1
|
Ilic N, Krasic S, Maric N, Gasic V, Krstic J, Cvetkovic D, Miljkovic V, Zec B, Maver A, Vukomanovic V, Sarajlija A. Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype-A Multi-Center Retrospective Study. Genes (Basel) 2024; 15:1463. [PMID: 39596663 PMCID: PMC11594011 DOI: 10.3390/genes15111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Noonan syndrome (NS) is a congenital genetic disorder with a prevalence of 1 in 1000 to 2500 live births, and is characterized by distinctive facial features, short stature, chest deformities, and congenital heart disease. This study aims to evaluate the prevalence of specific genetic mutations and their impact on cardiovascular and other outcomes in NS. Methods: We conducted a retrospective clinical study of 25 pediatric patients diagnosed with NS at two institutions: The Mother and Child Health Care Institute of Serbia and the Clinic for Children Diseases, University Clinical Center of the Republic of Srpska. Patients underwent whole-exome sequencing (WES) to identify genetic mutations. Clinical data, including cardiovascular manifestations, psychomotor development, and stature, were analyzed in relation to mutation types. Results: The cohort comprised 60% male and 40% female patients, with a median age at diagnosis of 7.2 years. Cardiovascular abnormalities were present in 88% of patients. Mutations in PTPN11 were most commonly associated with pulmonary valve stenosis (PVS), while RAF1 mutations were prevalent in patients with hypertrophic cardiomyopathy (HCM). No significant association was found between cardiac disease and delayed psychomotor development (p = 0.755), even though the likelihood ratio showed significance in that regard (p = 0.018). Short stature was observed in 48% of patients but was not significantly correlated with genetic type of disease, presence of cardiac disease, or developmental delay. Conclusions: The study confirms the high prevalence of cardiovascular manifestations in NS and highlights genotype-phenotype correlations. While cardiac abnormalities are common, their impact on psychomotor development and stature is less clear. Further research is needed to explore genetic interactions influencing these outcomes and refine clinical management strategies.
Collapse
Affiliation(s)
- Nikola Ilic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.K.)
| | - Stasa Krasic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (S.K.); (V.V.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nina Maric
- Clinic for Children’s Disease, University Clinical Center of the Republic of Srpska, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia;
| | - Jovana Krstic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.K.)
| | - Dimitrije Cvetkovic
- Department of Endocrinology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia;
| | - Vesna Miljkovic
- Department of Endocrinology, University Clinical Center of the Republic of Srpska, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Boris Zec
- Department of Cardiology, University Clinical Center of the Republic of Srpska, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Vladislav Vukomanovic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (S.K.); (V.V.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Adrijan Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.K.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Ouboukss F, Adadi N, Amasdl S, Smaili W, Laarabi FZ, Lyahyai J, Sefiani A, Ratbi I. High frequency of hotspot mutation in PTPN11 gene among Moroccan patients with Noonan syndrome. J Appl Genet 2024; 65:303-308. [PMID: 37987971 DOI: 10.1007/s13353-023-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Noonan syndrome (NS; OMIM 163950) is an autosomal dominant RASopathy with variable clinical expression and genetic heterogeneity. Clinical manifestations include characteristic facial features, short stature, and cardiac anomalies. Variants in protein-tyrosine phosphatase, non-receptor-type 11 (PTPN11), encoding SHP-2, account for about half of NS patients, SOS1 in approximately 13%, RAF1 in 10%, and RIT1 each in 9%. Other genes have been reported to cause NS in less than 5% of cases including SHOC2, RASA2, LZTR1, SPRED2, SOS2, CBL, KRAS, NRAS, MRAS, PRAS, BRAF, PPP1CB, A2ML1, MAP2K1, and CDC42. Several additional genes associated with a Noonan syndrome-like phenotype have been identified. Clinical presentation and variants in patients with Noonan syndrome are this study's objectives. We performed Sanger sequencing of PTPN11 hotspot (exons 3, 8, and 13). We report molecular analysis of 61 patients with NS phenotype belonging to 58 families. We screened for hotspot variants (exons 3, 8, and 13) in PTPN11 gene by Sanger sequencing. Twenty-seven patients were carrying heterozygous pathogenic variants of PTPN11 gene with a similar frequency (41.4%) compared to the literature. Our findings expand the variant spectrum of Moroccan patients with NS phenotype in whom the analysis of hotspot variants showed a high frequency of exons 3 and 8. This screening test allowed us to establish a molecular diagnosis in almost half of the patients with a good benefit-cost ratio, with appropriate management and genetic counseling.
Collapse
Affiliation(s)
- Fatima Ouboukss
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco.
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco.
| | - Najlae Adadi
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Saadia Amasdl
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Wiam Smaili
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Fatima Zahra Laarabi
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Ilham Ratbi
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
4
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
5
|
El Bouchikhi I, Bouguenouch L, Moufid FZ, Samri I, Abdouss F, Melhouf MA, Iraqui Houssaini M, Belhassan K, Atmani S, Ouldim K. Molecular and environmental characterization of Noonan syndrome in Morocco reveals a significant association with consanguinity and advanced parental age. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0047-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Background
Noonan syndrome (NS) is one of the most common RASopathies, with an autosomal dominant inheritance. This disorder is caused by a range of genes belonging to the RAS-MAP kinase (rat sarcoma viral oncogene homolog/mitogen-activated protein kinases) pathway, with PTPN11 (protein-tyrosine phosphatase, non-receptor type 11) being the most involved genetic factor.
The aim of this study is to report PTPN11 mutations found in a cohort of Moroccans with Noonan syndrome, compare the mutation rate with various studies, and statistically assess involvement of prominent risk factors in manifestation of this disorder.
Thirty-one NS patients were screened for PTPN11 mutations using PCR-Sanger sequencing method. Pathogenic effect prediction, for detected variants, was carried out using PROVEAN, MutationTaster2, and HSF programs. Statistical tests were performed with R software. Chi-square and Fisher’s exact tests were used in percentage comparisons, while Student’s test was used in average comparisons.
Results
We detected five pathogenic mutations, one synonymous variant with a potential altering effect on splicing function, and three novel intronic duplications. PTPN11 mutation rate in our cohort is around 16.13%. Comparison of this rate with the corresponding rates in various populations shows notably significant differences across continents.
Conclusions
Besides genetic factors, the present study suggests involvement of additional environmental factors. Statistical assessment of clinical data confirms particularly the association of NS manifestation with consanguinity and advanced paternal age, and suggests an eventual implication of advanced maternal age as well.
Collapse
|
6
|
Tamura A, Uemura S, Matsubara K, Kozuki E, Tanaka T, Nino N, Yokoi T, Saito A, Ishida T, Hasegawa D, Umeki I, Niihori T, Nakazawa Y, Koike K, Aoki Y, Kosaka Y. Co-occurrence of hypertrophic cardiomyopathy and juvenile myelomonocytic leukemia in a neonate with Noonan syndrome, leading to premature death. Clin Case Rep 2018; 6:1202-1207. [PMID: 29988639 PMCID: PMC6028379 DOI: 10.1002/ccr3.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
We report a case of a neonate with Noonan syndrome presenting with concurrent hypertrophic cardiomyopathy and juvenile myelomonocytic leukemia, which resulted in premature death. Cases with Noonan syndrome diagnosed during the neonatal period might not necessarily show mild clinical course, and premature death is a possible outcome to be considered.
Collapse
Affiliation(s)
- Akihiro Tamura
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | - Suguru Uemura
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsKobe University School of MedicineKobeJapan
| | - Kousaku Matsubara
- Department of PediatricsKobe City Nishi‐Kobe Medical CenterKobeJapan
| | - Eru Kozuki
- Department of PediatricsKobe City Nishi‐Kobe Medical CenterKobeJapan
| | | | - Nanako Nino
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsKobe University School of MedicineKobeJapan
| | - Takehito Yokoi
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
- Department of PediatricsOsaka University HospitalSuitaJapan
| | - Atsuro Saito
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | - Toshiaki Ishida
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| | | | - Ikumi Umeki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Tetsuya Niihori
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Yozo Nakazawa
- Department of PediatricsShinshu University School of MedicineMatsumotoJapan
| | - Kenichi Koike
- Department of PediatricsShinonoi General HospitalMinami Nagano Medical CenterNaganoJapan
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Yoshiyuki Kosaka
- Department of Hematology and OncologyKobe Children's HospitalKobeJapan
| |
Collapse
|
7
|
Kruszka P, Porras AR, Addissie YA, Moresco A, Medrano S, Mok GTK, Leung GKC, Tekendo-Ngongang C, Uwineza A, Thong MK, Muthukumarasamy P, Honey E, Ekure EN, Sokunbi OJ, Kalu N, Jones KL, Kaplan JD, Abdul-Rahman OA, Vincent LM, Love A, Belhassan K, Ouldim K, El Bouchikhi I, Shukla A, Girisha KM, Patil SJ, Sirisena ND, Dissanayake VHW, Paththinige CS, Mishra R, Klein-Zighelboim E, Gallardo Jugo BE, Chávez Pastor M, Abarca-Barriga HH, Skinner SA, Prijoles EJ, Badoe E, Gill AD, Shotelersuk V, Smpokou P, Kisling MS, Ferreira CR, Mutesa L, Megarbane A, Kline AD, Kimball A, Okello E, Lwabi P, Aliku T, Tenywa E, Boonchooduang N, Tanpaiboon P, Richieri-Costa A, Wonkam A, Chung BHY, Stevenson RE, Summar M, Mandal K, Phadke SR, Obregon MG, Linguraru MG, Muenke M. Noonan syndrome in diverse populations. Am J Med Genet A 2017; 173:2323-2334. [PMID: 28748642 DOI: 10.1002/ajmg.a.38362] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Noonan syndrome (NS) is a common genetic syndrome associated with gain of function variants in genes in the Ras/MAPK pathway. The phenotype of NS has been well characterized in populations of European descent with less attention given to other groups. In this study, individuals from diverse populations with NS were evaluated clinically and by facial analysis technology. Clinical data and images from 125 individuals with NS were obtained from 20 countries with an average age of 8 years and female composition of 46%. Individuals were grouped into categories of African descent (African), Asian, Latin American, and additional/other. Across these different population groups, NS was phenotypically similar with only 2 of 21 clinical elements showing a statistically significant difference. The most common clinical characteristics found in all population groups included widely spaced eyes and low-set ears in 80% or greater of participants, short stature in more than 70%, and pulmonary stenosis in roughly half of study individuals. Using facial analysis technology, we compared 161 Caucasian, African, Asian, and Latin American individuals with NS with 161 gender and age matched controls and found that sensitivity was equal to or greater than 94% for all groups, and specificity was equal to or greater than 90%. In summary, we present consistent clinical findings from global populations with NS and additionally demonstrate how facial analysis technology can support clinicians in making accurate NS diagnoses. This work will assist in earlier detection and in increasing recognition of NS throughout the world.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Antonio R Porras
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, District of Columbia
| | - Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Sofia Medrano
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Gary T K Mok
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Gordon K C Leung
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | - Annette Uwineza
- Center of Human Genetics, School of Medicine and Pharmacy, College of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Meow-Keong Thong
- Faculty of Medicine,Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Engela Honey
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Ekanem N Ekure
- Department of Paediatrics College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Ogochukwu J Sokunbi
- Department of Paediatrics College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Nnenna Kalu
- Department of Paediatrics College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Kelly L Jones
- Division of Medical Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Julie D Kaplan
- Division of Medical Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Omar A Abdul-Rahman
- Division of Medical Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | - Khadija Belhassan
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland.,Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco
| | - Ihssane El Bouchikhi
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Fez, Morocco.,Faculty of Sciences and Techniques,Laboratory of Microbial Biotechnology, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | | | - Nirmala D Sirisena
- Faculty of Medicine, Human Genetics Unit, University of Colombo, Colombo, Sri Lanka
| | | | | | - Rupesh Mishra
- Faculty of Medicine, Human Genetics Unit, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | | | | | - Eben Badoe
- School of Medicine and Dentistry,Department of Child Health, College of Health Sciences, Accra, Ghana
| | - Ashleigh D Gill
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Vorasuk Shotelersuk
- Faculty of Medicine,Center of Excellence for Medical Genetics, Department of Pediatrics, Chulalongkorn University, Bangkok, Thailand
| | - Patroula Smpokou
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Monisha S Kisling
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Carlos R Ferreira
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Leon Mutesa
- Center of Human Genetics, School of Medicine and Pharmacy, College of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | | | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland
| | - Amy Kimball
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland
| | | | | | | | - Emmanuel Tenywa
- Uganda Heart Institute, Kampala, Uganda.,Jinja Regional Referral Hospital, Jinja, Uganda
| | - Nonglak Boonchooduang
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Chiangmai University, Chiang Mai, Thailand
| | - Pranoot Tanpaiboon
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Antonio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, Bauru, Brazil
| | - Ambroise Wonkam
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Brian H Y Chung
- LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - María G Obregon
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Marius G Linguraru
- Children's National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, District of Columbia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
El Bouchikhi I, Belhassan K, Moufid FZ, Iraqui Houssaini M, Bouguenouch L, Samri I, Atmani S, Ouldim K. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate. Int J Pediatr Adolesc Med 2016; 3:133-142. [PMID: 30805484 PMCID: PMC6372459 DOI: 10.1016/j.ijpam.2016.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
Noonan syndrome is a common autosomal dominant disorder characterized by short stature, congenital heart disease and facial dysmorphia with an incidence of 1/1000 to 2500 live births. Up to now, several genes have been proven to be involved in the disturbance of the transduction signal through the RAS-MAP Kinase pathway and the manifestation of Noonan syndrome. The first gene described was PTPN11, followed by SOS1, RAF1, KRAS, BRAF, NRAS, MAP2K1, and RIT1, and recently SOS2, LZTR1, and A2ML1, among others. Progressively, the physiopathology and molecular etiology of most signs of Noonan syndrome have been demonstrated, and inheritance patterns as well as genetic counseling have been established. In this review, we summarize the data concerning clinical features frequently observed in Noonan syndrome, and then, we describe the molecular etiology as well as the physiopathology of most Noonan syndrome-causing genes. In the second part of this review, we assess the mutational rate of Noonan syndrome-causing genes reported up to now in most screening studies. This review should give clinicians as well as geneticists a full view of the molecular aspects of Noonan syndrome and the authentic prevalence of the mutational events of its causing-genes. It will also facilitate laying the groundwork for future molecular diagnosis research, and the development of novel treatment strategies.
Collapse
Key Words
- CDC25, cell division cycle 25
- CHD, congenital heart defects
- CR, conserved region
- CRD, cysteine-rich domain
- GAP, GTPase activating protein
- GDP, guanosine-DiPhosphate
- GEF, guanine exchange factor
- GH, growth hormone
- GTP, guanosine-TriPhosphate
- HCM, hypertrophic cardiomyopathy
- IGF-1, insulin-like growth factor I
- MAP kinase signaling pathways
- Molecular etiology
- Mutation rate
- Noonan syndrome
- PTPN11
- RAS family
- RBD, RAS binding domain
- REM, RAS exchange motif
Collapse
Affiliation(s)
- Ihssane El Bouchikhi
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco.,Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Khadija Belhassan
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Fatima Zohra Moufid
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco.,Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Mohammed Iraqui Houssaini
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, B.P. 2202, Route d'Imouzzer, Fez 30000, Morocco
| | - Laila Bouguenouch
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Imane Samri
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Samir Atmani
- Medico-Surgical Unit of Cardio-pediatrics, Department of Pediatrics, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Laboratory, HASSAN II University Hospital, BP 1835, Atlas, Fez 30000, Morocco
| |
Collapse
|
9
|
Abstract
Congenital heart defects affect 60-85% of patients with RASopathies. We analysed the clinical and molecular characteristics of atrioventricular canal defect in patients with mutations affecting genes coding for proteins with role in the RAS/MAPK pathway. Between 2002 and 2011, 101 patients with cardiac defect and a molecularly confirmed RASopathy were collected. Congenital heart defects within the spectrum of complete or partial (including cleft mitral valve) atrioventricular canal defect were diagnosed in 8/101 (8%) patients, including seven with a PTPN11 gene mutation, and one single subject with a RAF1 gene mutation. The only recurrent mutation was the missense PTPN11 c.124 A>G change (T42A) in PTPN11. Partial atrioventricular canal defect was found in six cases, complete in one, cleft mitral valve in one. In four subjects the defect was associated with other cardiac defects, including subvalvular aortic stenosis, mitral valve anomaly, pulmonary valve stenosis and hypertrophic cardiomyopathy. Maternal segregation of PTPN11 and RAF1 gene mutations occurred in two and one patients, respectively. Congenital heart defects in the affected relatives were discordant in the families with PTPN11 mutations, and concordant in that with RAF1 mutation. In conclusion, our data confirm previous reports indicating that atrioventricular canal defect represents a relatively common feature in Noonan syndrome. Among RASopathies, atrioventricular canal defect was observed to occur with higher prevalence among subjects with PTPN11 mutations, even though this association was not significant possibly because of low statistical power. Familial segregation of atrioventricular canal defect should be considered in the genetic counselling of families with RASopathies.
Collapse
|
10
|
Pablo Kaski J, Syrris P, Shaw A, Alapi KZ, Cordeddu V, Esteban MTT, Jenkins S, Ashworth M, Hammond P, Tartaglia M, McKenna WJ, Elliott PM. Prevalence of Sequence Variants in the RAS-Mitogen Activated Protein Kinase Signaling Pathway in Pre-Adolescent Children With Hypertrophic Cardiomyopathy. ACTA ACUST UNITED AC 2012; 5:317-26. [DOI: 10.1161/circgenetics.111.960468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background—
Most cases of apparently idiopathic hypertrophic cardiomyopathy (HCM) in children are caused by mutations in cardiac sarcomere protein genes. HCM also commonly occurs as an associated feature in some patients with disorders caused by mutations in genes encoding components of the RAS-mitogen activated protein kinase (MAPK) signaling pathway. Although diagnosis of these disorders is based on typical phenotypic features, the dysmorphic manifestations can be subtle and therefore overlooked. The aim of this study was to determine the prevalence of mutations in RAS-MAPK genes in preadolescent children with idiopathic HCM.
Methods and Results—
Seventy-eight patients diagnosed with apparently nonsyndromic HCM aged ≤13 years underwent clinical and genetic evaluation. The entire protein coding sequence of 9 genes implicated in Noonan syndrome and related conditions (
PTPN11
,
SOS1
,
HRAS
,
KRAS
,
NRAS
,
BRAF
,
RAF1
,
MAP2K1,
and
MAP2K2
), together with
CBL
(exons 8 and 9) and
SHOC2
(4A>G), were screened for mutations. Five probands (6.4%) carried novel sequence variants in
SOS1
(2 individuals),
BRAF
,
MAP2K1,
and
MAP2K2
. Structural and molecular data suggest that these variants may have functional significance. Nine cardiac sarcomere protein genes were screened also; 2 individuals also had mutations in
MYBPC.
Conclusions—
This study reports novel and potentially pathogenic sequence variants in genes of the RAS-MAPK pathway, suggesting that genetic lesions promoting signaling dysregulation through RAS contribute to disease pathogenesis or progression in children with HCM.
Collapse
Affiliation(s)
- Juan Pablo Kaski
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Petros Syrris
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Adam Shaw
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Krisztina Zuborne Alapi
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Viviana Cordeddu
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Maria Teresa Tome Esteban
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Sharon Jenkins
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Michael Ashworth
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Peter Hammond
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Marco Tartaglia
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - William J. McKenna
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| | - Perry M. Elliott
- From the Institute of Child Health (J.P.K., P.H., W.J.M., P.M.E.), Department of Medicine (P.S., K.Z.A., W.J.M., P.M.E.), University College, London, United Kingdom; Department of Cardiology (J.P.K., M.T.T.E.), Department of Clinical Genetics (A.S.), Department of Histopathology (M.A.), Great Ormond Street Hospital, London, United Kingdom; Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy (V.C., M.T.); The Heart Hospital, University College London
| |
Collapse
|
11
|
Elalaoui SC, Kraoua L, Liger C, Ratbi I, Cavé H, Sefiani A. Germinal mosaicism in Noonan syndrome: A family with two affected siblings of normal parents. Am J Med Genet A 2011; 152A:2850-3. [PMID: 20979190 DOI: 10.1002/ajmg.a.33685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Noonan syndrome (NS; OMIM 163950) is an autosomal dominant disorder with variable clinical expression and genetic heterogeneity. Clinical manifestations include characteristic facial features, short stature, and cardiac anomalies. Mutations in protein-tyrosine phosphatase, non-receptor-type 11 (PTPN11), encoding SHP-2, account for about half of NS patients. We report on a Moroccan family with two children with NS and apparently unaffected parents. The molecular studies showed the heterozygous mutation c.922A>G of PTPN11 gene in the two affected sibs. Neither the parents, nor the oldest brother carries this mutation in hematologic cells. The mutation was also absent in buccal epithelial cells and fingernails of both parents. We believe this is the first report of germ cell mosaicism in NS and suggest an empirical risk for recurrence of that is less than 1%.
Collapse
|
12
|
Brasil AS, Pereira AC, Wanderley LT, Kim CA, Malaquias AC, Jorge AAL, Krieger JE, Bertola DR. PTPN11 and KRAS gene analysis in patients with Noonan and Noonan-like syndromes. Genet Test Mol Biomarkers 2010; 14:425-32. [PMID: 20578946 DOI: 10.1089/gtmb.2009.0192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noonan and Noonan-like syndromes are disorders of dysregulation of the rat sarcoma viral oncogene homolog (RAS)-mitogen-activated protein kinase signaling pathway. In Noonan syndrome (NS), four genes of this pathway (PTPN11, SOS1, RAF1, and KRAS) are responsible for roughly 70% of the cases. We analyzed PTPN11 and KRAS genes by bidirectional sequencing in 95 probands with NS and 29 with Noonan-like syndromes, including previously reported patients already screened for PTPN11 gene mutations. In the new patients with NS, 20/46 (43%) showed a PTPN11 gene mutation, two of them novel. In our total cohort, patients with NS and a PTPN11 mutation presented significantly higher prevalence of short stature (p = 0.03) and pulmonary valve stenosis (p = 0.01), and lower prevalence of hypertrophic cardiomyopathy (p = 0.01). Only a single gene alteration, of uncertain role, was found in the KRAS gene in an NS patient also presenting a PTPN11 gene mutation. We further analyzed the influence in clinical variability of three frequent polymorphisms found in the KRAS gene and no statistically significant difference was observed among the frequency of clinical findings regarding the studied polymorphisms.
Collapse
|
13
|
PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype-phenotype correlation in Korean patients with Noonan syndrome. J Hum Genet 2008; 53:999-1006. [PMID: 19020799 DOI: 10.1007/s10038-008-0343-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
After 2006, germline mutations in the KRAS, SOS1, and RAF1 genes were reported to cause Noonan syndrome (NS), in addition to the PTPN11 gene, and now we can find the etiology of disease in approximately 60-70% of NS cases. The aim of this study was to assess the correlation between phenotype and genotype by molecular analysis of the PTPN11, SOS1, KRAS, and RAF1 genes in 59 Korean patients with NS. We found disease-causing mutations in 30 (50.8%) patients, which were located in the PTPN11 (27.1%), SOS1 (16.9%), KRAS (1.7%), and RAF1 (5.1%) genes. Three novel mutations (T59A in PTPN11, K170E in SOS1, S259T in RAF1) were identified. The patients with PTPN11 mutations showed higher prevalences of patent ductus arteriosus and thrombocytopenia. The patients with SOS1 mutations had a lower prevalence of delayed psychomotor development. All patients with RAF1 mutations had hypertrophic cardiomyopathy. Typical facial features and auxological parameters were, on statistical analysis, not significantly different between the groups. The molecular defects of NS are genetically heterogeneous and involve several genes other than PTPN11 related to the RAS-MAPK pathway.
Collapse
|
14
|
Ferrero GB, Baldassarre G, Delmonaco AG, Biamino E, Banaudi E, Carta C, Rossi C, Silengo MC. Clinical and molecular characterization of 40 patients with Noonan syndrome. Eur J Med Genet 2008; 51:566-72. [PMID: 18678287 DOI: 10.1016/j.ejmg.2008.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 06/24/2008] [Indexed: 01/22/2023]
Abstract
Noonan syndrome (NS, OMIM 163950) is an autosomal dominant disorder, with a prevalence at birth of 1:1000-1:2500 live births, characterized by short stature, facial and skeletal dysmorphisms, cardiovascular defects and haematological anomalies. Missense mutations of PTPN11 gene account for approximately 50% of NS cases, while molecular lesions of other genes of the RAS/MAPK pathway -KRAS, SOS1 and RAF1 - play a minor role in the molecular pathogenesis of the disease. Forty patients were enrolled in the study with a PTPN11 mutation detection rate of 31.5%, including a novel missense mutation, Phe285Ile, in a familial case with high intrafamilial phenotypic variability. All patients negative for PTPN11 mutations were further screened for mutations of the KRAS, SOS1, and RAF1 genes, revealing a Thr266Lys substitution in SOS1 in a single patient, a newborn with a subtle phenotype, characterized by facial dysmorphisms and a mild pulmonic stenosis.
Collapse
|