Cheng Y, Belov K. Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii).
Immunogenetics 2014;
66:727-35. [PMID:
25267059 DOI:
10.1007/s00251-014-0804-3]
[Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial that is under threat of extinction due to an unusual transmissible disease called Devil Facial Tumour Disease (DFTD). Previous studies on the classical MHC genes have provided important insights into immune responses in this endangered species; however, so far, very little is known about the non-classical MHC genes of this species, which can also play significant roles in the immune system. Here, we report characterisation of five non-classical class I genes in the Tasmanian devil, including Saha-UD, -UK, -UM, -MR1 and -CD1. Saha-UD has been isolated previously and is known to have low genetic polymorphism, though its categorisation as classical or non-classical gene has remained undetermined. In this study, we observed tissue-specific expression of Saha-UD, suggesting that it is more characteristic of a non-classical gene. Restricted tissue expression patterns were also observed for other genes, with an exception of Saha-MR1 being ubiquitously expressed in all examined tissues. Saha-UK, -UM and -MR1 were found to be genetically monomorphic, while four alleles were found at Saha-CD1 with signs of positive selection detected within the α1 domain. Among the four Saha-CD1 alleles, one predominant allele (Saha-CD1*01) showed a high allele frequency of 0.906 in the Tasmanian devil population, resulting in a low heterozygosity (0.188) at this locus. Alternative splicing takes place in Saha-CD1, giving rise to a full-length transcript and a splice variant lacking intact antigen-binding, β2m-binding, transmembrane and cytoplasmic domains.
Collapse