1
|
Rossi A, Basilicata S, Borrelli M, Ferreira CR, Blau N, Santamaria F. Clinical and biochemical footprints of inherited metabolic diseases. XIII. Respiratory manifestations. Mol Genet Metab 2023; 140:107655. [PMID: 37517329 DOI: 10.1016/j.ymgme.2023.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
At any age, respiratory manifestations are a major cause of increased morbidity and mortality of inherited metabolic diseases (IMDs). Type and severity are extremely variable, this depending on the type of the underlying disorder. Symptoms and signs originating from upper or lower airways and/or thoracic wall and/or respiratory muscles involvement can occur either at presentation or in the late clinical course. Acute respiratory symptoms can trigger metabolic decompensation which, in turn, makes airway symptoms worse, creating a vicious circle. We have identified 181 IMDs associated with various types of respiratory symptoms which were classified into seven groups according to the type of clinical manifestations affecting the respiratory system: (i) respiratory failure, (ii) restrictive lung disease, (iii) interstitial lung disease, (iv) lower airway disease, (v) upper airway obstruction, (vi) apnea, and (vii) other. We also provided a list of investigations to be performed based on the respiratory phenotypes and indicated the therapeutic strategies currently available for IMD-associated airway disease. This represents the thirteenth issue in a series of educational summaries providing a comprehensive and updated list of metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Basilicata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Melissa Borrelli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Francesca Santamaria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Shimada S, Ng BG, White AL, Nickander KK, Turgeon C, Liedtke KL, Lam CT, Font-Montgomery E, Lourenço CM, He M, Peck DS, Umaña LA, Uhles CL, Haynes D, Wheeler PG, Bamshad MJ, Nickerson DA, Cushing T, Gates R, Gomez-Ospina N, Byers HM, Scalco FB, Martinez NN, Sachdev R, Smith L, Poduri A, Malone S, Harris R, Scheffer IE, Rosenzweig SD, Adams DR, Gahl WA, Malicdan MCV, Raymond KM, Freeze HH, Wolfe LA. Clinical, biochemical and genetic characteristics of MOGS-CDG: a rare congenital disorder of glycosylation. J Med Genet 2022; 59:jmedgenet-2021-108177. [PMID: 35790351 PMCID: PMC9813274 DOI: 10.1136/jmedgenet-2021-108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/18/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.
Collapse
Affiliation(s)
- Shino Shimada
- Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Amy L. White
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kim. K. Nickander
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Coleman Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kristen L. Liedtke
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Christina T. Lam
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children’s Hospital and University of Washington, Seattle, WA, USA
| | | | - Charles M. Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Neurogenetics Unit, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dawn S. Peck
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Luis A. Umaña
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crescenda L. Uhles
- Department of Genetics, Children’s Medical Center Dallas, Dallas, TX, USA
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Tom Cushing
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Ryan Gates
- Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | | | - Heather M. Byers
- Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | | | - Fernanda B. Scalco
- Laboratório de Erros Inatos do Metabolismo/LABEIM, Instituto de Química, Universidade Federal do Rio de Janeiro, Departamento de Bioquímica, Avenida Horácio Macedo, 1281, Bloco C, Polo de Química, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Noelia N. Martinez
- Center for Clinical Genetics, Sydney Children’s Hospital-Randwick, Sydney, New South Wales, Australia
| | - Rani Sachdev
- Center for Clinical Genetics, Sydney Children’s Hospital-Randwick, Sydney, New South Wales, Australia
- School of Women’s & Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Lacey Smith
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Malone
- Department of Neurosciences, Queensland Children’s Hospital, Brisbane, Queensland, Australia
| | - Rebekah Harris
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Ingrid E. Scheffer
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
- Department of Pediatrics, The University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia
- Murdoch Children’s Research Institute and Florey Institute, Melbourne, VIC, Australia
| | - Sergio D. Rosenzweig
- Department of Laboratory Medicine, Clinical Center, and Primary Immunodeficiency Clinic, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - David R. Adams
- Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May CV. Malicdan
- Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Senior authors and contributed equally
| | - Kimiyo M. Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Senior authors and contributed equally
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys, La Jolla, CA, USA
- Senior authors and contributed equally
| | - Lynne A. Wolfe
- Medical Genetic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Senior authors and contributed equally
| |
Collapse
|
3
|
Sabbagh Q, Alkar F, Patte K, Prodhomme O, Janel C, Touraine R, Jeandel C, Geneviève D. A second individual with rhizomelic spondyloepimetaphyseal dysplasia and homozygous variant in GNPNAT1. Eur J Med Genet 2022; 65:104495. [DOI: 10.1016/j.ejmg.2022.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
|
4
|
Component of oligomeric Golgi complex 1 deficiency leads to hypoglycemia: a case report and literature review. BMC Pediatr 2021; 21:442. [PMID: 34625039 PMCID: PMC8499485 DOI: 10.1186/s12887-021-02922-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Congenital disorders of glycosylation (CDG) are a group of metabolic diseases with clinical and genetic heterogeneity, and CDG-IIg is one of the rare reported types of CDG. The aim of this study is to report the clinical manifestations and gene-phenotype characteristics of a rare case of CDG caused by a COG1 gene mutation and review literatures of CDG disease. Case presentation The patient was male, and the main clinical symptoms were developmental retardation, convulsion, strabismus, and hypoglycemia, which is rarely reported in CDG-IIg. We treated the patient with glucose infusion and he was recovered from hypoglycemia. Genetic analysis showed that the patient carried the heterozygous intron mutation c.1070 + 3A > G (splicing) in the coding region of the COG1 gene that was inherited from the mother, and the heterozygous mutation c.2492G > A (p. Arg831Gln) in exon 10 of the COG1 gene that was inherited from the father. The genes interacting with COG1 were mainly involved in the transport and composition of the Golgi. The clinical data and laboratory results from a patient diagnosed with CDG-IIg were analyzed, and the causative gene mutation was identified by high-throughput sequencing. The genes and signal pathways related to COG1 were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Conclusions The c.2492G > A (p. Arg831Gln) mutation in exon 10 of the COG1 gene may be a potential pathogenetic variant for CDG-IIg. Because of the various manifestations of CDG in clinical practice, multidisciplinary collaboration is important for the diagnosis and treatment of this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02922-7.
Collapse
|
5
|
den Hollander B, Rasing A, Post MA, Klein WM, Oud MM, Brands MM, de Boer L, Engelke UFH, van Essen P, Fuchs SA, Haaxma CA, Jensson BO, Kluijtmans LAJ, Lengyel A, Lichtenbelt KD, Østergaard E, Peters G, Salvarinova R, Simon MEH, Stefansson K, Thorarensen Ó, Ulmen U, Coene KLM, Willemsen MA, Lefeber DJ, van Karnebeek CDM. NANS-CDG: Delineation of the Genetic, Biochemical, and Clinical Spectrum. Front Neurol 2021; 12:668640. [PMID: 34163424 PMCID: PMC8215539 DOI: 10.3389/fneur.2021.668640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Background: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016–2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo–low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/– congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands
| | - Anne Rasing
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Merel A Post
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Willemijn M Klein
- Department of Radiology and Nuclear Medicine and Anatomy, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Machteld M Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marion M Brands
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands
| | - Lonneke de Boer
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Udo F H Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter van Essen
- Radboudumc Technology Center Clinical Studies, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sabine A Fuchs
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Leo A J Kluijtmans
- United for Metabolic Diseases, Amsterdam, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Lengyel
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gera Peters
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ramona Salvarinova
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kari Stefansson
- Decode Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur Thorarensen
- Department of Pediatrics, Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Ulrike Ulmen
- Department of Pediatrics, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Karlien L M Coene
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michèl A Willemsen
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dirk J Lefeber
- United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,United for Metabolic Diseases, Amsterdam, Netherlands.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ain NU, Baroncelli M, Costantini A, Ishaq T, Taylan F, Nilsson O, Mäkitie O, Naz S. Novel form of rhizomelic skeletal dysplasia associated with a homozygous variant in GNPNAT1. J Med Genet 2021; 58:351-356. [PMID: 32591345 DOI: 10.1136/jmedgenet-2020-106929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Studies exploring molecular mechanisms underlying congenital skeletal disorders have revealed novel regulators of skeletal homeostasis and shown protein glycosylation to play an important role. OBJECTIVE To identify the genetic cause of rhizomelic skeletal dysplasia in a consanguineous Pakistani family. METHODS Clinical investigations were carried out for four affected individuals in the recruited family. Whole genome sequencing (WGS) was completed using DNA from two affected and two unaffected individuals from the family. Sequencing data were processed, filtered and analysed. In silico analyses were performed to predict the effects of the candidate variant on the protein structure and function. Small interfering RNAs (siRNAs) were used to study the effect of Gnpnat1 gene knockdown in primary rat chondrocytes. RESULTS The patients presented with short stature due to extreme shortening of the proximal segments of the limbs. Radiographs of one individual showed hip dysplasia and severe platyspondyly. WGS data analyses identified a homozygous missense variant c.226G>A; p.(Glu76Lys) in GNPNAT1, segregating with the disease. Glucosamine 6-phosphate N-acetyltransferase, encoded by the highly conserved gene GNPNAT1, is one of the enzymes required for synthesis of uridine diphosphate N-acetylglucosamine, which participates in protein glycosylation. Knockdown of Gnpnat1 by siRNAs decreased cellular proliferation and expression of chondrocyte differentiation markers collagen type 2 and alkaline phosphatase, indicating that Gnpnat1 is important for growth plate chondrocyte proliferation and differentiation. CONCLUSIONS This study describes a novel severe skeletal dysplasia associated with a biallelic, variant in GNPNAT1. Our data suggest that GNPNAT1 is important for growth plate chondrogenesis.
Collapse
Affiliation(s)
- Noor Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marta Baroncelli
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alice Costantini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tayyaba Ishaq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ola Nilsson
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University and Örebro University Hospital, Örebro, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Cardão C, Barros L, Francisco R, Silva D, Ferreira VR. Experiences of parents with children with congenital disorders of glycosylation: What can we learn from them? Disabil Health J 2021; 14:101065. [PMID: 33531289 DOI: 10.1016/j.dhjo.2021.101065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation are a group of rare metabolic, genetic diseases that cause severe cognitive and physical impairments. Owing to the rarity of this condition, the experiences of these parents are poorly understood. OBJECTIVE This study aimed to explore parents' experiences of caring for a child or young adult with congenital disorders of glycosylation. METHODS Semi-structured interviews were conducted with 33 parents from 11 countries by teleconference to assess their experience of parenting children with the stated condition. Through thematic analysis, combining deductive and inductive strategies, we identified common themes across the interviews regarding the initial stage of diagnosis and the current experience. RESULTS Parents reported many difficulties in managing the disease and its consequences, mainly related to the condition's management and the child's well-being, focusing less on their own burden and distress. Receiving and adapting to the diagnosis was described as a strenuous and highly emotional process, with parents facing a lack of medical knowledge and difficulty in accessing competent health providers. Regarding the experience of parenting a child with congenital disorders of glycosylation, participants' concerns focused on the child and were related to promoting the child's development and autonomy and finding adequate health and educational support. Participants identified several support strategies. Relevant patient associations provided critical informational, instrumental, and social support. CONCLUSIONS Results point to parents' need to receive support from informed healthcare and educational providers that recognize their unique challenges and multiple needs.
Collapse
Affiliation(s)
- Carolina Cardão
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal.
| | - Luísa Barros
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal.
| | - Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; Portuguese Association for CDG, Lisboa, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Portugal.
| | - Dorinda Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal; Portuguese Association for CDG, Lisboa, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Portugal.
| | - Vanessa Reis Ferreira
- Portuguese Association for CDG, Lisboa, Portugal; CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Portugal.
| |
Collapse
|
9
|
Ain NU, Muhammad N, Dianatpour M, Baroncelli M, Iqbal M, Fard MAF, Bukhari I, Ahmed S, Hajipour M, Tabatabaie Z, Foroutan H, Nilsson O, Faghihi MA, Makitie O, Naz S. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum Mutat 2021; 42:89-101. [PMID: 33252156 DOI: 10.1002/humu.24139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 11/07/2022]
Abstract
Skeletal dysplasias are a heterogeneous group of disorders ranging from mild to lethal skeletal defects. We investigated two unrelated families with individuals presenting with a severe skeletal disorder. In family NMD02, affected individuals had a dysostosis multiplex-like skeletal dysplasia and severe short stature (<-8.5 SD). They manifested increasingly coarse facial features, protruding abdomens, and progressive skeletal changes, reminiscent of mucopolysaccharidosis. The patients gradually lost mobility and the two oldest affected individuals died in their twenties. The affected child in family ID01 had coarse facial features and severe skeletal dysplasia with clinical features similar to mucopolysaccharidosis. She had short stature, craniosynostosis, kyphoscoliosis, and hip-joint subluxation. She died at the age of 5 years. Whole-exome sequencing identified two homozygous variants c.133C>T; p.(Arg45Trp) and c.215dupA; p.(Tyr72Ter), respectively, in the two families, affecting an evolutionary conserved gene TMEM251 (NM_001098621.1). Immunofluorescence and confocal studies using human osteosarcoma cells indicated that TMEM251 is localized to the Golgi complex. However, p.Arg45Trp mutant TMEM251 protein was targeted less efficiently and the localization was punctate. Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Our work implicates TMEM251 in the pathogenesis of a novel disorder and suggests its potential function in chondrocyte differentiation.
Collapse
Affiliation(s)
- Noor U Ain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niaz Muhammad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marta Baroncelli
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Muddassar Iqbal
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ihtisham Bukhari
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sufian Ahmed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | | - Hamidreza Foroutan
- Laparoscopy research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ola Nilsson
- Division of pediatric endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- School of Medical Sciences, Örebro University and Örebro University Hospital, Örebro, Sweden
| | | | - Outi Makitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|
11
|
Francisco R, Pascoal C, Marques-da-Silva D, Morava E, Gole GA, Coman D, Jaeken J, Dos Reis Ferreira V. Keeping an eye on congenital disorders of O-glycosylation: A systematic literature review. J Inherit Metab Dis 2019; 42:29-48. [PMID: 30740740 DOI: 10.1002/jimd.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.
Collapse
Affiliation(s)
- Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Eva Morava
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Glen A Gole
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Discipline of Paediatrics and Child Health, University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| |
Collapse
|
12
|
Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, Brasil S, Cassiman D, Cechova A, Coman D, Corral J, Correia J, de la Morena-Barrio ME, de Lonlay P, Dos Reis V, Ferreira CR, Fiumara A, Francisco R, Freeze H, Funke S, Gardeitchik T, Gert M, Girad M, Giros M, Grünewald S, Hernández-Caselles T, Honzik T, Hutter M, Krasnewich D, Lam C, Lee J, Lefeber D, Marques-de-Silva D, Martinez AF, Moravej H, Õunap K, Pascoal C, Pascreau T, Patterson M, Quelhas D, Raymond K, Sarkhail P, Schiff M, Seroczyńska M, Serrano M, Seta N, Sykut-Cegielska J, Thiel C, Tort F, Vals MA, Videira P, Witters P, Zeevaert R, Morava E. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J Inherit Metab Dis 2019; 42:5-28. [PMID: 30740725 DOI: 10.1002/jimd.12024] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada
- Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Romain Péanne
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
| | - Jaak Jaeken
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Muad Bidet
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades Hospital, IMAGINE Institute affiliate, Paris, France
| | - Delphine Borgel
- INSERM U1176, Université Paris-Sud, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Anna Cechova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- Schools of Medicine, University of Queensland Brisbane, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar do Porto, Porto, Portugal
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematologíay Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, University Paris Descartes, Hospital Necker Enfants Malades, Paris, France
| | - Vanessa Dos Reis
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Agata Fiumara
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Hudson Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Simone Funke
- Department of Obstetrics and Gynecology, Division of Neonatology, University of Pécs, Pecs, Hungary
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Gert
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Muriel Girad
- AP-HP, Necker University Hospital, Hepatology and Gastroenterology Unit, French National Reference Centre for Biliary Atresia and Genetic Cholestasis, Paris, France
- Hepatologie prdiatrique department, Paris Descartes University, Paris, France
| | - Marisa Giros
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Trinidad Hernández-Caselles
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Tomas Honzik
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marlen Hutter
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Donna Krasnewich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Joy Lee
- Department of Metabolic Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dirk Lefeber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorinda Marques-de-Silva
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Antonio F Martinez
- Genetics and Molecular Medicine and Rare Disease Paediatric Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katrin Õunap
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiffany Pascreau
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - Marc Patterson
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Pediatrics, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Medical Genetics, Mayo Clinic Children's Center, Rochester, New York
| | - Dulce Quelhas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
- Centro de Genética Médica Doutor Jacinto Magalhães, Unidade de Bioquímica Genética, Porto, Portugal
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peymaneh Sarkhail
- Metabolic and Genetic department, Sarem Woman's Hospital, Tehrān, Iran
| | - Manuel Schiff
- Neurologie pédiatrique et maladies métaboliques, (C. Farnoux) - Pôle de pédiatrie médicale CHU, Hôpital Robert Debré, Paris, France
| | - Małgorzata Seroczyńska
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Nathalie Seta
- AP-HP, Bichat Hospital, Université Paris Descartes, Paris, France
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Federic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Mari-Anne Vals
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paula Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Renate Zeevaert
- Department of Paediatric Endocrinology and Diabetology, Jessa Hospital, Hasselt, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, New York
- Department of Pediatrics, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Wilson KM, Jagger AM, Walker M, Seinkmane E, Fox JM, Kröger R, Genever P, Ungar D. Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts. J Cell Sci 2018; 131:jcs.209452. [PMID: 29361539 PMCID: PMC5868951 DOI: 10.1242/jcs.209452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed osteoblasts 3 weeks later. In contrast, inhibition of N-glycan processing in MSCs altered differentiation to enhance the mineralization capacity of the osteoblasts. The effect of N-glycans on MSC differentiation was mediated by the phosphoinositide-3-kinase (PI3K)/Akt pathway owing to reduced Akt phosphorylation. Interestingly, by inhibiting PI3K during the first 2 days of osteogenesis, we were able to phenocopy the effect of inhibiting N-glycan processing. Thus, glycan processing provides another layer of regulation that can modulate the functional outcome of differentiation. Glycan processing can thereby offer a novel set of targets for many therapeutically attractive processes. Summary: Both N- and O-glycan processing modulate MSC differentiation early during osteogenesis to influence mineral formation. Inhibition of N-glycan processing increases mineralization.
Collapse
Affiliation(s)
| | | | - Matthew Walker
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - James M Fox
- Department of Biology, University of York, York YO10 5DD, UK
| | - Roland Kröger
- Department of Physics, University of York, York YO10 5DD, UK
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
14
|
Edmondson AC, Bedoukian EC, Deardorff MA, McDonald-McGinn DM, Li X, He M, Zackai EH. A human case of SLC35A3-related skeletal dysplasia. Am J Med Genet A 2017; 173:2758-2762. [PMID: 28777481 DOI: 10.1002/ajmg.a.38374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 11/07/2022]
Abstract
Researchers have identified a subset of Holstein having a range of skeletal deformities, including vertebral anomalies, referred to as complex vertebral malformation due to mutations in the SLC35A3 gene. Here, we report the first case in humans of SLC35A3-related vertebral anomalies. Our patient had prenatally diagnosed anomalous vertebrae, including butterfly, and hemivertebrae throughout the spine, as well as cleft palate, micrognathia, patent foramen ovale, patent ductus arteriosus, posterior embryotoxon, short limbs, camptodactyly, talipes valgus, rocker bottom feet, and facial dysmorphism including proptosis, nevus flammeus, and a cupped left ear. Clinical exome sequencing revealed a novel missense homozygous mutation in SLC35A3. Follow-up biochemical analysis confirmed abnormal protein glycosylation, consistent with a defective Golgi UDP-GlcNAc transporter, validating the mutations. Congenital disorders of glycosylation, including SLC35A3-CDG, can present as a wide phenotypic spectrum, including skeletal dysplasia. Previously reported patients with SLC35A3-CDG have been described with syndromic autism, epilepsy, and arthrogryposis.
Collapse
Affiliation(s)
- Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma C Bedoukian
- Section of Genetic Counseling, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna M McDonald-McGinn
- Section of Genetic Counseling, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xueli Li
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Miao He
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Yang A, Cho SY, Jang JH, Kim J, Kim SZ, Lee BH, Yoo HW, Jin DK. Further delineation of COG8-CDG: A case with novel compound heterozygous mutations diagnosed by targeted exome sequencing. Clin Chim Acta 2017; 471:191-195. [DOI: 10.1016/j.cca.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/11/2017] [Indexed: 10/19/2022]
|
16
|
Pérez-Cerdá C, Girós ML, Serrano M, Ecay MJ, Gort L, Pérez Dueñas B, Medrano C, García-Alix A, Artuch R, Briones P, Pérez B. A Population-Based Study on Congenital Disorders of Protein N- and Combined with O-Glycosylation Experience in Clinical and Genetic Diagnosis. J Pediatr 2017; 183:170-177.e1. [PMID: 28139241 DOI: 10.1016/j.jpeds.2016.12.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the clinical, biochemical, and genetic features of patients with congenital disorders of glycosylation (CDG) identified in Spain during the last 20 years. STUDY DESIGN Patients were selected among those presenting with multisystem disease of unknown etiology. The isoforms of transferrin and of ApoC3 and dolichols were analyzed in serum; phosphomannomutase and mannosephosphate isomerase activities were measured in fibroblasts. Conventional or massive parallel sequencing (customized panel or Illumina Clinical-Exome Sequencing TruSight One Gene Panel) was used to identify genes and mutations. RESULTS Ninety-seven patients were diagnosed with 18 different CDG. Eighty-nine patients had a type 1 transferrin profile; 8 patients had a type 2 transferrin profile, with 6 of them showing an alteration in the ApoC3 isoform profile. A total of 75% of the patients had PMM2-CDG presenting with a heterogeneous mutational spectrum. The remaining patients showed mutations in any of the following genes: MPI, PGM1, GFPT1, SRD5A3, DOLK, DPGAT1, ALG1, ALG6, RFT1, SSR4, B4GALT1, DPM1, COG6, COG7, COG8, ATP6V0A2, and CCDC115. CONCLUSION Based on literature and on this population-based study of CDG, a comprehensive scheme including reported clinical signs of CDG is offered, which will hopefully reduce the timeframe from clinical suspicion to genetic confirmation. The different defects of CDG identified in Spain have contributed to expand the knowledge of CDG worldwide. A predominance of PMM2 deficiency was detected, with 5 novel PMM2 mutations being described.
Collapse
Affiliation(s)
- Celia Pérez-Cerdá
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain.
| | - Ma Luisa Girós
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - M Jesús Ecay
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Laura Gort
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez Dueñas
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Celia Medrano
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Alfredo García-Alix
- Division of Neonatology, Institute of Pediatric Research-Hospital San Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, Center for Biomedical Research on Rare Diseases, Barcelona, Spain; Department of Clinical Biochemistry, Institute of Pediatric Research-Hospital Sant Joan de Déu, Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Paz Briones
- Inborn Errors of Metabolism, Biochemical and Molecular Genetics Serv., Biomedical Diagnostic Center, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, Center for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Belén Pérez
- Center of Molecular Biology-Severo Ochoa, University Autonomous of Madrid-Spanish National Research Council, La Paz Institute for Health Research, Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
17
|
Monticelli M, Ferro T, Jaeken J, Dos Reis Ferreira V, Videira PA. Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 2016; 39:765-780. [PMID: 27393411 DOI: 10.1007/s10545-016-9954-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases comprising more than 85 known distinct disorders. They show a great phenotypic variability ranging from multi-organ/system to mono-organ/system involvement with very mild to extremely severe expression. Immunological dysfunction has a significant impact on the phenotype in a minority of CDG. CDG with major immunological involvement are ALG12-CDG, MAGT1-CDG, MOGS-CDG, SLC35C1-CDG and PGM3-CDG. This review discusses the variety of immunological abnormalities reported in human CDG. Understanding the immunological aspects of CDG may contribute to a better management/treatment of these pathologies and possibly of more common diseases, such as inflammatory diseases.
Collapse
Affiliation(s)
- Maria Monticelli
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Tiago Ferro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| | - Paula A Videira
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
18
|
Maratha A, Colhoun HO, Knerr I, Coss KP, Doran P, Treacy EP. Classical Galactosaemia and CDG, the N-Glycosylation Interface. A Review. JIMD Rep 2016; 34:33-42. [PMID: 27502837 PMCID: PMC5509556 DOI: 10.1007/8904_2016_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Classical galactosaemia is a rare disorder of carbohydrate metabolism caused by galactose-1-phosphate uridyltransferase (GALT) deficiency (EC 2.7.7.12). The disease is life threatening if left untreated in neonates and the only available treatment option is a long-term galactose restricted diet. While this is lifesaving in the neonate, complications persist in treated individuals, and the cause of these, despite early initiation of treatment, and shared GALT genotypes remain poorly understood. Systemic abnormal glycosylation has been proposed to contribute substantially to the ongoing pathophysiology. The gross N-glycosylation assembly defects observed in the untreated neonate correct over time with treatment. However, N-glycosylation processing defects persist in treated children and adults.Congenital disorders of glycosylation (CDG) are a large group of over 100 inherited disorders affecting largely N- and O-glycosylation.In this review, we compare the clinical features observed in galactosaemia with a number of predominant CDG conditions.We also summarize the N-glycosylation abnormalities, which we have described in galactosaemia adult and paediatric patients, using an automated high-throughput HILIC-UPLC analysis of galactose incorporation into serum IgG with analysis of the corresponding N-glycan gene expression patterns and the affected pathways.
Collapse
Affiliation(s)
- Ashwini Maratha
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | | | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Karen P Coss
- Faculty of Life Sciences and Medicine, Department of Infectious Diseases, King's College London, Guy's Hospital, London, UK
| | - Peter Doran
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | - Eileen P Treacy
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland.
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland.
- Trinity College, Dublin, Ireland.
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland.
| |
Collapse
|
19
|
Chan B, Clasquin M, Smolen GA, Histen G, Powe J, Chen Y, Lin Z, Lu C, Liu Y, Cang Y, Yan Z, Xia Y, Thompson R, Singleton C, Dorsch M, Silverman L, Su SSM, Freeze HH, Jin S. A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2. Hum Mol Genet 2016; 25:2182-2193. [PMID: 27053713 PMCID: PMC5081049 DOI: 10.1093/hmg/ddw085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
The most common congenital disorder of glycosylation (CDG), phosphomannomutase 2 (PMM2)-CDG, is caused by mutations in PMM2 that limit availability of mannose precursors required for protein N-glycosylation. The disorder has no therapy and there are no models to test new treatments. We generated compound heterozygous mice with the R137H and F115L mutations in Pmm2 that correspond to the most prevalent alleles found in patients with PMM2-CDG. Many Pmm2R137H/F115L mice died prenatally, while survivors had significantly stunted growth. These animals and cells derived from them showed protein glycosylation deficiencies similar to those found in patients with PMM2-CDG. Growth-related glycoproteins insulin-like growth factor (IGF) 1, IGF binding protein-3 and acid-labile subunit, along with antithrombin III, were all deficient in Pmm2R137H/F115L mice, but their levels in heterozygous mice were comparable to wild-type (WT) littermates. These imbalances, resulting from defective glycosylation, are likely the cause of the stunted growth seen both in our model and in PMM2-CDG patients. Both Pmm2R137H/F115L mouse and PMM2-CDG patient-derived fibroblasts displayed reductions in PMM activity, guanosine diphosphate mannose, lipid-linked oligosaccharide precursor and total cellular protein glycosylation, along with hypoglycosylation of a new endogenous biomarker, glycoprotein 130 (gp130). Over-expression of WT-PMM2 in patient-derived fibroblasts rescued all these defects, showing that restoration of mutant PMM2 activity is a viable therapeutic strategy. This functional mouse model of PMM2-CDG, in vitro assays and identification of the novel gp130 biomarker all shed light on the human disease, and moreover, provide the essential tools to test potential therapeutics for this untreatable disease.
Collapse
Affiliation(s)
- Barden Chan
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | | | | | - Gavin Histen
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Josh Powe
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Yue Chen
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Zhizhong Lin
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Chenming Lu
- WuXi AppTec Co., Ltd, Shanghai 200131, China
| | - Yan Liu
- WuXi AppTec Co., Ltd, Shanghai 200131, China
| | - Yong Cang
- WuXi AppTec Co., Ltd, Shanghai 200131, China Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | - Marion Dorsch
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | - Lee Silverman
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| | | | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139-4169, USA
| |
Collapse
|
20
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
21
|
Lepais L, Cheillan D, Frachon SC, Hays S, Matthijs G, Panagiotakaki E, Abel C, Edery P, Rossi M. ALG3-CDG: Report of two siblings with antenatal features carrying homozygous p.Gly96Arg mutation. Am J Med Genet A 2015; 167A:2748-54. [PMID: 26126960 DOI: 10.1002/ajmg.a.37232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of inborn errors of metabolism presenting with heterogeneous multisystemic clinical manifestations. To date, more than 60 different types of CDG have been reported. ALG3-CDG is very rare, with only nine patients described so far. We report two affected siblings presenting prenatally with skeletal abnormalities associated with dysmorphic features, cerebellar vermis hypoplasia, corpus callosum agenesis, hepatic fibrosis and poor prognosis. This is the first detailed report of an affected fetus including clinical, radiographic and pathological findings. The patients showed some clinical features previously unreported in ALG3-CDG, such as bone dysplasia, cataract, corneal opacities, and pons hypoplasia. Both patients were homozygous for the previously unreported p.Gly96Arg mutation of the ALG3 gene. One patient showed chondrodysplasia punctata (CDP), which has not been previously reported in CDG. An exhaustive genetic and metabolic assessment, performed in order to rule out other possible causes of CDP, showed abnormally raised levels of anti-nuclear antibodies in the mother who, nevertheless, did not show any clinical sign of autoimmune disease during a 7 years follow-up. We speculate that the observed CDP may be explained by the maternal anti-nuclear antibodies; alternatively, a possible link to the underlying metabolic disorder cannot be ruled out. In conclusion, we report the clinical, pathological, biochemical and molecular characterization of two further patients affected by ALG3-CDG, expanding the phenotypic spectrum of this very rare disease.
Collapse
Affiliation(s)
- Laureline Lepais
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - David Cheillan
- Service des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.,INSERM U1060/Université Lyon-1, Lyon, France
| | - Sophie Collardeau Frachon
- Service d'Anatomie Pathologique, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France.,Université Lyon 1, Lyon, France
| | - Stéphane Hays
- Service de Réanimation Néonatale et Néonatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gert Matthijs
- Center for Human Genetics, UZ Gasthuisberg, Leuven, Belgium
| | - Eleni Panagiotakaki
- Service Epilepsie, Sommeil, Explorations Fonctionnelles Neuropédiatriques (ESEFNP), Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Carine Abel
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Patrick Edery
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Université Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, CRNL TIGER Team, Bron, France
| | - Massimiliano Rossi
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, CRNL TIGER Team, Bron, France
| |
Collapse
|
22
|
A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9. Eur J Hum Genet 2015; 24:198-207. [PMID: 25966638 DOI: 10.1038/ejhg.2015.91] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022] Open
Abstract
A rare lethal autosomal recessive syndrome with skeletal dysplasia, polycystic kidneys and multiple malformations was first described by Gillessen-Kaesbach et al and subsequently by Nishimura et al. The skeletal features uniformly comprise a round pelvis, mesomelic shortening of the upper limbs and defective ossification of the cervical spine. We studied two unrelated families including three affected fetuses with Gillessen-Kaesbach-Nishimura syndrome using whole-exome and Sanger sequencing, comparative genome hybridization and homozygosity mapping. All affected patients were shown to have a novel homozygous splice variant NM_024740.2: c.1173+2T>A in the ALG9 gene, encoding alpha-1,2-mannosyltransferase, involved in the formation of the lipid-linked oligosaccharide precursor of N-glycosylation. RNA analysis demonstrated skipping of exon 10, leading to shorter RNA. Mass spectrometric analysis showed an increase in monoglycosylated transferrin as compared with control tissues, confirming that this is a congenital disorder of glycosylation (CDG). Only three liveborn children with ALG9-CDG have been previously reported, all with missense variants. All three suffered from intellectual disability, muscular hypotonia, microcephaly and renal cysts, but none had skeletal dysplasia. Our study shows that some pathogenic variants in ALG9 can present as a lethal skeletal dysplasia with visceral malformations as the most severe phenotype. The skeletal features overlap with that previously reported for ALG3- and ALG12-CDG, suggesting that this subset of glycosylation disorders constitutes a new diagnostic group of skeletal dysplasias.
Collapse
|
23
|
Heeley J, Shinawi M. Multi-systemic involvement in NGLY1-related disorder caused by two novel mutations. Am J Med Genet A 2015; 167A:816-20. [DOI: 10.1002/ajmg.a.36889] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer Heeley
- Department of Pediatrics; Division of Genetics and Genomic Medicine; Washington University School of Medicine; St. Louis MO
| | - Marwan Shinawi
- Department of Pediatrics; Division of Genetics and Genomic Medicine; Washington University School of Medicine; St. Louis MO
| |
Collapse
|
24
|
Monin ML, Mignot C, De Lonlay P, Héron B, Masurel A, Mathieu-Dramard M, Lenaerts C, Thauvin C, Gérard M, Roze E, Jacquette A, Charles P, de Baracé C, Drouin-Garraud V, Khau Van Kien P, Cormier-Daire V, Mayer M, Ogier H, Brice A, Seta N, Héron D. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis 2014; 9:207. [PMID: 25497157 PMCID: PMC4266234 DOI: 10.1186/s13023-014-0207-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022] Open
Abstract
PMM2-CDG (formerly known as CDG Ia) a deficiency in phosphomannomutase, is the most frequent congenital disorder of glycosylation. The phenotype encompasses a wide range of neurological and non-neurological manifestations comprising cerebellar atrophy and intellectual deficiency. The phenotype of the disorder is well characterized in children but the long term course of the disease is unknown and the phenotype of late onset forms has not been comprehensively described. We thus retrospectively collected the clinical, biological and radiological data of 29 French PMM2-CDG patients aged 15 years or more with a proven molecular diagnosis (16 females and 13 males). In addition, thirteen of these patients were reexamined at the time of the study to obtain detailed information. 27 of the 29 patients had a typical PMM2-CDG phenotype, with infantile hypotonia, strabismus, developmental delay followed by intellectual deficiency, epilepsy, retinitis pigmentosa and/or visceral manifestations. The main health problems for these patients as teenagers and in adulthood were primary ovarian insufficiency, growth retardation, coagulation anomalies and thrombotic events, skeletal deformities and osteopenia/osteoporosis, retinitis pigmentosa, as well as peripheral neuropathy. Three patients had never walked and three lost their ability to walk. The two remaining patients had a late-onset phenotype unreported to date. All patients (n = 29) had stable cerebellar atrophy. Our findings are in line with those of previous adult PMM2-CDG cohorts and points to the need for a multidisciplinary approach to the follow up of PMM2-CDG patients to prevent late complications. Additionally, our findings add weight to the view that PMM2-CDG may be diagnosed in teenage/adult patients with cerebellar atrophy, even in the absence of intellectual deficiency or non-neurological involvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Delphine Héron
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Unité Fonctionnelle de Neurogénétique moléculaire et cellulaire et Centre de Référence des Déficiences Intellectuelles de Causes Rares, 47-83 boulevard de l'hôpital, Paris, 75013, France.
| |
Collapse
|
25
|
Wolfe LA, Krasnewich D. Congenital disorders of glycosylation and intellectual disability. ACTA ACUST UNITED AC 2014; 17:211-25. [PMID: 23798010 DOI: 10.1002/ddrr.1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 12/31/2022]
Abstract
The congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn errors of metabolism that result from defects in the synthesis of glycans. Glycosylation is a major post-translational protein modification and an estimated 2% of the human genome encodes proteins for glycosylation. The molecular bases for the current 60 disorders, affecting approximately 800 individuals, have been identified, many in the last 5 years. CDG should be considered in any multi-system syndrome or single tissue disorder not explained by the identification of another disorder. The initial clinical presentation varies significantly among individuals, even between affected siblings. However, two thirds of the known CDGs are associated with intellectual disabilities and most affected individuals need support services throughout their lives. Additional disorders of glycosylation are likely to be characterized over time.
Collapse
Affiliation(s)
- Lynne A Wolfe
- Genetic Nurse Practitioner, Undiagnosed Diseases Program, National Human Genome Research Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
26
|
Imamura K, Maeda S, Kawamura I, Matsuyama K, Shinohara N, Yahiro Y, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation. J Biol Chem 2014; 289:9865-79. [PMID: 24563464 DOI: 10.1074/jbc.m113.520585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.
Collapse
|
27
|
Murali C, Lu JT, Jain M, Liu DS, Lachman R, Gibbs RA, Lee BH, Cohn D, Campeau PM. Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol Genet Metab Rep 2014; 1:213-219. [PMID: 25019053 PMCID: PMC4088274 DOI: 10.1016/j.ymgmr.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital Disorder of Glycosylation type Ig (ALG12-CDG) is part of a group of autosomal recessive conditions caused by deficiency of proteins involved in the assembly of dolichol-oligosaccharides used for protein N-glycosylation. In ALG12-CDG, the enzyme affected is encoded by the ALG12 gene. Affected individuals present clinically with neurodevelopmental delay, growth retardation, immune deficiency, male genital hypoplasia, and cardiomyopathy. A total of six individuals have been reported in the literature. Here, we present an infant with rhizomelic short stature, talipes equinovarus, platyspondyly, and joint dislocations. The infant had marked under-ossification of the pubic bones. Exome sequencing was performed and two deletions, each resulting in a frameshift, were found in ALG12. A review of the literature revealed two infants with ALG12-CDG and a severe skeletal dysplasia, including under-ossification of cervical vertebrae, pubic bones, and knees; in addition to talipes equinovarus and rhizomelic short stature. The phenotype of the individual we describe resembles pseudodiastrophic dysplasia and we discuss similarities and differences between ALG12-CDG and pseudodiastrophic dysplasia. The differential diagnosis in selected undiagnosed skeletal dysplasias should include CDGs.
Collapse
Affiliation(s)
- Chaya Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - James T Lu
- Human Genome Sequencing Center, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A. ; Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - David S Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - Ralph Lachman
- Radiological Sciences and Pediatrics, University of California-Los Angeles School of Medicine; 550 OHRC, Los Angeles, CA 90095
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A. ; Howard Hughes Medical Institute; One Baylor Plaza, MS BCM225, Houston, TX, 77030, U.S.A
| | - Daniel Cohn
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles; 550 OHRC, Los Angeles, CA 90095 ; Orthopaedic Hospital Research Center, Department of Orthopaedic Surgery, University of California-Los Angeles; 550 OHRC, Los Angeles, CA 90095
| | - Philippe M Campeau
- Medical Genetics Service, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal; Medical genetics service, Room 6727, Sainte-Justine Hospital, 3175, Côte-Sainte-Catherine, Montréal QC Canada H3T 1C5
| |
Collapse
|
28
|
Bexiga MG, Simpson JC. Human diseases associated with form and function of the Golgi complex. Int J Mol Sci 2013; 14:18670-81. [PMID: 24025425 PMCID: PMC3794802 DOI: 10.3390/ijms140918670] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/09/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
The Golgi complex lies at the heart of the secretory pathway and is responsible for modifying proteins and lipids, as well as sorting newly synthesized molecules to their correct destination. As a consequence of these important roles, any changes in its proteome can negatively affect its function and in turn lead to disease. Recently, a number of proteins have been identified, which when either depleted or mutated, result in diseases that affect various organ systems. Here we describe how these proteins have been linked to the Golgi complex, and specifically how they affect either the morphology, membrane traffic or glycosylation ability of this organelle.
Collapse
Affiliation(s)
| | - Jeremy C. Simpson
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-1-716-2345; Fax: +353-1-716-1153
| |
Collapse
|
29
|
Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S, Sonon R, Azadi P, Sadler KC, Freeze HH, Lehrman MA, Steet R. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol Biol Cell 2012; 23:4175-87. [PMID: 22956764 PMCID: PMC3484097 DOI: 10.1091/mbc.e12-05-0411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency. Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.
Collapse
Affiliation(s)
- Abigail Cline
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeevaert R, de Zegher F, Sturiale L, Garozzo D, Smet M, Moens M, Matthijs G, Jaeken J. Bone Dysplasia as a Key Feature in Three Patients with a Novel Congenital Disorder of Glycosylation (CDG) Type II Due to a Deep Intronic Splice Mutation in TMEM165. JIMD Rep 2012; 8:145-52. [PMID: 23430531 DOI: 10.1007/8904_2012_172] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/21/2012] [Accepted: 07/25/2012] [Indexed: 01/05/2023] Open
Abstract
Three patients belonging to two families presented with a psychomotor-dysmorphism syndrome including postnatal growth deficiency and major spondylo-, epi-, and metaphyseal skeletal involvement. Other features were muscular hypotrophy, fat excess, partial growth hormone deficiency, and, in two of the three patients, episodes of unexplained fever. Additional investigations showed mild to moderate increases of serum transaminases (particularly of aspartate transaminase (AST)), creatine kinase (CK), and lactate dehydrogenase (LDH), as well as decreased coagulation factors VIII, IX, XI, and protein C. Diagnostic work-up revealed a type 2 serum transferrin isoelectrofocusing (IEF) pattern and a cathodal shift on apolipoprotein C-III IEF pointing to a combined N- and O-glycosylation defect. Known glycosylation disorders with similar N-glycan structures lacking galactose and sialic acid were excluded. Through a combination of homozygosity mapping and expression profiling, a deep intronic homozygous mutation (c.792 + 182G>A) was found in TMEM165 (TPARL) in the three patients. TMEM165 is a gene of unknown function, possibly involved in Golgi proton/calcium transport. Here we present a detailed clinical description of the three patients with this mutation. The TMEM165 deficiency represents a novel type of CDG (TMEM165-CDG). This disorder enlarges the group of CDG caused by deficiencies in proteins that are not specifically involved in glycosylation but that have functions in the organization and homeostasis of the intracellular compartments and the secretory pathway, like COG-CDG and ATP6V0A2-CDG.
Collapse
Affiliation(s)
- R Zeevaert
- Center for Metabolic Disease, Department of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Congenital disorders of glycosylation (CDG) have grown enormously since the discovery of the first protein glycosylation defect in 1980, presenting with a broad clinical spectrum. Expansion in number and complexity of the CDG group has even necessitated a new nomenclature. By 2011, the CDG group includes lipid glycosylation disorders and other related processes and almost 50 distinct disorders. RECENT FINDINGS Current research has not only expanded the spectrum of CDG types, but has also given novel insight into those previously described. The discovery of genetic defects in the conserved oligomeric Golgi complex, affecting protein glycosylation and processing through the secretory pathway, raised the concept of 'secondary' glycosylation disorders. The number of lipid glycosylation disorders, linking lipid synthesis to CDG, that were previously regarded as rare, is also increasing rapidly. In other areas of research, the bridge between muscular dystrophies and metabolic disorders is being further reinforced with the discovery of additional defects in the DPM-CDG subgroup, a CDG characterized by significant muscle involvement. SUMMARY It is of great importance that clinicians stay up-to-date on the field of CDG and consider it in their differential diagnosis of unknown syndromal presentations. Nevertheless, many advances have yet to be made, including information on the natural course of CDG. The lack of treatment for nearly all CDG types is striking, and the field must continue to push for innovative therapies. Clinicians and researchers must work together to describe the natural course and, most importantly, collaborate to find new therapies.
Collapse
|
32
|
Olswang-Kuz Y, Liberman B, Weiss I, Ramu E, Weitzen R, Vered I, Gat-Yablonski G, Kessler E, Anikster Y, Mesilaty-Gross S. Quantification of human serum procollagen C-proteinase enhancer (hsPCPE) glycopattern. Clin Chim Acta 2011; 412:1762-6. [PMID: 21569766 DOI: 10.1016/j.cca.2011.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Procollagen C-proteinase enhancer 1 (PCPE1), a glycoprotein secreted from differentiating osteoblast, enhances the rate-limiting step of collagen type I fibrillar formation. It is expressed and secreted by cells that produce collagen type I and has the potential to be a marker for bone pathologies. METHODS We developed an assay to quantify PCPE glycopattern based on isoelectric focusing (IEF) and detection with a bio-imaging camera (coefficient of variation within and between assays, 15% and 20%, respectively). RESULTS PCPE was quantified in 39 serum samples from healthy subjects (17 females and 22 males). The concentration in the serum was 305(274) ng/ml, median(IQR). The level of the PCPE isoforms and their relative distribution were altered in patients with bone disorders. CONCLUSIONS The data generated by our system, support our hypothesis that combined data on PCPE concentration and isoforms may be useful for the diagnosis and follow-up of bone diseases. Further research, on larger cohorts of both normal subjects and patients, must be done.
Collapse
Affiliation(s)
- Yael Olswang-Kuz
- Metabolic Enzymatic Laboratory, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Freeze HH, Ng BG. Golgi glycosylation and human inherited diseases. Cold Spring Harb Perspect Biol 2011; 3:a005371. [PMID: 21709180 DOI: 10.1101/cshperspect.a005371] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
34
|
Drijvers JM, Lefeber DJ, de Munnik SA, Pfundt R, van de Leeuw N, Marcelis C, Thiel C, Koerner C, Wevers RA, Morava E. Skeletal dysplasia with brachytelephalangy in a patient with a congenital disorder of glycosylation due toALG6gene mutations. Clin Genet 2010; 77:507-9. [DOI: 10.1111/j.1399-0004.2009.01349.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Freeze HH, Sharma V. Metabolic manipulation of glycosylation disorders in humans and animal models. Semin Cell Dev Biol 2010; 21:655-62. [PMID: 20363348 DOI: 10.1016/j.semcdb.2010.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022]
Abstract
In the last decade, over 40 inherited human glycosylation disorders were identified. Most patients have hypomorphic, rather than null alleles. The phenotypic spectrum is broad and most of the disorders affect embryonic and early post-natal development; a few appear in adult life. Some deficiencies can be treated with simple dietary sugar (monosaccharide) supplements. Here we focus on four glycosylation disorders that have been treated with supplements in patients or in model systems, primarily the mouse. Surprisingly, small differences in the amount of exogenous sugar have a major impact on the diseases in specific cells or organs while others are unaffected. The underlying mechanisms are mostly unknown, but changes in the contributions of the de novo, salvage and dietary pathways may contribute to the beneficial outcome. Clearly, the metabolic chart is not flat; all arrows are not equally robust at all points of time and space. This metabolic perspective may help explain some of these observations and guide the development of other vertebrate models of glycosylation disorders that can respond to dietary manipulation.
Collapse
Affiliation(s)
- Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
de Cock P, Jaeken J. MGAT2 deficiency (CDG-IIa): The Life of J. Biochim Biophys Acta Mol Basis Dis 2009; 1792:844-6. [DOI: 10.1016/j.bbadis.2009.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Grünewald S. The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta Mol Basis Dis 2009; 1792:827-34. [PMID: 19272306 DOI: 10.1016/j.bbadis.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 02/05/2023]
Abstract
Congenital disorders of glycosylation are a clinically and genetically heterogeneous group of disorders resulting from abnormal glycosylation of various glycoconjugates. The first description of congenital disorders of glycosylation was published in the early 80s and once screening tests for glycosylation disorders (CDGs) became readily available, CDG-Ia became the most frequently diagnosed CDG subtype. CDG-Ia is pan-ethnic and the spectrum of the clinical manifestations is still evolving: it spans from severe hydrops fetalis and fetal loss to a (nearly) normal phenotype. However, the most common presentation in infancy is of a multisystem disorder with central nervous system involvement.
Collapse
Affiliation(s)
- Stephanie Grünewald
- Metabolic Medicine Unit, Great Ormond Street Hospital for Children NHS Trust with the UCL Institute of Child Health, London WC1N 3JH, UK.
| |
Collapse
|
38
|
Rimella-Le-Huu A, Henry H, Kern I, Hanquinet S, Roulet-Perez E, Newman CJ, Superti-Furga A, Bonafé L, Ballhausen D. Congenital disorder of glycosylation type Id (CDG Id): phenotypic, biochemical and molecular characterization of a new patient. J Inherit Metab Dis 2008; 31 Suppl 2:S381-6. [PMID: 18679822 DOI: 10.1007/s10545-008-0959-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 12/01/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a family of multisystem inherited disorders caused by defects in the biosynthesis of N- or O-glycans. Among the many different subtypes of CDG, the defect of a mannosyltransferase encoded by the human ALG3 gene (chromosome 3q27) is known to cause CDG Id. Six patients with CDG Id have been described in the literature so far. We further delineate the clinical, biochemical, neuroradiological and molecular features of CDG Id by reporting an additional patient bearing a novel missense mutation in the ALG3 gene. All patients with CDG Id display a slowly progressive encephalopathy with microcephaly, severe psychomotor retardation and epileptic seizures. They also share some typical dysmorphic features but they do not present the multisystem involvement observed in other CDG syndromes or any biological marker abnormalities. Unusually marked osteopenia is a feature in some patients and may remain undiagnosed until revealed by pathological fractures. Serum transferrin screening for CDG should be extended to all patients with encephalopathy of unknown origin, even in the absence of multisystem involvement.
Collapse
Affiliation(s)
- A Rimella-Le-Huu
- Division of Molecular Pediatrics, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|