1
|
Pham JH, Razonable RR. Management of resistant and refractory cytomegalovirus infections after transplantation. Expert Rev Anti Infect Ther 2024; 22:855-866. [PMID: 39225411 DOI: 10.1080/14787210.2024.2399647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a classic opportunistic infection in transplant recipients. Treatment-refractory CMV infections are of concern, with growing identification of strains that have developed genetic mutations which confer resistance to standard antiviral therapy. Resistant and refractory CMV infections are associated with worse patient outcomes, prolonged hospitalization, and increased healthcare costs. AREAS COVERED This article provides a comprehensive practical overview of resistant and refractory CMV infections in transplant recipients. We review the updated definitions for these infections, antiviral pharmacology, mechanisms of drug resistance, diagnostic workup, management strategies, and host-related factors including immune optimization. EXPERT OPINION Resistant and refractory CMV infections are a significant contributor to post-transplant morbidity and mortality. This is likely the result of a combination of prolonged antiviral exposure and active viral replication in the setting of intensive pharmacologic immunosuppression. Successful control of resistant and refractory infections in transplant recipients requires a combination of immunomodulatory optimization and appropriate antiviral drug choice with sufficient treatment duration.
Collapse
Affiliation(s)
- Justin H Pham
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Torii Y, Horiba K, Kawada JI, Haruta K, Yamaguchi M, Suzuki T, Uryu H, Kashiwa N, Goishi K, Ogi T, Ito Y. Detection of antiviral drug resistance in patients with congenital cytomegalovirus infection using long-read sequencing: a retrospective observational study. BMC Infect Dis 2022; 22:568. [PMID: 35733089 PMCID: PMC9219161 DOI: 10.1186/s12879-022-07537-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital human cytomegalovirus (cCMV) infection can cause sensorineural hearing loss and neurodevelopmental disabilities in children. Ganciclovir and valganciclovir (GCV/VGCV) improve long-term audiologic and neurodevelopmental outcomes for patients with cCMV infection; however, antiviral drug resistance has been documented in some cases. Long-read sequencing can be used for the detection of drug resistance mutations. The objective of this study was to develop full-length analysis of UL97 and UL54, target genes with mutations that confer GCV/VGCV resistance using long-read sequencing, and investigate drug resistance mutation in patients with cCMV infection. METHODS Drug resistance mutation analysis was retrospectively performed in 11 patients with cCMV infection treated with GCV/VGCV. UL97 and UL54 genes were amplified using blood DNA. The amplicons were sequenced using a long-read sequencer and aligned with the reference gene. Single nucleotide variants were detected and replaced with the reference sequence. The replaced sequence was submitted to a mutation resistance analyzer, which is an open platform for drug resistance mutations. RESULTS Two drug resistance mutations (UL54 V823A and UL97 A594V) were found in one patient. Both mutations emerged after 6 months of therapy, where viral load increased. Mutation rates subsided after cessation of GCV/VGCV treatment. CONCLUSIONS Antiviral drug resistance can emerge in patients with cCMV receiving long-term therapy. Full-length analysis of UL97 and UL54 via long-read sequencing enabled the rapid and comprehensive detection of drug resistance mutations.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan.,Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Hideko Uryu
- Department of Pediatrics, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, Japan
| | - Naoyuki Kashiwa
- Department of Pediatrics, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, Japan
| | - Keiji Goishi
- Department of Pediatrics, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan. .,Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, 173-8610, Tokyo, Japan.
| |
Collapse
|
3
|
Jorgenson MR, Descourouez JL, Redfield RR, Smith JA, Mandelbrot DA. Demonstration of Resistant or Wild-Type Virus in Recurrent Viremia After Ganciclovir-Resistant Cytomegaloviral Infection. Ann Pharmacother 2018; 52:650-654. [DOI: 10.1177/1060028018760578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Ganciclovir-resistant cytomegalovirus (GR-CMV) is a serious complication of transplantation. Recurrence after primary infection is common. Little is known about CMV drug resistance and latency. Objective: Review CMV genotype during episodes of recurrent CMV viremia after prior documentation of ganciclovir resistance to evaluate if resistance is redemonstrated. Methods: All adult transplant recipients with history of GR-CMV viremia from January 1, 2011, to December 31, 2015, were screened; those with subsequent laboratory evidence of recurrent CMV viremia and genotyping were included. Results: A total of 23 patients had genetically confirmed GR-CMV within the study time period; 14 were excluded due to lack of repeat resistance testing at recurrence and 4 due to of lack of negativity between testing, leaving 5 patients with 7 episodes of recurrent viremia to evaluate. At first recurrent viremia, 4 patients (80%) demonstrated resistant genotype; 1 patient had wild type. Two patients went on to have a second viremia recurrence; both demonstrated wild-type genotype, despite the fact that the first recurrence in these patients was resistant genotype. Conclusion: In transplant recipients with history of GR-CMV, it appears that there is strain variability in latency: repeat genetic testing in patients with recurrent viremia after GR-CMV should be conducted. In the setting of wild-type repopulation, use of GCV should be considered.
Collapse
Affiliation(s)
| | | | - Robert R. Redfield
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jeannina A. Smith
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Didier A. Mandelbrot
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Volfova P, Lengerova M, Lochmanova J, Dvorakova D, Ricna D, Palackova M, Weinbergerova B, Mayer J, Racil Z. Detecting human cytomegalovirus drug resistant mutations and monitoring the emergence of resistant strains using real-time PCR. J Clin Virol 2014; 61:270-4. [DOI: 10.1016/j.jcv.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
5
|
Choi KY, Sharon B, Balfour HH, Belani K, Pozos TC, Schleiss MR. Emergence of antiviral resistance during oral valganciclovir treatment of an infant with congenital cytomegalovirus (CMV) infection. J Clin Virol 2013; 57:356-60. [PMID: 23688863 DOI: 10.1016/j.jcv.2013.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 01/11/2023]
Abstract
Congenital infection with human cytomegalovirus (CMV) is a major cause of morbidity, including sensorineural hearing loss (SNHL), in newborns. Antiviral therapy with ganciclovir (GCV) and its oral prodrug, valganciclovir (VAL-GCV) are increasingly being administered to infected infants, toward the goal of improving neurodevelopmental and auditory outcomes. In this case report, we describe a symptomatic congenitally infected infant treated with VAL-GCV in whom GCV resistance was suspected, based on a 50-fold increase in viral load after 6 weeks of oral therapy. Analyses of CMV sequences from both blood and urine demonstrated populations of viruses with M460V and L595F mutations in the UL97 phosphotransferase gene. In contrast, analysis of viral DNA retrieved from the newborn dried blood spot demonstrated wild-type UL97 sequences. DNAemia resolved after the discontinuation of VAL-GCV. Long-term VAL-GCV therapy in congenitally infected infants can select for resistant viral variants, and anticipatory virological monitoring may be warranted.
Collapse
Affiliation(s)
- K Yeon Choi
- Division of Pediatric Infectious Diseases and Immunology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|