Genoa, Italy
| | - Fabio Gotta
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Hayward BE, Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes (Basel) 2021; 12:genes12101633. [PMID: 34681027 PMCID: PMC8536109 DOI: 10.3390/genes12101633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.
Collapse
|
3
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
4
|
Latham GJ, Coppinger J, Hadd AG, Nolin SL. The role of AGG interruptions in fragile X repeat expansions: a twenty-year perspective. Front Genet 2014; 5:244. [PMID: 25120560 PMCID: PMC4114290 DOI: 10.3389/fgene.2014.00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
In 1994, it was suggested that AGG interruptions affect the stability of the fragile X triplet repeat. Until recently, however, this hypothesis was not explored on a large scale due primarily to the technical difficulty of determining AGG interruption patterns of the two alleles in females. The recent development of a PCR technology that overcomes this difficulty and accurately identifies the number and position of AGGs has led to several studies that examine their influence on repeat stability. Here, we present a historical perspective of relevant studies published during the last 20 years on AGG interruptions and examine those recent publications that have refined risk estimates for repeat instability and full-mutation expansions.
Collapse
Affiliation(s)
| | | | | | - Sarah L Nolin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| |
Collapse
|
5
|
Grasso M, Boon EMJ, Filipovic-Sadic S, van Bunderen PA, Gennaro E, Cao R, Latham GJ, Hadd AG, Coviello DA. A novel methylation PCR that offers standardized determination of FMR1 methylation and CGG repeat length without southern blot analysis. J Mol Diagn 2013; 16:23-31. [PMID: 24177047 DOI: 10.1016/j.jmoldx.2013.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 01/20/2023] Open
Abstract
Fragile X syndrome and associated disorders are characterized by the number of CGG repeats and methylation status of the FMR1 gene for which Southern blot (SB) historically has been required for analysis. This study describes a simple PCR-only workflow (mPCR) to replace SB analysis, that incorporates novel procedural controls, treatment of the DNA in separate control and methylation-sensitive restriction endonuclease reactions, amplification with labeled primers, and two-color amplicon sizing by capillary electrophoresis. mPCR was evaluated in two independent laboratories with 76 residual clinical samples that represented typical and challenging fragile X alleles in both males and females. mPCR enabled superior size resolution and analytical sensitivity for size and methylation mosaicism compared to SB. Full mutation mosaicism was detected down to 1% in a background of 99% normal allele with 50- to 100-fold less DNA than required for SB. A low level of full mutation mosaicism in one sample was detected using mPCR but not observed using SB. Overall, the sensitivity for detection of full mutation alleles was 100% (95% CI: 89%-100%) with an accuracy of 99% (95% CI: 93%-100%). mPCR analysis of DNA from individuals with Klinefelter and Turner syndromes, and DNA from sperm and blood, were consistent with SB. As such, mPCR enables accurate, sensitive, and standardized methods of FMR1 analysis that can harmonize results across different laboratories.
Collapse
Affiliation(s)
- Marina Grasso
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy.
| | - Elles M J Boon
- Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Patrick A van Bunderen
- Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Elena Gennaro
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy
| | - Ru Cao
- Asuragen, Inc., Austin, Texas
| | | | | | | |
Collapse
|
6
|
Clinical utility gene card for: fragile X mental retardation syndrome, fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Eur J Hum Genet 2011; 19:ejhg201155. [PMID: 21540884 DOI: 10.1038/ejhg.2011.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
7
|
Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, Hagerman PJ, Stenzel TT, Hadd AG, Latham GJ, Tassone F. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem 2010; 56:399-408. [PMID: 20056738 DOI: 10.1373/clinchem.2009.136101] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is a trinucleotide-repeat disease caused by the expansion of CGG sequences in the 5' untranslated region of the FMR1 (fragile X mental retardation 1) gene. Molecular diagnoses of FXS and other emerging FMR1 disorders typically rely on 2 tests, PCR and Southern blotting; however, performance or throughput limitations of these methods currently constrain routine testing. METHODS We evaluated a novel FMR1 gene-specific PCR technology with DNA templates from 20 cell lines and 146 blinded clinical samples. The CGG repeat number was determined by fragment sizing of PCR amplicons with capillary electrophoresis, and results were compared with those for FMR1 Southern blotting analyses with the same samples. RESULTS The FMR1 PCR accurately detected full-mutation alleles up to at least 1300 CGG repeats and consisting of >99% GC character. All categories of alleles detected by Southern blotting, including 66 samples with full mutations, were also identified by the FMR1 PCR for each of the 146 clinical samples. Because all full mutation alleles in samples from heterozygous females were detected by the PCR, allele zygosity was reconciled in every case. The PCR reagents also detected a 1% mass fraction of a 940-CGG allele in a background of 99% 23-CGG allele-a roughly 5- fold greater sensitivity than obtained with Southern blotting. CONCLUSIONS The novel PCR technology can accurately categorize the spectrum of FMR1 alleles, including alleles previously considered too large to amplify; reproducibly detect low abundance full mutation alleles; and correctly infer homozygosity in female samples, thus greatly reducing the need for sample reflexing to Southern blotting.
Collapse
|
8
|
Dahl C, Grønskov K, Larsen LA, Guldberg P, Brøndum-Nielsen K. A homogeneous assay for analysis of FMR1 promoter methylation in patients with fragile X syndrome. Clin Chem 2007; 53:790-3. [PMID: 17259243 DOI: 10.1373/clinchem.2006.080762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Fragile X syndrome is caused by the expansion of a CGG trinucleotide repeat at the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1). When expanded to >200 repeats (full mutation), the repeat region and the adjacent promoter CpG island become hypermethylated, rendering FMR1 transcriptionally inactive. Conventional molecular diagnosis of fragile X syndrome involves determination of the CGG repeat number by Southern blot analysis. METHODS A homogeneous methylation-specific melting curve analysis (MS-MCA) assay for methylation status of the FMR1 promoter region was developed on the LightCycler platform. Genomic DNA was treated with sodium bisulfite, and a region containing 8 CpG sites was amplified in the presence of SYBR Green I, using primers that do not differentiate between methylated and unmethylated FMR1 molecules. After amplification, the samples were melted at 0.05 degrees C/s, and fluorescence melting curves were recorded. We studied samples, previously characterized by Southern blot analyses, from 10 female and 10 male donors with normal numbers of CGG trinucleotide repeats, 9 male donors who were premutation carriers, 4 male donors who carried both a premutation and a full mutation, and 25 patients with fragile X syndrome. RESULTS Samples from all 20 male patients with fragile X syndrome showed a high melting peak corresponding to fully methylated FMR1, whereas samples from healthy males showed a single low melting peak corresponding to unmethylated FMR1. Of 24 samples from affected males, 9 (38%) showed 2 melting peaks, suggesting that cellular methylation mosaicism is common in fragile X syndrome. CONCLUSIONS MS-MCA allows rapid and reliable identification of fragile X syndrome in male patients.
Collapse
Affiliation(s)
- Christina Dahl
- Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|