1
|
Functions of block of proliferation 1 during anterior development in Xenopus laevis. PLoS One 2022; 17:e0273507. [PMID: 36007075 PMCID: PMC9409556 DOI: 10.1371/journal.pone.0273507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Block of proliferation 1 (Bop1) is a nucleolar protein known to be necessary for the assembly of the 60S subunit of ribosomes. Here, we show a specific bop1 expression in the developing anterior tissue of the South African clawed frog Xenopus laevis. Morpholino oligonucleotide-mediated knockdown approaches demonstrated that Bop1 is required for proper development of the cranial cartilage, brain, and the eyes. Furthermore, we show that bop1 knockdown leads to impaired retinal lamination with disorganized cell layers. Expression of neural crest-, brain-, and eye-specific marker genes was disturbed. Apoptotic and proliferative processes, which are known to be affected during ribosomal biogenesis defects, are not hindered upon bop1 knockdown. Because early Xenopus embryos contain a large store of maternal ribosomes, we considered if Bop1 might have a role independent of de novo ribosomal biogenesis. At early embryonic stages, pax6 expression was strongly reduced in bop1 morphants and synergy experiments indicate a common signaling pathway of the two molecules, Bop1 and Pax6. Our studies imply a novel function of Bop1 independent of ribosomal biogenesis.
Collapse
|
2
|
Yamamoto M, Ong Lee Chen A, Shinozuka T, Sasai N. The Rx transcription factor is required for determination of the retinal lineage and regulates the timing of neuronal differentiation. Dev Growth Differ 2022; 64:318-324. [PMID: 35700309 DOI: 10.1111/dgd.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Understanding the molecular mechanisms leading to retinal development is of great interest for both basic scientific and clinical applications. Several signaling molecules and transcription factors involved in retinal development have been isolated and analyzed; however, determining the direct impact of the loss of a specific molecule is problematic, due to difficulties in identifying the corresponding cellular lineages in different individuals. Here, we conducted genome-wide expression analysis with embryonic stem cells devoid of the Rx gene, which encodes one of several homeobox transcription factors essential for retinal development. We performed three-dimensional differentiation of wild-type and mutant cells and compared their gene-expression profiles. The mutant tissue failed to differentiate into the retinal lineage and exhibited precocious expression of genes characteristic of neuronal cells. Together, these results suggest that Rx expression is an important biomarker of the retinal lineage and that it helps regulates appropriate differentiation stages.
Collapse
Affiliation(s)
- Maho Yamamoto
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Agnes Ong Lee Chen
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Takuma Shinozuka
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Japan
| |
Collapse
|
3
|
Davis ES, Voss G, Miesfeld JB, Zarate-Sanchez J, Voss SR, Glaser T. The rax homeobox gene is mutated in the eyeless axolotl, Ambystoma mexicanum. Dev Dyn 2021; 250:807-821. [PMID: 32864847 PMCID: PMC8907009 DOI: 10.1002/dvdy.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.
Collapse
Affiliation(s)
- Erik S. Davis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Gareth Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Joel B. Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Juan Zarate-Sanchez
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
- Davis Senior High School, Davis, California
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
4
|
Flach H, Basten T, Schreiner C, Dietmann P, Greco S, Nies L, Roßmanith N, Walter S, Kühl M, Kühl SJ. Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling. Dev Dyn 2021; 250:1096-1112. [PMID: 33570783 DOI: 10.1002/dvdy.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Retinol binding protein 1 (Rbp1) acts as an intracellular regulator of vitamin A metabolism and retinoid transport. In mice, Rbp1 deficiency decreases the capacity of hepatic stellate cells to take up all-trans retinol and sustain retinyl ester stores. Furthermore, Rbp1 is crucial for visual capacity. Although the function of Rbp1 has been studied in the mature eye, its role during early anterior neural development has not yet been investigated in detail. RESULTS We showed that rbp1 is expressed in the eye, anterior neural crest cells (NCCs) and prosencephalon of the South African clawed frog Xenopus laevis. Rbp1 knockdown led to defects in eye formation, including microphthalmia and disorganized retinal lamination, and to disturbed induction and differentiation of the eye field, as shown by decreased rax and pax6 expression. Furthermore, it resulted in reduced rax expression in the prosencephalon and affected cranial cartilage. Rbp1 inhibition also interfered with neural crest induction and migration, as shown by twist and slug. Moreover, it led to a significant reduction of the all-trans retinoic acid target gene pitx2 in NCC-derived periocular mesenchyme. The Rbp1 knockdown phenotypes were rescued by pitx2 RNA co-injection. CONCLUSION Rbp1 is crucial for the development of the anterior neural tissue.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Thomas Basten
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sara Greco
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lea Nies
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Nathalie Roßmanith
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Svenja Walter
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Sifuentes-Romero I, Ferrufino E, Thakur S, Laboissonniere LA, Solomon M, Smith CL, Keene AC, Trimarchi JM, Kowalko JE. Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:423-437. [PMID: 32614138 DOI: 10.1002/jez.b.22977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Evolution in similar environments often leads to convergence of behavioral and anatomical traits. A classic example of convergent trait evolution is the reduced traits that characterize many cave animals: reduction or loss of pigmentation and eyes. While these traits have evolved many times, relatively little is known about whether these traits repeatedly evolve through the same or different molecular and developmental mechanisms. The small freshwater fish, Astyanax mexicanus, provides an opportunity to investigate the repeated evolution of cave traits. A. mexicanus exists as two forms, a sighted, surface-dwelling form and at least 29 populations of a blind, cave-dwelling form that initially develops eyes that subsequently degenerate. We compared eye morphology and the expression of eye regulatory genes in developing surface fish and two independently evolved cavefish populations, Pachón and Molino. We found that many of the previously described molecular and morphological alterations that occur during eye development in Pachón cavefish are also found in Molino cavefish. However, for many of these traits, the Molino cavefish have a less severe phenotype than Pachón cavefish. Further, cave-cave hybrid fish have larger eyes and lenses during early development compared with fish from either parental population, suggesting that some different changes underlie eye loss in these two populations. Together, these data support the hypothesis that these two cavefish populations evolved eye loss independently, yet through some of the same developmental and molecular mechanisms.
Collapse
Affiliation(s)
| | - Estephany Ferrufino
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Sunishka Thakur
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Michael Solomon
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Courtney L Smith
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
7
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
8
|
Kon T, Furukawa T. Origin and evolution of the Rax homeobox gene by comprehensive evolutionary analysis. FEBS Open Bio 2020; 10:657-673. [PMID: 32144893 PMCID: PMC7137802 DOI: 10.1002/2211-5463.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Rax is one of the key transcription factors crucial for vertebrate eye development. In this study, we conducted comprehensive evolutionary analysis of Rax. We found that Bilateria and Cnidaria possess Rax, but Placozoa, Porifera, and Ctenophora do not, implying that the origin of the Rax gene dates back to the common ancestor of Cnidaria and Bilateria. The results of molecular phylogenetic and synteny analyses on Rax loci between jawed and jawless vertebrates indicate that segmental duplication of the Rax locus occurred in an early common ancestor of jawed vertebrates, resulting in two Rax paralogs in jawed vertebrates, Rax and Rax2. By analyzing 86 mammalian genomes from all four major groups of mammals, we found that at least five independent Rax2 gene loss events occurred in mammals. This study may provide novel insights into the evolution of the eye.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
10
|
Langer BE, Roscito JG, Hiller M. REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species. Mol Biol Evol 2019; 35:3027-3040. [PMID: 30256993 PMCID: PMC6278867 DOI: 10.1093/molbev/msy187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genomic determinants of morphological differences between species is key to understanding how morphological diversity evolved. While differences in cis-regulatory elements are an important genetic source for morphological evolution, it remains challenging to identify regulatory elements involved in phenotypic differences. Here, we present Regulatory Element forward genomics (REforge), a computational approach that detects associations between transcription factor binding site divergence in putative regulatory elements and phenotypic differences between species. By simulating regulatory element evolution in silico, we show that this approach has substantial power to detect such associations. To validate REforge on real data, we used known binding motifs for eye-related transcription factors and identified significant binding site divergence in vision-impaired subterranean mammals in 1% of all conserved noncoding elements. We show that these genomic regions are significantly enriched in regulatory elements that are specifically active in mouse eye tissues, and that several of them are located near genes, which are required for eye development and photoreceptor function and are implicated in human eye disorders. Thus, our genome-wide screen detects widespread divergence of eye-regulatory elements and highlights regulatory regions that likely contributed to eye degeneration in subterranean mammals. REforge has broad applicability to detect regulatory elements that could be involved in many other phenotypes, which will help to reveal the genomic basis of morphological diversity.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
11
|
Brachet C, Kozhemyakina EA, Boros E, Heinrichs C, Balikova I, Soblet J, Smits G, Vilain C, Mathers PH. Truncating RAX Mutations: Anophthalmia, Hypopituitarism, Diabetes Insipidus, and Cleft Palate in Mice and Men. J Clin Endocrinol Metab 2019; 104:2925-2930. [PMID: 30811539 PMCID: PMC6543774 DOI: 10.1210/jc.2018-02316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT The transcription factor RAX is a paired-type homeoprotein that plays a critical role in eye and forebrain development of vertebrate species. RAX knockout mice have anophthalmia, cleft palate, and an abnormal hypothalamus and display perinatal lethality. In humans, homozygous or compound heterozygous RAX mutations have been reported to cause bilateral microphthalmia or anophthalmia without consistent associated features. Congenital hypopituitarism can be associated with various eye or craniofacial anomalies; however, the co-occurrence of congenital hypopituitarism, anophthalmia, cleft palate, and diabetes insipidus has been very rare. RESULTS We report the case of a child with anophthalmia, congenital hypopituitarism, diabetes insipidus, and bilateral cleft lip and palate who had a homozygous frameshift truncating mutation c.266delC (p.Pro89Argfs*114) in exon 1 of the RAX gene. Rax knockout mice show loss of ventral forebrain structures, pituitary, and basosphenoid bone and palate and a misplaced anterior pituitary gland along the roof of the oral cavity. CONCLUSIONS Our patient's phenotype was more severe than that reported in other patients. Although most of the previously reported patients with RAX mutations showed either a missense or some less severe mutation in at least one of their RAX alleles, our patient was homozygous for truncating mutations that would yield a severe, null protein phenotype. The severity of the genetic defect, the precise match between the knockout mouse and the patient's endocrine phenotypes, and the prominent roles of RAX in eye and pituitary development and diencephalic patterning suggest that the RAX null mutations could fully account for the observed phenotype.
Collapse
Affiliation(s)
- Cécile Brachet
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Elena A Kozhemyakina
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Emese Boros
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Claudine Heinrichs
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Irina Balikova
- Pediatric Ophthalmology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter H Mathers
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
12
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
13
|
Flach H, Krieg J, Hoffmeister M, Dietmann P, Reusch A, Wischmann L, Kernl B, Riegger R, Oess S, Kühl SJ. Nosip functions during vertebrate eye and cranial cartilage development. Dev Dyn 2018; 247:1070-1082. [PMID: 30055071 DOI: 10.1002/dvdy.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nitric oxide synthase interacting protein (Nosip) has been associated with diverse human diseases including psychological disorders. In line, early neurogenesis of mouse and Xenopus is impaired upon Nosip deficiency. Nosip knockout mice show craniofacial defects and the down-regulation of Nosip in the mouse and Xenopus leads to microcephaly. Until now, the exact underlying molecular mechanisms of these malformations were still unknown. RESULTS Here, we show that nosip is expressed in the developing ocular system as well as the anterior neural crest cells of Xenopus laevis. Furthermore, Nosip inhibition causes severe defects in eye formation in the mouse and Xenopus. Retinal lamination as well as dorso-ventral patterning of the retina were affected in Nosip-depleted Xenopus embryos. Marker gene analysis using rax, pax6 and otx2 reveals an interference with the eye field induction and differentiation. A closer look on Nosip-deficient Xenopus embryos furthermore reveals disrupted cranial cartilage structures and an inhibition of anterior neural crest cell induction and migration shown by twist, snai2, and egr2. Moreover, foxc1 as downstream factor of retinoic acid signalling is affected upon Nosip deficiency. CONCLUSIONS Nosip is a crucial factor for the development of anterior neural tissue such the eyes and neural crest cells. Developmental Dynamics 247:1070-1082, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Julia Krieg
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Adrian Reusch
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Lisa Wischmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, Goethe University, Frankfurt Medical School, Frankfurt/Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Neuruppin, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Rodgers HM, Huffman VJ, Voronina VA, Lewandoski M, Mathers PH. The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 2018; 151:18-29. [PMID: 29665410 PMCID: PMC5972075 DOI: 10.1016/j.mod.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
The Retinal homeobox gene (Rx; also Rax) plays a crucial role in the early development of the vertebrate eye. Germline deletion of Rx in mice results in the failure of optic vesicle formation, leading to anophthalmia. Recent research using conditional mouse knockout models provides some clues to the role of Rx in eye development following optic vesicle formation. However, the functions of Rx in embryonic retinogenesis are still not fully understood. We investigated the function of Rx in the mouse neural retina using a conditional knockout where the Pax6α-Cre driver deletes Rx activity in early retinal progenitors. The deletion of Rx activity causes a loss of retinal lamination, a depletion of retinal progenitors, and a change in retinal cell fate in our conditional knockout model. The deletion of Rx leads to an absence of late-born retinal neurons (rods and bipolar cells) and Müller glia at postnatal ages, as well as a loss of the early-born cone photoreceptors. Decreased BrdU labeling in the Rx-deleted portion of the retina suggests a loss of retinal progenitors via early cell cycle exit, which likely prevents the formation of late-born cells. As early-born cells, cone photoreceptors should not be as affected by early cell cycle exit of retinal progenitors. However, embryonic cone photoreceptor labeling is also markedly reduced in Rx-deleted retinas. Together these data demonstrate the importance of Rx for retinal progenitor proliferation and a specific requirement of Rx for cone formation in mice.
Collapse
Affiliation(s)
- H M Rodgers
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V J Huffman
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Potomac State College of West Virginia University, Keyser, WV 26726, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - V A Voronina
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States; Biochemistry and Molecular Biology Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - M Lewandoski
- Laboratory of Cancer and Developmental Biology, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, United States
| | - P H Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Otolaryngology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Ophthalmology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
15
|
Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 2017; 7:9064. [PMID: 28831107 PMCID: PMC5567291 DOI: 10.1038/s41598-017-09276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Ocular coloboma is a common eye malformation arising from incomplete closure of the human optic fissure during development. Multiple genetic mutations contribute to the disease process, showing extensive genetic heterogeneity and complexity of coloboma spectrum diseases. In this study, we aimed to unravel the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis. The subjects were recruited and underwent specialized ophthalmologic clinical examination. A combination of whole exome sequencing (WES), homozygosity mapping, and comprehensive variant analyses was performed to uncover the causative mutation. Only one homozygous mutation (c.113 T > C, p.I38T) in RAX gene survived our strict variant filtering process, consistent with an autosomal recessive inheritance pattern. This mutation segregated perfectly in the family and is located in a highly conserved functional domain. Crystal structure modeling indicated that I38T affected the protein structure. We describe a patient from a consanguineous Chinese family with unusual coloboma, proven to harbor a novel RAX mutation (c.113 T > C, p.I38T, homozygous), expanding the phenotypic variability of ocular coloboma and RAX mutations.
Collapse
|
16
|
Seigfried FA, Cizelsky W, Pfister AS, Dietmann P, Walther P, Kühl M, Kühl SJ. Frizzled 3 acts upstream of Alcam during embryonic eye development. Dev Biol 2017; 426:69-83. [PMID: 28427856 DOI: 10.1016/j.ydbio.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022]
Abstract
Formation of a functional eye during vertebrate embryogenesis requires different processes such as cell differentiation, cell migration, cell-cell interactions as well as intracellular signalling processes. It was previously shown that the non-canonical Wnt receptor Frizzled 3 (Fzd3) is required for proper eye formation, however, the underlying mechanism is poorly understood. Here we demonstrate that loss of Fzd3 induces severe malformations of the developing eye and that this defect is phenocopied by loss of the activated leukocyte cell adhesion molecule (Alcam). Promoter analysis revealed the presence of a Fzd3 responsive element within the alcam promoter, which is responsible for alcam expression during anterior neural development. In-depth analysis identified the jun N-terminal protein kinase 1 (JNK1) and the transcription factor paired box 2 (Pax2) to be important for the activation of alcam expression. Altogether our study reveals that alcam is activated through non-canonical Wnt signalling during embryonic eye development in Xenopus laevis and shows that this pathway plays a similar role in different tissues.
Collapse
Affiliation(s)
- Franziska A Seigfried
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany; Tissue Homeostasis Joint-PhD-Programme in Cooperation with the University of Oulu, Finland
| | - Wiebke Cizelsky
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
17
|
Clinical utility gene card for: Non-Syndromic Microphthalmia Including Next-Generation Sequencing-Based Approaches. Eur J Hum Genet 2017; 25:ejhg2016201. [PMID: 28098148 DOI: 10.1038/ejhg.2016.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
|
18
|
Orquera DP, de Souza FSJ. Evolution of the Rax family of developmental transcription factors in vertebrates. Mech Dev 2016; 144:163-170. [PMID: 27838261 DOI: 10.1016/j.mod.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 02/09/2023]
Abstract
Rax proteins comprise a small family of paired-type, homeodomain-containing transcription factors with essential functions in eye and forebrain development. While invertebrates possess only one Rax gene, vertebrates can have several Rax paralogue genes, but the evolutionary history of the members of the family has not been studied in detail. Here, we present a thorough analysis of the evolutionary relationships between vertebrate Rax genes and proteins available in diverse genomic databases. Phylogenetic and synteny analyses indicate that Rax genes went through a duplication in an ancestor of all jawed vertebrates (Gnathostomata), giving rise to the ancestral vertebrate Rax1 and Rax2 genes. This duplication event is likely related to the proposed polyploidisations that occurred during early vertebrate evolution. Subsequent genome-wide duplications in the lineage of ray-finned fish (Actinopterygii) originated new Rax2 paralogues in the genomes of teleosts. In the lobe-finned fish lineage (Sarcopterygii), the N-terminal octapeptide domain of Rax2 was lost in a common ancestor of tetrapods, giving rise to a shorter version of Rax2 in this lineage. Within placental mammals, the Rax2 gene was lost altogether in an ancestor of rodents and lagomorphs (Glires). Finally, we discuss the scientific literature in the light of Rax gene evolution and propose new avenues of research on the function of this important family of transcriptional regulators.
Collapse
Affiliation(s)
- Daniela P Orquera
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | - Flávio S J de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
| |
Collapse
|
19
|
Laramée ME, Smolders K, Hu TT, Bronchti G, Boire D, Arckens L. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice. PLoS One 2016; 11:e0159320. [PMID: 27410964 PMCID: PMC4943598 DOI: 10.1371/journal.pone.0159320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.
Collapse
Affiliation(s)
- Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Katrien Smolders
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Gilles Bronchti
- Département d’anatomie, Université du Québec à Trois-Rivières, Québec, Canada
| | - Denis Boire
- Département d’anatomie, Université du Québec à Trois-Rivières, Québec, Canada
- École d’optométrie, Université de Montréal, Québec, Canada
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| |
Collapse
|
20
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Mauri L, Franzoni A, Scarcello M, Sala S, Garavelli L, Modugno A, Grammatico P, Patrosso MC, Piozzi E, Del Longo A, Gesu GP, Manfredini E, Primignani P, Damante G, Penco S. SOX2, OTX2 and PAX6 analysis in subjects with anophthalmia and microphthalmia. Eur J Med Genet 2014; 58:66-70. [PMID: 25542770 DOI: 10.1016/j.ejmg.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/04/2014] [Indexed: 01/31/2023]
Abstract
Anophthalmia (A) and microphthalmia (M) are rare developmental anomalies that have significant effects on visual activity. In fraction of A/M subjects, single genetic defects have been identified as causative. In this study we analysed 65 Italian A/M patients, 21 of whom are syndromic, for mutations in SOX2, OTX2 and PAX6 genes. In syndromic patients the presence of genome imbalances through array CGH was also investigated. No mutations were found for OTX2 and PAX6 genes. Three causative SOX2 mutations were found in subjects with syndromic A. In a subject with syndromic signs and monolateral M, two de novo 6.26 Mb and 1.37 Mb deletions in 4q13.2q13.3 have been identified. A SOX2 missense (p.Ala161Ser) mutation was found in 1 out of 39 a subject with non-syndromic monolateral M. Alanine at position 161 is conserved along phylogeny and the p.Ala161Ser mutation is estimated pathogenic by in silico analysis. However, this mutation was also present in the unaffected patient's daughter.
Collapse
Affiliation(s)
- Lucia Mauri
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Alessandra Franzoni
- Institute of Genetics, Azienda Ospedaliero-Universitaria Udine, Udine, Italy
| | - Manuela Scarcello
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Stefano Sala
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Livia Garavelli
- Clinical Genetics Unit, IRCCS Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | | | - Paola Grammatico
- Department of Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Maria Cristina Patrosso
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Elena Piozzi
- Pediatric Ophthalmology, Niguarda Ca' Granda Hospital, Milan, Italy
| | | | - Giovanni P Gesu
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Emanuela Manfredini
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Paola Primignani
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Giuseppe Damante
- Institute of Genetics, Azienda Ospedaliero-Universitaria Udine, Udine, Italy; Department of Medical and Biological Sciences, Udine University, Udine, Italy.
| | - Silvana Penco
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy.
| |
Collapse
|
22
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
23
|
Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T, Tech S, Guthoff RF, van Heyningen V, Fitzpatrick DR. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 2013; 1:15-31. [PMID: 24498598 PMCID: PMC3893155 DOI: 10.1002/mgg3.2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023] Open
Abstract
Clinical evaluation and mutation analysis was performed in 51 consecutive probands with severe eye malformations - anophthalmia and/or severe microphthalmia - seen in a single specialist ophthalmology center. The mutation analysis consisted of bidirectional sequencing of the coding regions of SOX2, OTX2, PAX6 (paired domain), STRA6, BMP4, SMOC1, FOXE3, and RAX, and genome-wide array-based copy number assessment. Fifteen (29.4%) of the 51 probands had likely causative mutations affecting SOX2 (9/51), OTX2 (5/51), and STRA6 (1/51). Of the cases with bilateral anophthalmia, 9/12 (75%) were found to be mutation positive. Three of these mutations were large genomic deletions encompassing SOX2 (one case) or OTX2 (two cases). Familial inheritance of three intragenic, plausibly pathogenic, and heterozygous mutations was observed. An unaffected carrier parent of an affected child with an identified OTX2 mutation confirmed the previously reported nonpenetrance for this disorder. Two families with SOX2 mutations demonstrated a parent and child both with significant but highly variable eye malformations. Heterozygous loss-of-function mutations in SOX2 and OTX2 are the most common genetic pathology associated with severe eye malformations and bi-allelic loss-of-function in STRA6 is confirmed as an emerging cause of nonsyndromal eye malformations.
Collapse
Affiliation(s)
| | - Kathleen Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital Edinburgh, EH4 2XU, United Kingdom
| | - Morad Ansari
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital Edinburgh, EH4 2XU, United Kingdom
| | - Jacqueline K Rainger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital Edinburgh, EH4 2XU, United Kingdom
| | - Volker Hingst
- Department of Radiology, University of Rostock Germany
| | | | - Stefani Tech
- Department of Ophthalmology, University of Rostock Germany
| | | | - Veronica van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital Edinburgh, EH4 2XU, United Kingdom
| | - David R Fitzpatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
24
|
RAX and anophthalmia in humans: evidence of brain anomalies. Mol Vis 2012; 18:1449-56. [PMID: 22736936 PMCID: PMC3380941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/30/2012] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. METHODS Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR amplification. RESULTS Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2), ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2). CONCLUSIONS This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need to be characterized.
Collapse
|
25
|
Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104:448-56. [PMID: 22005280 PMCID: PMC3224152 DOI: 10.1016/j.ymgme.2011.09.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33-95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, oculofaciocardiodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.
| |
Collapse
|
26
|
Reis LM, Khan A, Kariminejad A, Ebadi F, Tyler RC, Semina EV. VSX2 mutations in autosomal recessive microphthalmia. Mol Vis 2011; 17:2527-32. [PMID: 21976963 PMCID: PMC3185030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To further explore the spectrum of mutations in the Visual System Homeobox 2 (VSX2/CHX10) gene previously found to be associated with autosomal recessive microphthalmia. METHODS We screened 95 probands with syndromic or isolated developmental ocular conditions (including 55 with anophthalmia/microphthalmia) for mutations in VSX2. RESULTS Homozygous mutations in VSX2 were identified in two out of five consanguineous families with isolated microphthalmia. A novel missense mutation, c.668G>C (p.G223A), was identified in a large Pakistani family with multiple sibships affected with bilateral microphthalmia. This p.G223A mutation affects the conserved CVC motif that was shown to be important for DNA binding and repression activities of VSX2. The second mutation, c.249delG (p.Leu84SerfsX57), was identified in an Iranian family with microphthalmia; this mutation has been previously reported and is predicted to generate a severely truncated mutant protein completely lacking the VSX2 homeodomain, CVC domain and COOH-terminal regions. CONCLUSIONS Mutations in VSX2 represent an important cause of autosomal recessive microphthalmia in consanguineous pedigrees. Identification of a second missense mutation in the CVC motif emphasizes the importance of this region for normal VSX2 function.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Ayesha Khan
- Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | | | - Farhad Ebadi
- Diana Genetic Counseling Center, Kohkilooyeh Boyer Ahmad, Iran
| | - Rebecca C. Tyler
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
27
|
Desmaison A, Vigouroux A, Rieubland C, Peres C, Calvas P, Chassaing N. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia. Mol Vis 2010; 16:2847-9. [PMID: 21203406 PMCID: PMC3012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/15/2010] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. METHODS Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. RESULTS Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. CONCLUSIONS Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia.
Collapse
Affiliation(s)
- Annaïck Desmaison
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Adeline Vigouroux
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France,CHU Toulouse, Hôpital Purpan, Service de Génétique Médicale, Toulouse, France,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Claudine Rieubland
- Division of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christine Peres
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Patrick Calvas
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France,CHU Toulouse, Hôpital Purpan, Service de Génétique Médicale, Toulouse, France,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Chassaing
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France,CHU Toulouse, Hôpital Purpan, Service de Génétique Médicale, Toulouse, France,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
28
|
Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV. FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 2010; 152A:582-90. [PMID: 20140963 DOI: 10.1002/ajmg.a.33257] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FOXE3 forkhead transcription factor is essential to lens development in vertebrates. The eyes of Foxe3/foxe3-deficient mice and zebrafish fail to develop normally. In humans, autosomal dominant and recessive mutations in FOXE3 have been associated with variable phenotypes including anterior segment anomalies, cataract, and microphthalmia. We undertook sequencing of FOXE3 in 116 probands with a spectrum of ocular defects ranging from anterior segment dysgenesis and cataract to anophthalmia/microphthalmia. Recessive mutations in FOXE3 were found in four of 26 probands affected with bilateral microphthalmia (15% of all bilateral microphthalmia and 100% of consanguineous families with this phenotype). FOXE3-positive microphthalmia was accompanied by aphakia and/or corneal defects; no other associated systemic anomalies were observed in FOXE3-positive families. The previously reported c.720C > A (p.C240X) nonsense mutation was identified in two additional families in our sample and therefore appears to be recurrent, now reported in three independent microphthalmia families of varied ethnic backgrounds. Several missense variants were identified at varying frequencies in patient and control groups with some apparently being race-specific, which underscores the importance of utilizing race/ethnicity-matched control populations in evaluating the relevance of genetic screening results. In conclusion, FOXE3 mutations represent an important cause of nonsyndromic autosomal recessive bilateral microphthalmia.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The vertebrate eye comprises tissues from different embryonic origins: the lens and the cornea are derived from the surface ectoderm, but the retina and the epithelial layers of the iris and ciliary body are from the anterior neural plate. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects in zebrafishes, mouse, and human has been an important tool for the detailed analysis of this complex process. A single eye field forms centrally within the anterior neural plate during gastrulation; it is characterized on the molecular level by the expression of "eye-field transcription factors." The single eye field is separated into two, forming the optic vesicle and later (under influence of the lens placode) the optic cup. The lens develops from the lens placode (surface ectoderm) under influence of the underlying optic vesicle. Pax6 acts in this phase as master control gene, and genes encoding cytoskeletal proteins, structural proteins, or membrane proteins become activated. The cornea forms from the surface ectoderm, and cells from the periocular mesenchyme migrate into the cornea giving rise for the future cornea stroma. Similarly, the iris and ciliary body form from the optic cup. The outer layer of the optic cup becomes the retinal pigmented epithelium, and the main part of the inner layer of the optic cup forms later the neural retina with six different types of cells including the photoreceptors. The retinal ganglion cells grow toward the optic stalk forming the optic nerve. This review describes the major molecular players and cellular processes during eye development as they are known from frogs, zebrafish, chick, and mice-showing also differences among species and missing links for future research. The relevance to human disorders is one of the major aspects covered throughout the review.
Collapse
Affiliation(s)
- Jochen Graw
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| |
Collapse
|
30
|
Zhang X, Li S, Xiao X, Jia X, Wang P, Shen H, Guo X, Zhang Q. Mutational screening of 10 genes in Chinese patients with microphthalmia and/or coloboma. Mol Vis 2009; 15:2911-8. [PMID: 20057906 PMCID: PMC2802294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/22/2009] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To screen ten genes for mutations in 32 Chinese patients with microphthalmia and/or coloboma. METHODS Genomic DNA was prepared from 32 unrelated patients with microphthalmia (nine probands) and uveal coloboma (23 probands). Cycle sequencing was used to detect sequence variations in ten genes, including BMP4, VSX2, CRYBA4, GDF6, OTX2, RAX, SIX3, SIX6, SOX2, and LRP6. Variations were further evaluated in 96 unrelated controls by using restriction fragment length polymorphism (RFLP) or heteroduplex-single strand conformation polymorphism (HA-SSCP) analysis. RESULTS In the ten genes, a novel c.751C>T (p.H251Y) in BMP4 was detected in a patient with bilateral microphthalmia and unilateral cataract. The c.751C>T variation is also present in his healthy brother (and possibly one of the normal parents). In addition, a novel c.608G>A (p.R203Q) in SIX6 was identified in an internal control for optimizing experimental conditions. The internal control was from a girl with typical aniridia and an identified c.718C>T (p.R240X) mutation in PAX6, suggesting the c.608G>A variation in SIX6 was unlikely to play a role in her ocular phenotype. The c.751C>T in BMP4 and the c.608G>A in SIX6 were not present in the 96 normal controls. In addition, 16 nucleotide substitutions, including eight known SNPs and eight new synonymous changes, were detected. CONCLUSIONS Although the genetic etiology for microphthalmia and/or coloboma is still elusive, rare variations in the related genes, such as c.608 G>A in SIX6 and c.751C>T in BMP4, may not be causative. These results further emphasize the importance of careful clinical and genetic analysis in making mutation-disease associations.
Collapse
|
31
|
Chassaing N, Vigouroux A, Calvas P. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia. Genet Test Mol Biomarkers 2009; 13:289-90. [PMID: 19397404 DOI: 10.1089/gtmb.2008.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. METHODS Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. RESULTS No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. CONCLUSIONS Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.
Collapse
|
32
|
Sequence alterations in RX in patients with microphthalmia, anophthalmia, and coloboma. Mol Vis 2009; 15:162-7. [PMID: 19158959 PMCID: PMC2628315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Microphthalmia, anophthalmia, and coloboma are ocular malformations with a significant genetic component. Rx is a homeobox gene expressed early in the developing retina and is important in retinal cell fate specification as well as stem cell proliferation. We screened a group of 24 patients with microphthalmia, coloboma, and/or anophthalmia for RX mutations. METHODS We used standard PCR and automated sequencing techniques to amplify and sequence each of the three RX exons. Patients' charts were reviewed for clinical information. The pathologic impact of the identified sequence variant was analyzed by computational methods using PolyPhen and PMut algorithms. RESULTS In addition to the polymorphisms we identified a single patient with coloboma having a heterozygous nucleotide change (g.197G>C) in the first exon that results in a missense mutation of arginine to threonine at amino acid position 66 (R66T). In silico analysis predicted R66T to be a deleterious mutation. CONCLUSIONS Sequence variations in RX are uncommon in patients with congenital ocular malformations, but may play a role in disease pathogenesis. We observed a missense mutation in RX in a patient with a small, typical chorioretinal coloboma, and postulate that the mutation is responsible for the patient's phenotype.
Collapse
|