1
|
Levy E, Fallet-Bianco C, Auclair N, Patey N, Marcil V, Sané AT, Spahis S. Unraveling Chylomicron Retention Disease Enhances Insight into SAR1B GTPase Functions and Mechanisms of Actions, While Shedding Light of Intracellular Chylomicron Trafficking. Biomedicines 2024; 12:1548. [PMID: 39062121 PMCID: PMC11274388 DOI: 10.3390/biomedicines12071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, significant efforts have been focused on unraveling congenital intestinal disorders that disrupt the absorption of dietary lipids and fat-soluble vitamins. The primary goal has been to gain deeper insights into intra-enterocyte sites, molecular steps, and crucial proteins/regulatory pathways involved, while simultaneously identifying novel therapeutic targets and diagnostic tools. This research not only delves into specific and rare malabsorptive conditions, such as chylomicron retention disease (CRD), but also contributes to our understanding of normal physiology through the utilization of cutting-edge cellular and animal models alongside advanced research methodologies. This review elucidates how modern techniques have facilitated the decoding of CRD gene defects, the identification of dysfunctional cellular processes, disease regulatory mechanisms, and the essential role of coat protein complex II-coated vesicles and cargo receptors in chylomicron trafficking and endoplasmic reticulum (ER) exit sites. Moreover, experimental approaches have shed light on the multifaceted functions of SAR1B GTPase, wherein loss-of-function mutations not only predispose individuals to CRD but also exacerbate oxidative stress, inflammation, and ER stress, potentially contributing to clinical complications associated with CRD. In addition to dissecting the primary disease pathology, genetically modified animal models have emerged as invaluable assets in exploring various ancillary aspects, including responses to environmental challenges such as dietary alterations, gender-specific disparities in disease onset and progression, and embryonic lethality or developmental abnormalities. In summary, this comprehensive review provides an in-depth and contemporary analysis of CRD, offering a meticulous examination of the CRD current landscape by synthesizing the latest research findings and advancements in the field.
Collapse
Affiliation(s)
- Emile Levy
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Catherine Fallet-Bianco
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nickolas Auclair
- Azrieli Research Center, CHU Ste-Justine and Pharmacology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | | | - Schohraya Spahis
- Azrieli Research Center, CHU Ste-Justine and Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| |
Collapse
|
2
|
Sunkoj Y, Yu Z, Altaf A, Talathi S. Chylomicron retention disease: a rare aetiology of failure to thrive. BMJ Case Rep 2024; 17:e256999. [PMID: 38749523 DOI: 10.1136/bcr-2023-256999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
The aetiology of failure to thrive (FTT) in children is broad, of which some conditions are extremely rare. It is important to consider these rarer conditions, especially in the setting of other concerning signs/symptoms or when there is no improvement with conventional treatment. In this case report we highlight such a rare condition-chylomicron retention disease (CRD) as an aetiology of FTT. CRD often presents with non-specific symptoms, resulting in delayed diagnosis which is established by genetic workup and histology from small intestinal biopsies. Despite being rare, CRD needs to be considered as one of the differential diagnoses after ruling out the more common causes of FTT.
Collapse
Affiliation(s)
- Yojana Sunkoj
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhongxin Yu
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adnan Altaf
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Saurabh Talathi
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Nayak K, Fuentebella J. Chylomicron Retention Disease: Failure to Thrive and Abdominal Distention in an Infant. JPGN REPORTS 2022; 3:e145. [PMID: 37168760 PMCID: PMC10158306 DOI: 10.1097/pg9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
This case report describes an infant with failure to thrive and progressive abdominal distention that ultimately led to a rare diagnosis of chylomicron retention disease at 1 year of life. Laboratory abnormalities included increased qualitative stool fat, along with low apolipoprotein B, high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol in blood. In chylomicron retention disease, diarrhea has been reported as the most common presenting symptom followed by failure to thrive and vomiting. Diarrhea and vomiting before 6 months of life have been described in cases of chylomicron retention disease reported in the literature; however, this patient did not present with either of those symptoms. This case report uniquely demonstrates that lack of early or persistent digestive symptoms of diarrhea or vomiting does not exclude a diagnosis of chylomicron retention disease.
Collapse
Affiliation(s)
- Krisha Nayak
- From the Pediatrics, Kaiser Permanente, Oakland, CA
| | | |
Collapse
|
4
|
Sissaoui S, Cochet M, Poinsot P, Bordat C, Collardeau-Frachon S, Lachaux A, Lacaille F, Peretti N. Lipids Responsible for Intestinal or Hepatic Disorder: When to Suspect a Familial Intestinal Hypocholesterolemia? J Pediatr Gastroenterol Nutr 2021; 73:4-8. [PMID: 33853111 DOI: 10.1097/mpg.0000000000003145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Familial intestinal hypocholesterolemias, such as abetalipoproteinemia, hypobetalipoproteinemia, and chylomicron retention disease, are rare genetic diseases that result in a defect in the synthesis or secretion of lipoproteins containing apolipoprotein B.In children, these conditions present with diarrhoea and growth failure, whereas adults present with neuromuscular, ophthalmological, and hepatic symptoms. Simple laboratory investigations have shown that diagnosis can be made from findings of dramatically decreased cholesterol levels, deficiencies in fat-soluble vitamins (mostly vitamin E), endoscopic findings of the characteristic white intestinal mucosa, and fat-loaded enterocytes in biopsy samples. Genetic analysis is used to confirm the diagnosis. Treatment is based on a low-fat diet with essential fatty acid supplementation, high doses of fat-soluble vitamins, and regular and life-long follow-up.The present study examines cases and literature findings of these conditions, and emphasises the need to explore severe hypocholesterolemia and deficiencies in fat-soluble vitamins to not miss these rare, but easy to diagnose and treat, disorders.
Collapse
Affiliation(s)
- Samira Sissaoui
- Pediatric Hepatology Unit
- Department of Pediatric Gastroenterology-Hepatology-Nutrition, Reference Center for Biliary Atresia and Genetic Cholestasis, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris
| | - Manon Cochet
- Pediatric Hepatology Unit
- Department of Pediatric Gastroenterology-Hepatology-Nutrition, Reference Center for Biliary Atresia and Genetic Cholestasis, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris
| | - Pierre Poinsot
- Univ. Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Reference Center for Intestinal Rare Disease (MaRDi), Hôpital Femme Mere Enfant, Bron
- Univ. Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Pierre-Bénite
| | - Claire Bordat
- Univ. Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Pierre-Bénite
| | - Sophie Collardeau-Frachon
- Univ. Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Reference Center for Intestinal Rare Disease (MaRDi), Hôpital Femme Mere Enfant, Bron
- Univ. Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Pierre-Bénite
- Univ. Lyon, Hospices Civil de Lyon, Institut de pathologie, Groupement Hospitalier Est, Bron, France
| | - Alain Lachaux
- Univ. Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Reference Center for Intestinal Rare Disease (MaRDi), Hôpital Femme Mere Enfant, Bron
- Univ. Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Pierre-Bénite
| | - Florence Lacaille
- Department of Pediatric Gastroenterology-Hepatology-Nutrition, Reference Center for Biliary Atresia and Genetic Cholestasis, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris
| | - Noël Peretti
- Univ. Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Reference Center for Intestinal Rare Disease (MaRDi), Hôpital Femme Mere Enfant, Bron
- Univ. Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Pierre-Bénite
| |
Collapse
|
5
|
Auclair N, Sané AT, Ahmarani L, Patey N, Beaulieu JF, Peretti N, Spahis S, Levy E. Sar1b mutant mice recapitulate gastrointestinal abnormalities associated with chylomicron retention disease. J Lipid Res 2021; 62:100085. [PMID: 33964306 PMCID: PMC8175419 DOI: 10.1016/j.jlr.2021.100085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Chylomicron retention disease (CRD) is an autosomal recessive disorder associated with biallelic Sar1b mutations leading to defects in intracellular chylomicron (CM) trafficking and secretion. To date, a direct cause-effect relationship between CRD and Sar1b mutation has not been established, but genetically modified animal models provide an opportunity to elucidate unrecognized aspects of these mutations. To examine the physiological role and molecular mechanisms of Sar1b function, we generated mice expressing either a targeted deletion or mutation of human Sar1b using the CRISPR-Cas9 system. We found that deletion or mutation of Sar1b in mice resulted in late-gestation lethality of homozygous embryos. Moreover, compared with WT mice, heterozygotes carrying a single disrupted Sar1b allele displayed lower plasma levels of triglycerides, total cholesterol, and HDL-cholesterol, along with reduced CM secretion following gastric lipid gavage. Similarly, decreased expression of apolipoprotein B and microsomal triglyceride transfer protein was observed in correlation with the accumulation of mucosal lipids. Inefficient fat absorption in heterozygotes was confirmed via an increase in fecal lipid excretion. Furthermore, genetically modified Sar1b affected intestinal lipid homeostasis as demonstrated by enhanced fatty acid β-oxidation and diminished lipogenesis through the modulation of transcription factors. This is the first reported mammalian animal model with human Sar1b genetic defects, which reproduces some of the characteristic CRD features and provides a direct cause-effect demonstration.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Ahmarani
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Patey
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pathology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Noel Peretti
- Department of Pediatric Gastroenterology-Hepatology and Nutrition, Laboratory INSERM 1060 Cardiovascular Metabolism Endocrinology and Nutrition CarMEN, Lyon, France
| | - Schohraya Spahis
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Ste-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Lu Y, Zhou SK, Chen R, Jiang LX, Yang LL, Bi TN. Knockdown of SAR1B suppresses proliferation and induces apoptosis of RKO colorectal cancer cells. Oncol Lett 2020; 20:186. [PMID: 32952655 PMCID: PMC7479511 DOI: 10.3892/ol.2020.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/06/2020] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. SAR1 gene homolog B (SAR1B) is a GTPase that has been reported to have a central role in the regulation of lipid homeostasis and is associated with numerous diseases. However, its role in cancer, particularly in CRC, remains unclear. The present study revealed that SAR1B was overexpressed in CRC samples and this was associated with shorter overall survival time in patients with CRC. Colony formation, cell proliferation and flow cytometry assays were conducted to evaluate the functions of SAR1B in CRC. It was reported that SAR1B may be associated with tumorigenesis of CRC. Knockdown of SAR1B suppressed cell proliferation and induced significant apoptosis of RKO cells. Furthermore, microarray analysis was performed to identify the potential targets of SAR1B in CRC. Bioinformatics analysis revealed that SAR1B was significantly involved in regulating ‘TGF-β signaling’, ‘paxillin signaling’, ‘cell cycle regulation by BTG family proteins’ and ‘IGF-1 signaling’. These results suggested that SAR1B may be considered a potential prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Shen-Kang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Rui Chen
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Liang-Xian Jiang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Lei-Lei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Tie-Nan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
7
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Abstract
Congenital diarrheal disorders are heterogeneous conditions characterized by diarrhea with onset in the first years of life. They range from simple temporary conditions, such as cow's milk protein intolerance to irreversible complications, such as microvillous inclusion disease with significant morbidity and mortality. Advances in genomic medicine have improved our understanding of these disorders, leading to an ever-increasing list of identified causative genes. The diagnostic approach to these conditions consists of establishing the presence of diarrhea by detailed review of the history, followed by characterizing the composition of the diarrhea, the response to fasting, and with further specialized testing.
Collapse
Affiliation(s)
- Abdul Aziz Elkadri
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
10
|
Simone ML, Rabacchi C, Kuloglu Z, Kansu A, Ensari A, Demir AM, Hizal G, Di Leo E, Bertolini S, Calandra S, Tarugi P. Novel mutations of SAR1B gene in four children with chylomicron retention disease. J Clin Lipidol 2019; 13:554-562. [DOI: 10.1016/j.jacl.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
11
|
Abstract
PURPOSE OF REVIEW Chylomicron retention disease (CRD) is an autosomic recessive disorder, in which intestinal fat malabsorption is the main cause of diverse severe manifestations. The specific molecular defect was identified in 2003 and consists of mutations in the SAR1B or SARA2 gene encoding for intracellular SAR1B GTPase protein. The aim of this review is first to provide an update of the recent biochemical, genetic and clinical findings, and second to discuss novel mechanisms related to hallmark symptoms. RECENT FINDINGS CRD patients present with SAR1B mutations, which disable the formation of coat protein complex II and thus blocks the transport of chylomicron cargo from the endoplasmic reticulum to the Golgi. Consequently, there is a total absence of chylomicron and apolipoprotein B-48 in the blood circulation following a fat meal, accompanied by a deficiency in liposoluble vitamins and essential fatty acids. The recent discovery of Transport and Golgi organization and Transport and Golgi organization-like proteins may explain the intriguing export of large chylomicron, exceeding coat protein complex II size. Hypocholesterolemia could be accounted for by a decrease in HDL cholesterol, likely a reflection of limited production of intestinal HDL in view of reduced ATP-binding cassette family A protein 1 and apolipoprotein A-I protein. In experimental studies, the paralog SAR1A compensates for the lack of the SAR1B GTPase protein. SUMMARY Molecular testing for CRD is recommended to distinguish the disease from other congenital fat malabsorptions, and to early define molecular aberrations, accelerate treatment, and prevent complications.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre
- Gastroenterology, Hepatology and Nutrition Unit, CHU Ste-Justine
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Poinsot
- Gastroenterology, Hepatology and Nutrition Unit, CHU Ste-Justine
| | - Schohraya Spahis
- Research Centre
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Melville D, Gorur A, Schekman R. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol Biol Cell 2018; 30:387-399. [PMID: 30485159 PMCID: PMC6589570 DOI: 10.1091/mbc.e18-09-0548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
COPII-coated vesicles are the primary mediators of ER-to-Golgi trafficking. Sar1, one of the five core COPII components, is a highly conserved small GTPase, which, upon GTP binding, recruits the other COPII proteins to the ER membrane. It has been hypothesized that the changes in the kinetics of SAR1 GTPase may allow for the secretion of large cargoes. Here we developed a cell-free assay to recapitulate COPII-dependent budding of large lipoprotein cargoes from the ER. We identified fatty-acid binding protein 5 (FABP5) as an enhancer of this budding process. We found that FABP5 promotes the budding of particles ∼150 nm in diameter and modulates the kinetics of the SAR1 GTPase cycle. We further found that FABP5 enhances the trafficking of lipoproteins and of other cargoes, including collagen. These data identify a novel regulator of SAR1 GTPase activity and highlight the importance of this activity for trafficking of large cargoes.
Collapse
Affiliation(s)
- David Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Amita Gorur
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
13
|
Cuerq C, Henin E, Restier L, Blond E, Drai J, Marçais C, Di Filippo M, Laveille C, Michalski MC, Poinsot P, Caussy C, Sassolas A, Moulin P, Reboul E, Charriere S, Levy E, Lachaux A, Peretti N. Efficacy of two vitamin E formulations in patients with abetalipoproteinemia and chylomicron retention disease. J Lipid Res 2018; 59:1640-1648. [PMID: 30021760 DOI: 10.1194/jlr.m085043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) are extremely rare recessive forms of hypobetalipoproteinemia characterized by intestinal lipid malabsorption and severe vitamin E deficiency. Vitamin E is often supplemented in the form of fat-soluble vitamin E acetate, but fat malabsorption considerably limits correction of the deficiency. In this crossover study, we administered two different forms of vitamin E, tocofersolan (a water-soluble derivative of RRR-α-tocopherol) and α-tocopherol acetate, to three patients with ABL and four patients with CMRD. The aims of this study were to evaluate the intestinal absorption characteristics of tocofersolan versus α-tocopherol acetate by measuring the plasma concentrations of α-tocopherol over time after a single oral load and to compare efficacy by evaluating the ability of each formulation to restore vitamin E storage after 4 months of treatment. In patients with ABL, tocofersolan and α-tocopherol acetate bioavailabilities were extremely low (2.8% and 3.1%, respectively). In contrast, bioavailabilities were higher in patients with CMRD (tocofersolan, 24.7%; α-tocopherol acetate, 11.4%). Plasma concentrations of α-tocopherol at 4 months were not significantly different by formulation type in ABL or CMRD. This study provides new insights about vitamin E status in ABL and CMRD and suggests the potential of different formulations as treatment options.
Collapse
Affiliation(s)
- Charlotte Cuerq
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | | | - Lioara Restier
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Dyslipidemia Unity Hospices Civils de Lyon, Lyon, Bron, France
| | - Emilie Blond
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Jocelyne Drai
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Christophe Marçais
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France; INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Mathilde Di Filippo
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Department of Biochemistry and Molecular Biology, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, Bron, France
| | | | | | - Pierre Poinsot
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Dyslipidemia Unity Hospices Civils de Lyon, Lyon, Bron, France
| | - Cyrielle Caussy
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Agnès Sassolas
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Department of Biochemistry and Molecular Biology, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, Bron, France
| | - Philippe Moulin
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Fédération d'Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, Bron, France
| | | | - Sybil Charriere
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Fédération d'Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, Bron, France
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, and Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| | - Alain Lachaux
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Dyslipidemia Unity Hospices Civils de Lyon, Lyon, Bron, France
| | - Noël Peretti
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France; Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Dyslipidemia Unity Hospices Civils de Lyon, Lyon, Bron, France.
| |
Collapse
|
14
|
Ferreira H, Ramos RN, Quan CF, Ferreiro SR, Ruiz VC, Juampérez Goñi J, Quintero Bernabeu J, Segarra Cantón O, Álvarez Beltran M. Chylomicron Retention Disease: a Description of a New Mutation in a Very Rare Disease. Pediatr Gastroenterol Hepatol Nutr 2018; 21:134-140. [PMID: 29713611 PMCID: PMC5915691 DOI: 10.5223/pghn.2018.21.2.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/24/2017] [Accepted: 10/14/2017] [Indexed: 11/14/2022] Open
Abstract
Chylomicron retention disease, also known as Anderson's disease, is a rare hereditary hypocholesterolemic disorder, recessive inherited, characterized by nonspecific symptoms as abdominal distension, steatorrhea, and vomiting associated with failure to thrive. We describe a patient with failure to thrive, chronic diarrhea and steatorrhea who the diagnosis of chylomicron retention disease was established after several months of disease progression. The genetic study confirmed a homozygosity mutation in SAR1B gene, identifying a mutation never previous described [c.83_84delTG(p.Leu28Argfs*7)]. With this case report the authors aim to highlight for this very rare cause of failure to thrive and for the importance of an attempting diagnosis, in order to start adequate management with low fat diet supplemented with fat-soluble vitamins, reverting the state of malnutrition and avoiding possible irreversible and desvantating complications.
Collapse
Affiliation(s)
- Helena Ferreira
- Department of Pediatric, Hospital da Senhora da Oliveira, Guimarães, Portugal
| | - Raquel Nuñez Ramos
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Cinthia Flores Quan
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Susana Redecillas Ferreiro
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Vanessa Cabello Ruiz
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Javi Juampérez Goñi
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Jesus Quintero Bernabeu
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Oscar Segarra Cantón
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| | - Marina Álvarez Beltran
- Department of Pediatric and Gastroenterology, Hepatology, Nutritional Support and Liver Transplant Unit, Hospital Universitário Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
15
|
Sané AT, Seidman E, Peretti N, Kleme ML, Delvin E, Deslandres C, Garofalo C, Spahis S, Levy E. Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture. Arterioscler Thromb Vasc Biol 2017; 37:2243-2251. [PMID: 28982670 DOI: 10.1161/atvbaha.117.310121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/21/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Understanding the specific mechanisms of rare autosomal disorders has greatly expanded insights into the complex processes regulating intestinal fat transport. Sar1B GTPase is one of the critical proteins governing chylomicron secretion by the small intestine, and its mutations lead to chylomicron retention disease, despite the presence of Sar1A paralog. OBJECTIVE The central aim of this work is to examine the cause-effect relationship between Sar1B expression and chylomicron output and to determine whether Sar1B is obligatory for normal high-density lipoprotein biogenesis. APPROACH AND RESULTS The SAR1B gene was totally silenced in Caco-2/15 cells using the zinc finger nuclease technique. SAR1B deletion resulted in significantly decreased secretion of triglycerides (≈40%), apolipoprotein B-48 (≈57%), and chylomicron (≈34.5%). The absence of expected chylomicron production collapse may be because of the compensatory SAR1A elevation observed in our experiments. Therefore, a double knockout of SAR1A and SAR1B was engineered in Caco-2/15 cells, which led to almost complete inhibition of triglycerides, apolipoprotein B-48, and chylomicron output. Further experiments with labeled cholesterol revealed the downregulation of high-density lipoprotein biogenesis in cells deficient in SAR1B or with the double knockout of the 2 SAR1 paralogs. Similarly, there was a fall in the movement of labeled cholesterol from cells to basolateral medium containing apolipoprotein A-I, thereby limiting newly synthesized high-density lipoprotein in genetically modified cells. The decreased cholesterol efflux was associated with impaired expression of ABCA1 (ATP-binding cassette subfamily A member 1). CONCLUSIONS These findings demonstrate that the deletion of the 2 SAR1 isoforms is required to fully eliminate the secretion of chylomicron in vitro. They also underscore the limited high-density lipoprotein production by the intestinal cells in response to SAR1 knockout.
Collapse
Affiliation(s)
- Alain Théophile Sané
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Ernest Seidman
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Noel Peretti
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Marie Laure Kleme
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Edgard Delvin
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Colette Deslandres
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Carole Garofalo
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Schohraya Spahis
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.)
| | - Emile Levy
- From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.).
| |
Collapse
|
16
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
17
|
Chen JH, Hsieh CJ, Huang YL, Chen YC, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM. Genetic polymorphisms of lipid metabolism gene SAR1 homolog B and the risk of Alzheimer's disease and vascular dementia. J Formos Med Assoc 2016; 115:38-44. [DOI: 10.1016/j.jfma.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
|
18
|
Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease. J Mol Med (Berl) 2015; 93:165-76. [PMID: 25559265 DOI: 10.1007/s00109-014-1247-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 11/19/2014] [Accepted: 12/18/2014] [Indexed: 01/25/2023]
Abstract
Anderson disease (ANDD) or chylomicron retention disease (CMRD) is a rare, hereditary lipid malabsorption syndrome associated with mutations in the SAR1B gene that is characterized by failure to thrive and hypocholesterolemia. Although the SAR1B structure has been resolved and its role in formation of coat protein II (COPII)-coated carriers is well established, little is known about the requirement for SAR1B during embryogenesis. To address this question, we have developed a zebrafish model of Sar1b deficiency based on antisense oligonucleotide knockdown. We show that zebrafish sar1b is highly conserved among vertebrates; broadly expressed during development; and enriched in the digestive tract organs, brain, and craniofacial skeleton. Consistent with ANDD symptoms of chylomicron retention, we found that dietary lipids in Sar1b-deficient embryos accumulate in enterocytes. Transgenic expression analysis revealed that Sar1b is required for growth of exocrine pancreas and liver. Furthermore, we found abnormal differentiation and maturation of craniofacial cartilage associated with defects in procollagen II secretion and absence of select, neuroD-positive neurons of the midbrain and hindbrain. The model presented here will help to systematically dissect developmental roles of Sar1b and to discover molecular and cellular mechanisms leading to organ-specific ANDD pathology. Key messages: Sar1b depletion phenotype in zebrafish resembles Anderson disease deficits. Sar1b deficiency results in multi-organ developmental deficits. Sar1b is required for dietary cholesterol uptake into enterocytes.
Collapse
|
19
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
20
|
Levy E, Spahis S, Garofalo C, Marcil V, Montoudis A, Sinnet D, Sanchez R, Peretti N, Beaulieu JF, Sane A. Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction. J Nutr Biochem 2014; 25:540-8. [PMID: 24657056 DOI: 10.1016/j.jnutbio.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
In the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b(+/+)) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b(+/+) mice displayed significantly increased body weight and adiposity compared with Sar1b(+/+) mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b(+/+) mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b(+/+) mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b(+/+) under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption.
Collapse
Affiliation(s)
- Emile Levy
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4; Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4.
| | - Schohraya Spahis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4
| | - Carole Garofalo
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Institute, McGill University, Montreal, Quebec, Canada, H3G 1A4
| | - Alain Montoudis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Daniel Sinnet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Rocio Sanchez
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Noel Peretti
- Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Faculté de Médicine, Université de Lyon-1, France
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alain Sane
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
21
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
22
|
Jaschke A, Chung B, Hesse D, Kluge R, Zahn C, Moser M, Petzke KJ, Brigelius-Flohé R, Puchkov D, Koepsell H, Heeren J, Joost HG, Schürmann A. The GTPase ARFRP1 controls the lipidation of chylomicrons in the Golgi of the intestinal epithelium. Hum Mol Genet 2012; 21:3128-42. [PMID: 22505585 PMCID: PMC3384381 DOI: 10.1093/hmg/dds140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The uptake and processing of dietary lipids by the small intestine is a multistep process that involves several steps including vesicular and protein transport. The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) controls the ARF-like 1 (ARL1)-mediated Golgi recruitment of GRIP domain proteins which in turn bind several Rab-GTPases. Here, we describe the essential role of ARFRP1 and its interaction with Rab2 in the assembly and lipidation of chylomicrons in the intestinal epithelium. Mice lacking Arfrp1 specifically in the intestine (Arfrp1vil−/−) exhibit an early post-natal growth retardation with reduced plasma triacylglycerol and free fatty acid concentrations. Arfrp1vil−/− enterocytes as well as Arfrp1 mRNA depleted Caco-2 cells absorbed fatty acids normally but secreted chylomicrons with a markedly reduced triacylglycerol content. In addition, the release of apolipoprotein A-I (ApoA-I) was dramatically decreased, and ApoA-I accumulated in the Arfrp1vil−/− epithelium, where it predominantly co-localized with Rab2. The release of chylomicrons from Caco-2 was markedly reduced after the suppression of Rab2, ARL1 and Golgin-245. Thus, the GTPase ARFRP1 and its downstream proteins are required for the lipidation of chylomicrons and the assembly of ApoA-I to these particles in the Golgi of intestinal epithelial cells.
Collapse
Affiliation(s)
- Alexander Jaschke
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ouguerram K, Zaïr Y, Kasbi-Chadli F, Nazih H, Bligny D, Schmitz J, Aparicio T, Chétiveaux M, Magot T, Aggerbeck LP, Samson-Bouma ME, Krempf M. Low rate of production of apolipoproteins B100 and AI in 2 patients with Anderson disease (chylomicron retention disease). Arterioscler Thromb Vasc Biol 2012; 32:1520-5. [PMID: 22441101 DOI: 10.1161/atvbaha.112.245076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Anderson disease is a rare inherited lipid malabsorption syndrome associated with hypocholesterolemia and linked to SAR1B mutations. The aim of this article was to analyze the mechanisms responsible for the low plasma apolipoprotein Apo-B100 and Apo-AI in 2 patients with Anderson disease. METHODS AND RESULTS A primed constant infusion of (13)C-leucine was administered for 14 hours to determine the kinetics of lipoproteins. In the 2 patients, total cholesterol (77 and 85 mg/dL versus 155±32 mg/dL), triglycerides (36 and 59 versus 82±24 mg/dL), Apo-B100 (48 and 43 versus 71±5 mg/dL), and Apo-AI (47 and 62 versus 130±7 mg/dL) were lower compared with 6 healthy individuals. Very-low-density lipoprotein-B100 production rate of the patients was lower (4.08 and 5.52 mg/kg/day versus 12.96±2.88 mg/kg/day) as was the fractional catabolic rate (5.04 and 4.32 day(-1) versus 12.24±3.84 day(-1)). No difference was observed in intermediate-density lipoprotein-B100 and LDL-B100 kinetic data. The production rate of high-density lipoprotein Apo-AI was lower in the patients (7.92 and 8.64 versus 11.96±1.92 mg/kg/day) and the fractional catabolic rate was higher (0.38 and 0.29 versus 0.22±0.01 day(-1)). CONCLUSIONS The low plasma Apo-B100 and Apo-AI concentrations in the patients with Anderson disease were mainly related to low rates of production.
Collapse
Affiliation(s)
- Khadija Ouguerram
- INSERM UMR 1087/CNRS UMR 6291 and CRNH Nantes, IRT-UN, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 2011; 14:20-8. [PMID: 22193160 DOI: 10.1038/ncb2390] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secretory proteins are transported to the Golgi complex in vesicles that bud from the endoplasmic reticulum. The cytoplasmic coat protein complex II (COPII) is responsible for cargo sorting and vesicle morphogenesis. COPII was first described in Saccharomyces cerevisiae, but its basic function is conserved throughout all eukaryotes. Nevertheless, the COPII coat has adapted to the higher complexity of mammalian physiology, achieving more sophisticated levels of secretory regulation. In this review we cover aspects of mammalian COPII-mediated regulation of secretion, in particular related to the function of COPII paralogues, the spatial organization of cargo export and the role of accessory proteins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
25
|
Yáñez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev 2011; 63:923-42. [PMID: 21689702 PMCID: PMC7126116 DOI: 10.1016/j.addr.2011.05.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 12/16/2022]
Abstract
Intestinal lymphatic transport has been shown to be an absorptive pathway following oral administration of lipids and an increasing number of lipophilic drugs, which once absorbed, diffuse across the intestinal enterocyte and while in transit associate with secretable enterocyte lipoproteins. The chylomicron-associated drug is then secreted from the enterocyte into the lymphatic circulation, rather than the portal circulation, thus avoiding the metabolically-active liver, but still ultimately returning to the systemic circulation. Because of this parallel and potentially alternative absorptive pathway, first-pass metabolism can be reduced while increasing lymphatic drug exposure, which opens the potential for novel therapeutic modalities and allows the implementation of lipid-based drug delivery systems. This review discusses the physiological features of the lymphatics, enterocyte uptake and metabolism, links between drug transport and lipid digestion/re-acylation, experimental model (in vivo, in vitro, and in silico) of lymphatic transport, and the design of lipid- or prodrug-based drug delivery systems for enhancing lymphatic drug transport.
Collapse
|
26
|
Georges A, Bonneau J, Bonnefont-Rousselot D, Champigneulle J, Rabès JP, Abifadel M, Aparicio T, Guenedet JC, Bruckert E, Boileau C, Morali A, Varret M, Aggerbeck LP, Samson-Bouma ME. Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease). Orphanet J Rare Dis 2011; 6:1. [PMID: 21235735 PMCID: PMC3029219 DOI: 10.1186/1750-1172-6-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Anderson's disease (AD) or chylomicron retention disease (CMRD) is a very rare hereditary lipid malabsorption syndrome. In order to discover novel mutations in the SAR1B gene and to evaluate the expression, as compared to healthy subjects, of the Sar1 gene and protein paralogues in the intestine, we investigated three previously undescribed individuals with the disease. METHODS The SAR1B, SAR1A and PCSK9 genes were sequenced. The expression of the SAR1B and SAR1A genes in intestinal biopsies of both normal individuals and patients was measured by RTqPCR. Immunohistochemistry using antibodies to recombinant Sar1 protein was used to evaluate the expression and localization of the Sar1 paralogues in the duodenal biopsies. RESULTS Two patients had a novel SAR1B mutation (p.Asp48ThrfsX17). The third patient, who had a previously described SAR1B mutation (p.Leu28ArgfsX7), also had a p.Leu21dup variant of the PCSK9 gene. The expression of the SAR1B gene in duodenal biopsies from an AD/CMRD patient was significantly decreased whereas the expression of the SAR1A gene was significantly increased, as compared to healthy individuals. The Sar1 proteins were present in decreased amounts in enterocytes in duodenal biopsies from the patients as compared to those from healthy subjects. CONCLUSIONS Although the proteins encoded by the SAR1A and SAR1B genes are 90% identical, the increased expression of the SAR1A gene in AD/CMRD does not appear to compensate for the lack of the SAR1B protein. The PCSK9 variant, although reported to be associated with low levels of cholesterol, does not appear to exert any additional effect in this patient. The results provide further insight into the tissue-specific nature of AD/CMRD.
Collapse
Affiliation(s)
- Amandine Georges
- Service de Médecine Infantile 3 et Génétique Clinique, INSERM U954, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Jessica Bonneau
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | - Dominique Bonnefont-Rousselot
- UF de Biochimie des Maladies Métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière (AP-HP), and Département de Biologie Expérimentale, Métabolique et Clinique, EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, 75013, France
| | - Jacqueline Champigneulle
- Laboratoire d'Anatomie et de Cytologie Pathologiques, Hôpital de Brabois, Université Paris 13, Bobigny, 93000, France
| | - Jean P Rabès
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
- Service de Biochimie et Génétique Moléculaire, CHU A Paré, AP-HP et Faculté de Médecine (PIFO-UVSQ), Boulogne, 92104, France
| | - Marianne Abifadel
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | - Thomas Aparicio
- Service de Gastroentérologie, Hôpital Avicenne, 125 rue de Stalingrad, Université Paris 13, Bobigny, 93000, France
| | - Jean C Guenedet
- Laboratoire d'Anatomie et de Cytologie Pathologiques, Hôpital de Brabois, Université Paris 13, Bobigny, 93000, France
- Service de Microscopie Electronique, Hôpital de Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié Salpêtrière, (AP-HP), Paris, 75013, France
| | - Catherine Boileau
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
- Service de Biochimie et Génétique Moléculaire, CHU A Paré, AP-HP et Faculté de Médecine (PIFO-UVSQ), Boulogne, 92104, France
| | - Alain Morali
- Service de Médecine Infantile 3 et Génétique Clinique, INSERM U954, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, 54511, France
| | - Mathilde Varret
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| | | | - Marie E Samson-Bouma
- INSERM U781, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, 75015, France
| |
Collapse
|
27
|
|
28
|
Peretti N, Sassolas A, Roy CC, Deslandres C, Charcosset M, Castagnetti J, Pugnet-Chardon L, Moulin P, Labarge S, Bouthillier L, Lachaux A, Levy E. Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet J Rare Dis 2010; 5:24. [PMID: 20920215 PMCID: PMC2956717 DOI: 10.1186/1750-1172-5-24] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 09/29/2010] [Indexed: 02/06/2023] Open
Abstract
Familial hypocholesterolemia, namely abetalipoproteinemia, hypobetalipoproteinemia and chylomicron retention disease (CRD), are rare genetic diseases that cause malnutrition, failure to thrive, growth failure and vitamin E deficiency, as well as other complications. Recently, the gene implicated in CRD was identified. The diagnosis is often delayed because symptoms are nonspecific. Treatment and follow-up remain poorly defined. The aim of this paper is to provide guidelines for the diagnosis, treatment and follow-up of children with CRD based on a literature overview and two pediatric centers 'experience. The diagnosis is based on a history of chronic diarrhea with fat malabsorption and abnormal lipid profile. Upper endoscopy and histology reveal fat-laden enterocytes whereas vitamin E deficiency is invariably present. Creatine kinase (CK) is usually elevated and hepatic steatosis is common. Genotyping identifies the Sar1b gene mutation. Treatment should be aimed at preventing potential complications. Vomiting, diarrhea and abdominal distension improve on a low-long chain fat diet. Failure to thrive is one of the most common initial clinical findings. Neurological and ophthalmologic complications in CRD are less severe than in other types of familial hypocholesterolemia. However, the vitamin E deficiency status plays a pivotal role in preventing neurological complications. Essential fatty acid (EFA) deficiency is especially severe early in life. Recently, increased CK levels and cardiomyopathy have been described in addition to muscular manifestations. Poor mineralization and delayed bone maturation do occur. A moderate degree of macrovesicular steatosis is common, but no cases of steatohepatitis cirrhosis. Besides a low-long chain fat diet made up uniquely of polyunsaturated fatty acids, treatment includes fat-soluble vitamin supplements and large amounts of vitamin E. Despite fat malabsorption and the absence of postprandial chylomicrons, the oral route can prevent neurological complications even though serum levels of vitamin E remain chronically low. Dietary counseling is needed not only to monitor fat intake and improve symptoms, but also to maintain sufficient caloric and EFA intake. Despite a better understanding of the pathogenesis of CRD, the diagnosis and management of the disease remain a challenge for clinicians. The clinical guidelines proposed will helpfully lead to an earlier diagnosis and the prevention of complications.
Collapse
Affiliation(s)
- Noel Peretti
- Department of Nutrition, CHU Sainte-Justine Research Center, Université de Montréal, 3175, Ste-Catherine Road, Montreal, Quebec, H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cefalù AB, Calvo PL, Noto D, Baldi M, Valenti V, Lerro P, Tramuto F, Lezo A, Morra I, Cenacchi G, Barbera C, Averna MR. Variable phenotypic expression of chylomicron retention disease in a kindred carrying a mutation of the Sara2 gene. Metabolism 2010; 59:463-7. [PMID: 19846172 DOI: 10.1016/j.metabol.2009.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
Abstract
Chylomicron retention disease is a recessive inherited disorder characterized by fat malabsorption and steatorrhea and is associated with failure to thrive in infancy. We describe a kindred carrying a mutation of Sara2 gene causing a chylomicron retention phenotype. The proband was a 5-month-old baby, born of consanguineous, apparently healthy parents from Morocco, with failure to thrive. There was a large quantity of fats in feces and malabsorption of fat-soluble vitamins. Intestinal biopsies showed a diffused enterocyte vacuolization with large cytosolic lipid droplets. Chylomicron retention disease or Anderson disease was hypothesized, and the Sara2 gene was analyzed by direct sequencing. Analysis of the Sara2 gene in the proband identified a 2-nucleotide homozygous deletion in exon 3 leading to a premature stop codon (c.75-76 del TG-L28fsX34). The father was heterozygous for the same mutation, whereas the proband's mother was homozygous, suggesting a variable phenotypic expression of the molecular defect. More studies are needed to understand the reasons of the phenotypic variability of the same molecular defect in the same family.
Collapse
Affiliation(s)
- Angelo B Cefalù
- Departmet of Clinical Medicine and Emerging Diseases, University of Palermo, I-90127 Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|