1
|
He T, Geng X, Zhu L, Lin X, Wang L. Type II Crigler-Najjar syndrome: a case report and literature review. Front Med (Lausanne) 2024; 11:1354514. [PMID: 38784231 PMCID: PMC11112071 DOI: 10.3389/fmed.2024.1354514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Background Crigler-Najjar syndrome (CNS) is caused by mutations in uridine 5'-diphosphate glucuronyltransferase (UGT1A1) resulting in enzyme deficiency and hyperbilirubinemia. Type II CNS patients could respond to phenobarbital treatment and survive. This study presents a rare case of type II CNS. Case summary The proband was a 29-year-old male patient admitted with severe jaundice. A hepatic biopsy showed bullous steatosis of the peri-central veins of the hepatic lobule, sediment of bile pigment, and mild periportal inflammation with normal liver plate structure. The type II CNS was diagnosed by routine genomic sequencing which found that the proband with the Gry71Arg/Tyr486Asp compound heterozygous mutations in the UGT1A1 gene. After treatment with phenobarbital (180 mg/day), his bilirubin levels fluctuated between 100 and 200 μmol/L for 6 months and without severe icterus. Conclusion Type II CNS could be diagnosed by routine gene sequencing and treated by phenobarbital.
Collapse
Affiliation(s)
| | | | - Lei Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Lixia Wang
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Giancotti A, D'Ambrosio V, Corno S, Pajno C, Carpino G, Amato G, Vena F, Mondo A, Spiniello L, Monti M, Muzii L, Bosco D, Gaudio E, Alvaro D, Cardinale V. Current protocols and clinical efficacy of human fetal liver cell therapy in patients with liver disease: A literature review. Cytotherapy 2022; 24:376-384. [DOI: 10.1016/j.jcyt.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022]
|
3
|
Bierwolf J, Volz T, Lütgehetmann M, Allweiss L, Riecken K, Warlich M, Fehse B, Kalff JC, Dandri M, Pollok JM. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer. Tissue Eng Part A 2017; 22:742-53. [PMID: 27068494 PMCID: PMC4876526 DOI: 10.1089/ten.tea.2015.0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo.
Collapse
Affiliation(s)
- Jeanette Bierwolf
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Tassilo Volz
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Marc Lütgehetmann
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lena Allweiss
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kristoffer Riecken
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Michael Warlich
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Boris Fehse
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joerg C Kalff
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Maura Dandri
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,5 German Center for Infection Research , Hamburg-Lübeck-Borstel Partner Site, Hamburg, Germany
| | - Joerg-Matthias Pollok
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| |
Collapse
|
4
|
Horner R, Kluge M, Gassner J, Nösser M, Major RD, Reutzel-Selke A, Leder AK, Struecker B, Morgul MH, Pratschke J, Sauer IM, Raschzok N. Hepatocyte Isolation After Laparoscopic Liver Resection. Tissue Eng Part C Methods 2016; 22:839-46. [DOI: 10.1089/ten.tec.2016.0187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Rosa Horner
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Martin Kluge
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Joseph Gassner
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Maximilian Nösser
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Rebeka Dalma Major
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Annekatrin K. Leder
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Benjamin Struecker
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Mehmet H. Morgul
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
- BIH Charité Clinican Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
5
|
Kluge M, Reutzel-Selke A, Napierala H, Hillebrandt KH, Major RD, Struecker B, Leder A, Siefert J, Tang P, Lippert S, Sallmon H, Seehofer D, Pratschke J, Sauer IM, Raschzok N. Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome? Tissue Eng Part C Methods 2015; 22:38-48. [PMID: 26449914 DOI: 10.1089/ten.tec.2015.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic activity of cultured hepatocytes. Although PVE leads to drastic metabolic alterations and changes in hepatic blood flow, embolized liver tissue is a suitable source for the isolation of primary human hepatocytes and is equivalent to untreated liver tissue in regard to cell yield and viability.
Collapse
Affiliation(s)
- Martin Kluge
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Anja Reutzel-Selke
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Hendrik Napierala
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Karl Herbert Hillebrandt
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Rebeka Dalma Major
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Benjamin Struecker
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Annekatrin Leder
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Jeffrey Siefert
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Peter Tang
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Steffen Lippert
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Hannes Sallmon
- 2 Neonatology, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Daniel Seehofer
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Johann Pratschke
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Igor M Sauer
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Nathanael Raschzok
- 1 General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
6
|
Roach DR, Garrett WM, Welch G, Caperna TJ, Talbot NC, Shapiro EM. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation. PLoS One 2015; 10:e0123282. [PMID: 25856627 PMCID: PMC4391930 DOI: 10.1371/journal.pone.0123282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023] Open
Abstract
Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP) and stem cell-derived hepatocytes (PICM-19FF). The magnetic particle is a micron-sized iron oxide particle (MPIO) that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.
Collapse
Affiliation(s)
- Dwayne R. Roach
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Wesley M. Garrett
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Glenn Welch
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Thomas J. Caperna
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Neil C. Talbot
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Erik M. Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, Huemer M, Hochuli M, Assoun M, Ballhausen D, Burlina A, Fowler B, Grünert SC, Grünewald S, Honzik T, Merinero B, Pérez-Cerdá C, Scholl-Bürgi S, Skovby F, Wijburg F, MacDonald A, Martinelli D, Sass JO, Valayannopoulos V, Chakrapani A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014; 9:130. [PMID: 25205257 PMCID: PMC4180313 DOI: 10.1186/s13023-014-0130-8] [Citation(s) in RCA: 419] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100’000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim to provide a trans-European consensus to guide practitioners, set standards of care and to help to raise awareness. To achieve these goals, the guidelines were developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the U.S. gather all the existing evidence, score it according to the SIGN evidence level system and make a series of conclusive statements supported by an associated level of evidence. Although the degree of evidence rarely exceeds level C (evidence from non-analytical studies like case reports and series), the guideline should provide a firm and critical basis to guide practice on both acute and chronic presentations, and to address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Furthermore, these guidelines highlight gaps in knowledge that must be filled by future research. We consider that these guidelines will help to harmonize practice, set common standards and spread good practices, with a positive impact on the outcomes of MMA/PA patients.
Collapse
|
8
|
Mazariegos G, Shneider B, Burton B, Fox IJ, Hadzic N, Kishnani P, Morton DH, McIntire S, Sokol RJ, Summar M, White D, Chavanon V, Vockley J. Liver transplantation for pediatric metabolic disease. Mol Genet Metab 2014; 111:418-27. [PMID: 24495602 DOI: 10.1016/j.ymgme.2014.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Abstract
Liver transplantation (LTx) was initially developed as a therapy for liver diseases known to be associated with a high risk of near-term mortality but is based upon a different set of paradigms for inborn metabolic diseases. As overall outcomes for the procedure have improved, LTx has evolved into an attractive approach for a growing number of metabolic diseases in a variety of clinical situations. No longer simply life-saving, the procedure can lead to a better quality of life even if not all symptoms of the primary disorder are eliminated. Juggling the risk-benefit ratio thus has become more complicated as the list of potential disorders amenable to treatment with LTx has increased. This review summarizes presentations from a recent conference on metabolic liver transplantation held at the Children's Hospital of Pittsburgh of UPMC on the role of liver or hepatocyte transplantation in the treatment of metabolic liver disease.
Collapse
Affiliation(s)
- George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Benjamin Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, 7th Floor, Pittsburgh, PA 15224, USA.
| | - Barbara Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine/Ann & Robert H. Lurie Children's Hospital of Chicago, Box MC 59, 225 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Ira J Fox
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nedim Hadzic
- King's College Hospital, Paediatric Liver Center, London, UK.
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC 103856, 595 Lasalle Street, GSRB 1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - D Holmes Morton
- Franklin and Marshall College, Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA.
| | - Sara McIntire
- Department of Pediatrics, Paul C. Gaffney Diagnostic Referral Service, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Suite Floor 3, Pittsburgh, PA 15224, USA.
| | - Ronald J Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Section of Gastroenterology, Hepatology and Nutrition, 13123 E. 16th Avenue, B290, Aurora, CO 80045-7106, USA.
| | - Marshall Summar
- Division of Genetics and Metabolism, George Washington University, Children's National Medical Center, Center for Genetic Medicine Research (CGMR), 111 Michigan Avenue, NW, Washington, DC 20010-2970, USA.
| | - Desiree White
- Department of Psychology, Washington University, Psychology Building, Room 221, Campus Box 1125, St. Louis, MO 63130-4899, USA.
| | - Vincent Chavanon
- Division of Plastic and Reconstructive Surgery, Mount Sinai Hospital, 5 East 98th Street, 15th Floor, New York, NY 10029, USA.
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
9
|
Abstract
The treatment of end-stage liver disease and acute liver failure remains a clinically relevant issue. Although orthotopic liver transplantation is a well-established procedure, whole-organ transplantation is invasive and increasingly limited by the unavailability of suitable donor organs. Artificial and bioartificial liver support systems have been developed to provide an alternative to whole organ transplantation, but despite three decades of scientific efforts, the results are still not convincing with respect to clinical outcome. In this Review, conceptual limitations of clinically available liver support therapy systems are discussed. Furthermore, alternative concepts, such as hepatocyte transplantation, and cutting-edge developments in the field of liver support strategies, including the repopulation of decellularized organs and the biofabrication of entirely new organs by printing techniques or induced organogenesis are analysed with respect to clinical relevance. Whereas hepatocyte transplantation shows promising clinical results, at least for the temporary treatment of inborn metabolic diseases, so far data regarding implantation of engineered hepatic tissue have only emerged from preclinical experiments. However, the evolving techniques presented here raise hope for bioengineered liver support therapies in the future.
Collapse
|
10
|
Shigeta T, Hsu HC, Enosawa S, Matsuno N, Kasahara M, Matsunari H, Umeyama K, Watanabe M, Nagashima H. Transgenic pig expressing the red fluorescent protein kusabira-orange as a novel tool for preclinical studies on hepatocyte transplantation. Transplant Proc 2013; 45:1808-10. [PMID: 23769049 DOI: 10.1016/j.transproceed.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Research on hepatocyte transplantation as an alternative or supplementary treatment for liver transplantation is progressing. However, to advance to clinical trials, confidence in the technique must be established and its safety must be validated by conducting experiments using animals of comparable sizes to humans, such as pigs. We used transgenic pigs expressing red fluorescence protein for investigating the distribution and survival of transplanted cells. MATERIALS AND METHODS Donor hepatocytes were isolated from transgenic Kusabira-Orange (KO)-expressing pigs (age, 41 days; weight, 10 kg) created by in vitro fertilization using sperm from a transgenic-cloned KO pig by Matsunari et al. and ova from a domestic pig. The hepatocyte transplant recipients were the nontransgenic, KO-negative littermates. In these recipient pigs, double lumen cannulae were inserted into the supramesenteric veins to access the hepatic portal region. KO-positive donor hepatocytes from the transgenic male pig were isolated using collagenase perfusion. Hepatocytes (1 × 10(9) cells) were transplanted through the cannula. For estimating allogeneic immunogenicity, full-thickness skin (3 × 3 cm) from the same donor was grafted orthotopically on the neck region of the recipients. Immunosuppressive treatment was not implemented. The recipient pigs were humanely killed at 7 and 39 days after transplantation, and the organs were harvested, including the lungs, heart, liver, pancreas, and kidneys. RESULTS Strong red fluorescence was detected in both the parenchymal and nonparenchymal hepatocytes of the transgenic male donor pig by fluorescent microscopy. Transplanted cells were detected in the liver and lung of the recipient pigs at 7 days after perfusion. Hepatocytes remained in the liver and lung of recipients on day 39, with lower numbers than that on day 7. CONCLUSION Transgenic pigs expressing the fluorescent protein KO serve as a useful model of cell transplantation in preclinical studies.
Collapse
Affiliation(s)
- T Shigeta
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Symptoms of hyperammonemia occur in patients irrespective of the kind of metabolic diseases. Age, metabolic and nutritional status, and decompensation factors such as infections influence clinical manifestations. Prolonged, untreated hyperammonemia leads to brain injury and intellectual disability. Treatment is directed at lowering plasma ammonia. Brain ammonium concentrations are 1.5 to 3.0 times higher than that in blood. REVIEW SUMMARY The authors discuss the pathophysiology of the symptoms and consequences of hyperammonemia in children, focusing on the metabolic disorders leading to an increased level of ammonia. CONCLUSIONS Ammonia toxicity has been investigated for a long time. According to the main hypotheses, the neurological alterations are connected to alterations in glutamatergic neurotransmission.
Collapse
|
12
|
Tu ZH, Shang DS, Jiang JC, Zhang W, Zhang M, Wang WL, Lou HY, Zheng SS. Liver transplantation in Crigler-Najjar syndrome type I disease. Hepatobiliary Pancreat Dis Int 2012; 11:545-8. [PMID: 23060403 DOI: 10.1016/s1499-3872(12)60222-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Crigler-Najjar syndrome type I (CNS I) is a very rare autosomal recessive inherited disease that liver transplantation can properly deal with. METHODS We present one case of an 18-month-old child with CNS I diagnosed by clinical findings and genetic detecting. LTx was performed 5 days after kernicterus broke out and neurological symptoms were successfully reversed. RESULT Magnetic resonance imaging and magnetic resonance spectroscopy showed encouraging results that brain pathology had a trend to return to normal in 1-year follow-up, combined with electroencephalogram and motor development estimate studies. CONCLUSIONS Liver transplantation can cure CNS I with reversible neurological symptoms to some extent in time. Magnetic resonance spectroscopy may be a future option of predicting brain conditions and selecting suitable patients with CNS I for transplantation.
Collapse
Affiliation(s)
- Zhen-Hua Tu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health & Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Allameh A, Kazemnejad S. Safety evaluation of stem cells used for clinical cell therapy in chronic liver diseases; with emphasize on biochemical markers. Clin Biochem 2012; 45:385-96. [PMID: 22306885 DOI: 10.1016/j.clinbiochem.2012.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022]
Abstract
There are several issues to be considered to reduce the risk of rejection and minimize side effects associated with liver cell transplantation in chronic liver diseases. The source and the condition of stem cell proliferation and differentiation ex vivo and the transplantation protocols are important safety considerations for cell based therapy. The biochemical and molecular markers are important tools for safety evaluation of different processes of cell expansion and transplantation. Studies show that hepatocytes differentiated from adult and embryonic stem cells exhibit biochemical and metabolic properties resembling mature hepatocytes. Therefore these assays can help to assess the biological and metabolic performance of hepatocytes and progenitor stem cells. The assays also help in testing the contribution of transplanted hepatocytes in improving the repair and function of damaged liver in the recipient. Here we review the biochemical and metabolic markers, which are implicated in evaluation of safety issues of stem cells used for therapeutic purposes in chronic liver diseases and regeneration of damaged liver. We also highlight application of biochemical tests for assessment of liver cell transplantation.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Islamic Republic of Iran.
| | | |
Collapse
|
15
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|